High b-value diffusion tractography: Abnormal axonal network organization associated with medication-refractory epilepsy
Diffusion magnetic resonance imaging (dMRI) tractography has played a critical role in characterizing patterns of aberrant brain network reorganization among patients with epilepsy. However, the accuracy of dMRI tractography is hampered by the complex biophysical properties of white matter tissue. H...
Ausführliche Beschreibung
Autor*in: |
Gleichgerrcht, Ezequiel [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022transfer abstract |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Field study of a soft X-ray aerosol neutralizer combined with electrostatic classifiers for nanoparticle size distribution measurements - Nicosia, Alessia ELSEVIER, 2017, a journal of brain function, Orlando, Fla |
---|---|
Übergeordnetes Werk: |
volume:248 ; year:2022 ; pages:0 |
Links: |
---|
DOI / URN: |
10.1016/j.neuroimage.2021.118866 |
---|
Katalog-ID: |
ELV056596944 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV056596944 | ||
003 | DE-627 | ||
005 | 20230626043624.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220205s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.neuroimage.2021.118866 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001829.pica |
035 | |a (DE-627)ELV056596944 | ||
035 | |a (ELSEVIER)S1053-8119(21)01137-X | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Gleichgerrcht, Ezequiel |e verfasserin |4 aut | |
245 | 1 | 0 | |a High b-value diffusion tractography: Abnormal axonal network organization associated with medication-refractory epilepsy |
264 | 1 | |c 2022transfer abstract | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Diffusion magnetic resonance imaging (dMRI) tractography has played a critical role in characterizing patterns of aberrant brain network reorganization among patients with epilepsy. However, the accuracy of dMRI tractography is hampered by the complex biophysical properties of white matter tissue. High b-value diffusion imaging overcomes this limitation by better isolating axonal pathways. In this study, we introduce tractography derived from fiber ball imaging (FBI), a high b-value approach which excludes non-axonal signals, to identify atypical neuronal networks in patients with epilepsy. Specifically, we compared network properties obtained from multiple diffusion tractography approaches (diffusion tensor imaging, diffusion kurtosis imaging, FBI) in order to assess the pathophysiological relevance of network rearrangement in medication-responsive vs. medication-refractory adults with focal epilepsy. We show that drug-resistant epilepsy is associated with increased global network segregation detected by FBI-based tractography. We propose exploring FBI as a clinically feasible alternative to quantify topological changes that could be used to track disease progression and inform on clinical outcomes. | ||
520 | |a Diffusion magnetic resonance imaging (dMRI) tractography has played a critical role in characterizing patterns of aberrant brain network reorganization among patients with epilepsy. However, the accuracy of dMRI tractography is hampered by the complex biophysical properties of white matter tissue. High b-value diffusion imaging overcomes this limitation by better isolating axonal pathways. In this study, we introduce tractography derived from fiber ball imaging (FBI), a high b-value approach which excludes non-axonal signals, to identify atypical neuronal networks in patients with epilepsy. Specifically, we compared network properties obtained from multiple diffusion tractography approaches (diffusion tensor imaging, diffusion kurtosis imaging, FBI) in order to assess the pathophysiological relevance of network rearrangement in medication-responsive vs. medication-refractory adults with focal epilepsy. We show that drug-resistant epilepsy is associated with increased global network segregation detected by FBI-based tractography. We propose exploring FBI as a clinically feasible alternative to quantify topological changes that could be used to track disease progression and inform on clinical outcomes. | ||
650 | 7 | |a DKI |2 Elsevier | |
650 | 7 | |a DTI |2 Elsevier | |
650 | 7 | |a FBI |2 Elsevier | |
700 | 1 | |a Keller, Simon S. |4 oth | |
700 | 1 | |a Bryant, Lorna |4 oth | |
700 | 1 | |a Moss, Hunter |4 oth | |
700 | 1 | |a Kellermann, Tanja S. |4 oth | |
700 | 1 | |a Biswas, Shubhabrata |4 oth | |
700 | 1 | |a Marson, Anthony G. |4 oth | |
700 | 1 | |a Wilmskoetter, Janina |4 oth | |
700 | 1 | |a Jensen, Jens H. |4 oth | |
700 | 1 | |a Bonilha, Leonardo |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Academic Press |a Nicosia, Alessia ELSEVIER |t Field study of a soft X-ray aerosol neutralizer combined with electrostatic classifiers for nanoparticle size distribution measurements |d 2017 |d a journal of brain function |g Orlando, Fla |w (DE-627)ELV001942808 |
773 | 1 | 8 | |g volume:248 |g year:2022 |g pages:0 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.neuroimage.2021.118866 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
951 | |a AR | ||
952 | |d 248 |j 2022 |h 0 |
author_variant |
e g eg |
---|---|
matchkey_str |
gleichgerrchtezequielkellersimonsbryantl:2022----:ihvleifsotatgahanraaoantokraiainsoitdih |
hierarchy_sort_str |
2022transfer abstract |
publishDate |
2022 |
allfields |
10.1016/j.neuroimage.2021.118866 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001829.pica (DE-627)ELV056596944 (ELSEVIER)S1053-8119(21)01137-X DE-627 ger DE-627 rakwb eng Gleichgerrcht, Ezequiel verfasserin aut High b-value diffusion tractography: Abnormal axonal network organization associated with medication-refractory epilepsy 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Diffusion magnetic resonance imaging (dMRI) tractography has played a critical role in characterizing patterns of aberrant brain network reorganization among patients with epilepsy. However, the accuracy of dMRI tractography is hampered by the complex biophysical properties of white matter tissue. High b-value diffusion imaging overcomes this limitation by better isolating axonal pathways. In this study, we introduce tractography derived from fiber ball imaging (FBI), a high b-value approach which excludes non-axonal signals, to identify atypical neuronal networks in patients with epilepsy. Specifically, we compared network properties obtained from multiple diffusion tractography approaches (diffusion tensor imaging, diffusion kurtosis imaging, FBI) in order to assess the pathophysiological relevance of network rearrangement in medication-responsive vs. medication-refractory adults with focal epilepsy. We show that drug-resistant epilepsy is associated with increased global network segregation detected by FBI-based tractography. We propose exploring FBI as a clinically feasible alternative to quantify topological changes that could be used to track disease progression and inform on clinical outcomes. Diffusion magnetic resonance imaging (dMRI) tractography has played a critical role in characterizing patterns of aberrant brain network reorganization among patients with epilepsy. However, the accuracy of dMRI tractography is hampered by the complex biophysical properties of white matter tissue. High b-value diffusion imaging overcomes this limitation by better isolating axonal pathways. In this study, we introduce tractography derived from fiber ball imaging (FBI), a high b-value approach which excludes non-axonal signals, to identify atypical neuronal networks in patients with epilepsy. Specifically, we compared network properties obtained from multiple diffusion tractography approaches (diffusion tensor imaging, diffusion kurtosis imaging, FBI) in order to assess the pathophysiological relevance of network rearrangement in medication-responsive vs. medication-refractory adults with focal epilepsy. We show that drug-resistant epilepsy is associated with increased global network segregation detected by FBI-based tractography. We propose exploring FBI as a clinically feasible alternative to quantify topological changes that could be used to track disease progression and inform on clinical outcomes. DKI Elsevier DTI Elsevier FBI Elsevier Keller, Simon S. oth Bryant, Lorna oth Moss, Hunter oth Kellermann, Tanja S. oth Biswas, Shubhabrata oth Marson, Anthony G. oth Wilmskoetter, Janina oth Jensen, Jens H. oth Bonilha, Leonardo oth Enthalten in Academic Press Nicosia, Alessia ELSEVIER Field study of a soft X-ray aerosol neutralizer combined with electrostatic classifiers for nanoparticle size distribution measurements 2017 a journal of brain function Orlando, Fla (DE-627)ELV001942808 volume:248 year:2022 pages:0 https://doi.org/10.1016/j.neuroimage.2021.118866 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U AR 248 2022 0 |
spelling |
10.1016/j.neuroimage.2021.118866 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001829.pica (DE-627)ELV056596944 (ELSEVIER)S1053-8119(21)01137-X DE-627 ger DE-627 rakwb eng Gleichgerrcht, Ezequiel verfasserin aut High b-value diffusion tractography: Abnormal axonal network organization associated with medication-refractory epilepsy 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Diffusion magnetic resonance imaging (dMRI) tractography has played a critical role in characterizing patterns of aberrant brain network reorganization among patients with epilepsy. However, the accuracy of dMRI tractography is hampered by the complex biophysical properties of white matter tissue. High b-value diffusion imaging overcomes this limitation by better isolating axonal pathways. In this study, we introduce tractography derived from fiber ball imaging (FBI), a high b-value approach which excludes non-axonal signals, to identify atypical neuronal networks in patients with epilepsy. Specifically, we compared network properties obtained from multiple diffusion tractography approaches (diffusion tensor imaging, diffusion kurtosis imaging, FBI) in order to assess the pathophysiological relevance of network rearrangement in medication-responsive vs. medication-refractory adults with focal epilepsy. We show that drug-resistant epilepsy is associated with increased global network segregation detected by FBI-based tractography. We propose exploring FBI as a clinically feasible alternative to quantify topological changes that could be used to track disease progression and inform on clinical outcomes. Diffusion magnetic resonance imaging (dMRI) tractography has played a critical role in characterizing patterns of aberrant brain network reorganization among patients with epilepsy. However, the accuracy of dMRI tractography is hampered by the complex biophysical properties of white matter tissue. High b-value diffusion imaging overcomes this limitation by better isolating axonal pathways. In this study, we introduce tractography derived from fiber ball imaging (FBI), a high b-value approach which excludes non-axonal signals, to identify atypical neuronal networks in patients with epilepsy. Specifically, we compared network properties obtained from multiple diffusion tractography approaches (diffusion tensor imaging, diffusion kurtosis imaging, FBI) in order to assess the pathophysiological relevance of network rearrangement in medication-responsive vs. medication-refractory adults with focal epilepsy. We show that drug-resistant epilepsy is associated with increased global network segregation detected by FBI-based tractography. We propose exploring FBI as a clinically feasible alternative to quantify topological changes that could be used to track disease progression and inform on clinical outcomes. DKI Elsevier DTI Elsevier FBI Elsevier Keller, Simon S. oth Bryant, Lorna oth Moss, Hunter oth Kellermann, Tanja S. oth Biswas, Shubhabrata oth Marson, Anthony G. oth Wilmskoetter, Janina oth Jensen, Jens H. oth Bonilha, Leonardo oth Enthalten in Academic Press Nicosia, Alessia ELSEVIER Field study of a soft X-ray aerosol neutralizer combined with electrostatic classifiers for nanoparticle size distribution measurements 2017 a journal of brain function Orlando, Fla (DE-627)ELV001942808 volume:248 year:2022 pages:0 https://doi.org/10.1016/j.neuroimage.2021.118866 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U AR 248 2022 0 |
allfields_unstemmed |
10.1016/j.neuroimage.2021.118866 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001829.pica (DE-627)ELV056596944 (ELSEVIER)S1053-8119(21)01137-X DE-627 ger DE-627 rakwb eng Gleichgerrcht, Ezequiel verfasserin aut High b-value diffusion tractography: Abnormal axonal network organization associated with medication-refractory epilepsy 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Diffusion magnetic resonance imaging (dMRI) tractography has played a critical role in characterizing patterns of aberrant brain network reorganization among patients with epilepsy. However, the accuracy of dMRI tractography is hampered by the complex biophysical properties of white matter tissue. High b-value diffusion imaging overcomes this limitation by better isolating axonal pathways. In this study, we introduce tractography derived from fiber ball imaging (FBI), a high b-value approach which excludes non-axonal signals, to identify atypical neuronal networks in patients with epilepsy. Specifically, we compared network properties obtained from multiple diffusion tractography approaches (diffusion tensor imaging, diffusion kurtosis imaging, FBI) in order to assess the pathophysiological relevance of network rearrangement in medication-responsive vs. medication-refractory adults with focal epilepsy. We show that drug-resistant epilepsy is associated with increased global network segregation detected by FBI-based tractography. We propose exploring FBI as a clinically feasible alternative to quantify topological changes that could be used to track disease progression and inform on clinical outcomes. Diffusion magnetic resonance imaging (dMRI) tractography has played a critical role in characterizing patterns of aberrant brain network reorganization among patients with epilepsy. However, the accuracy of dMRI tractography is hampered by the complex biophysical properties of white matter tissue. High b-value diffusion imaging overcomes this limitation by better isolating axonal pathways. In this study, we introduce tractography derived from fiber ball imaging (FBI), a high b-value approach which excludes non-axonal signals, to identify atypical neuronal networks in patients with epilepsy. Specifically, we compared network properties obtained from multiple diffusion tractography approaches (diffusion tensor imaging, diffusion kurtosis imaging, FBI) in order to assess the pathophysiological relevance of network rearrangement in medication-responsive vs. medication-refractory adults with focal epilepsy. We show that drug-resistant epilepsy is associated with increased global network segregation detected by FBI-based tractography. We propose exploring FBI as a clinically feasible alternative to quantify topological changes that could be used to track disease progression and inform on clinical outcomes. DKI Elsevier DTI Elsevier FBI Elsevier Keller, Simon S. oth Bryant, Lorna oth Moss, Hunter oth Kellermann, Tanja S. oth Biswas, Shubhabrata oth Marson, Anthony G. oth Wilmskoetter, Janina oth Jensen, Jens H. oth Bonilha, Leonardo oth Enthalten in Academic Press Nicosia, Alessia ELSEVIER Field study of a soft X-ray aerosol neutralizer combined with electrostatic classifiers for nanoparticle size distribution measurements 2017 a journal of brain function Orlando, Fla (DE-627)ELV001942808 volume:248 year:2022 pages:0 https://doi.org/10.1016/j.neuroimage.2021.118866 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U AR 248 2022 0 |
allfieldsGer |
10.1016/j.neuroimage.2021.118866 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001829.pica (DE-627)ELV056596944 (ELSEVIER)S1053-8119(21)01137-X DE-627 ger DE-627 rakwb eng Gleichgerrcht, Ezequiel verfasserin aut High b-value diffusion tractography: Abnormal axonal network organization associated with medication-refractory epilepsy 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Diffusion magnetic resonance imaging (dMRI) tractography has played a critical role in characterizing patterns of aberrant brain network reorganization among patients with epilepsy. However, the accuracy of dMRI tractography is hampered by the complex biophysical properties of white matter tissue. High b-value diffusion imaging overcomes this limitation by better isolating axonal pathways. In this study, we introduce tractography derived from fiber ball imaging (FBI), a high b-value approach which excludes non-axonal signals, to identify atypical neuronal networks in patients with epilepsy. Specifically, we compared network properties obtained from multiple diffusion tractography approaches (diffusion tensor imaging, diffusion kurtosis imaging, FBI) in order to assess the pathophysiological relevance of network rearrangement in medication-responsive vs. medication-refractory adults with focal epilepsy. We show that drug-resistant epilepsy is associated with increased global network segregation detected by FBI-based tractography. We propose exploring FBI as a clinically feasible alternative to quantify topological changes that could be used to track disease progression and inform on clinical outcomes. Diffusion magnetic resonance imaging (dMRI) tractography has played a critical role in characterizing patterns of aberrant brain network reorganization among patients with epilepsy. However, the accuracy of dMRI tractography is hampered by the complex biophysical properties of white matter tissue. High b-value diffusion imaging overcomes this limitation by better isolating axonal pathways. In this study, we introduce tractography derived from fiber ball imaging (FBI), a high b-value approach which excludes non-axonal signals, to identify atypical neuronal networks in patients with epilepsy. Specifically, we compared network properties obtained from multiple diffusion tractography approaches (diffusion tensor imaging, diffusion kurtosis imaging, FBI) in order to assess the pathophysiological relevance of network rearrangement in medication-responsive vs. medication-refractory adults with focal epilepsy. We show that drug-resistant epilepsy is associated with increased global network segregation detected by FBI-based tractography. We propose exploring FBI as a clinically feasible alternative to quantify topological changes that could be used to track disease progression and inform on clinical outcomes. DKI Elsevier DTI Elsevier FBI Elsevier Keller, Simon S. oth Bryant, Lorna oth Moss, Hunter oth Kellermann, Tanja S. oth Biswas, Shubhabrata oth Marson, Anthony G. oth Wilmskoetter, Janina oth Jensen, Jens H. oth Bonilha, Leonardo oth Enthalten in Academic Press Nicosia, Alessia ELSEVIER Field study of a soft X-ray aerosol neutralizer combined with electrostatic classifiers for nanoparticle size distribution measurements 2017 a journal of brain function Orlando, Fla (DE-627)ELV001942808 volume:248 year:2022 pages:0 https://doi.org/10.1016/j.neuroimage.2021.118866 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U AR 248 2022 0 |
allfieldsSound |
10.1016/j.neuroimage.2021.118866 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001829.pica (DE-627)ELV056596944 (ELSEVIER)S1053-8119(21)01137-X DE-627 ger DE-627 rakwb eng Gleichgerrcht, Ezequiel verfasserin aut High b-value diffusion tractography: Abnormal axonal network organization associated with medication-refractory epilepsy 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Diffusion magnetic resonance imaging (dMRI) tractography has played a critical role in characterizing patterns of aberrant brain network reorganization among patients with epilepsy. However, the accuracy of dMRI tractography is hampered by the complex biophysical properties of white matter tissue. High b-value diffusion imaging overcomes this limitation by better isolating axonal pathways. In this study, we introduce tractography derived from fiber ball imaging (FBI), a high b-value approach which excludes non-axonal signals, to identify atypical neuronal networks in patients with epilepsy. Specifically, we compared network properties obtained from multiple diffusion tractography approaches (diffusion tensor imaging, diffusion kurtosis imaging, FBI) in order to assess the pathophysiological relevance of network rearrangement in medication-responsive vs. medication-refractory adults with focal epilepsy. We show that drug-resistant epilepsy is associated with increased global network segregation detected by FBI-based tractography. We propose exploring FBI as a clinically feasible alternative to quantify topological changes that could be used to track disease progression and inform on clinical outcomes. Diffusion magnetic resonance imaging (dMRI) tractography has played a critical role in characterizing patterns of aberrant brain network reorganization among patients with epilepsy. However, the accuracy of dMRI tractography is hampered by the complex biophysical properties of white matter tissue. High b-value diffusion imaging overcomes this limitation by better isolating axonal pathways. In this study, we introduce tractography derived from fiber ball imaging (FBI), a high b-value approach which excludes non-axonal signals, to identify atypical neuronal networks in patients with epilepsy. Specifically, we compared network properties obtained from multiple diffusion tractography approaches (diffusion tensor imaging, diffusion kurtosis imaging, FBI) in order to assess the pathophysiological relevance of network rearrangement in medication-responsive vs. medication-refractory adults with focal epilepsy. We show that drug-resistant epilepsy is associated with increased global network segregation detected by FBI-based tractography. We propose exploring FBI as a clinically feasible alternative to quantify topological changes that could be used to track disease progression and inform on clinical outcomes. DKI Elsevier DTI Elsevier FBI Elsevier Keller, Simon S. oth Bryant, Lorna oth Moss, Hunter oth Kellermann, Tanja S. oth Biswas, Shubhabrata oth Marson, Anthony G. oth Wilmskoetter, Janina oth Jensen, Jens H. oth Bonilha, Leonardo oth Enthalten in Academic Press Nicosia, Alessia ELSEVIER Field study of a soft X-ray aerosol neutralizer combined with electrostatic classifiers for nanoparticle size distribution measurements 2017 a journal of brain function Orlando, Fla (DE-627)ELV001942808 volume:248 year:2022 pages:0 https://doi.org/10.1016/j.neuroimage.2021.118866 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U AR 248 2022 0 |
language |
English |
source |
Enthalten in Field study of a soft X-ray aerosol neutralizer combined with electrostatic classifiers for nanoparticle size distribution measurements Orlando, Fla volume:248 year:2022 pages:0 |
sourceStr |
Enthalten in Field study of a soft X-ray aerosol neutralizer combined with electrostatic classifiers for nanoparticle size distribution measurements Orlando, Fla volume:248 year:2022 pages:0 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
DKI DTI FBI |
isfreeaccess_bool |
false |
container_title |
Field study of a soft X-ray aerosol neutralizer combined with electrostatic classifiers for nanoparticle size distribution measurements |
authorswithroles_txt_mv |
Gleichgerrcht, Ezequiel @@aut@@ Keller, Simon S. @@oth@@ Bryant, Lorna @@oth@@ Moss, Hunter @@oth@@ Kellermann, Tanja S. @@oth@@ Biswas, Shubhabrata @@oth@@ Marson, Anthony G. @@oth@@ Wilmskoetter, Janina @@oth@@ Jensen, Jens H. @@oth@@ Bonilha, Leonardo @@oth@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
ELV001942808 |
id |
ELV056596944 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV056596944</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626043624.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220205s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.neuroimage.2021.118866</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001829.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV056596944</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1053-8119(21)01137-X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gleichgerrcht, Ezequiel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">High b-value diffusion tractography: Abnormal axonal network organization associated with medication-refractory epilepsy</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Diffusion magnetic resonance imaging (dMRI) tractography has played a critical role in characterizing patterns of aberrant brain network reorganization among patients with epilepsy. However, the accuracy of dMRI tractography is hampered by the complex biophysical properties of white matter tissue. High b-value diffusion imaging overcomes this limitation by better isolating axonal pathways. In this study, we introduce tractography derived from fiber ball imaging (FBI), a high b-value approach which excludes non-axonal signals, to identify atypical neuronal networks in patients with epilepsy. Specifically, we compared network properties obtained from multiple diffusion tractography approaches (diffusion tensor imaging, diffusion kurtosis imaging, FBI) in order to assess the pathophysiological relevance of network rearrangement in medication-responsive vs. medication-refractory adults with focal epilepsy. We show that drug-resistant epilepsy is associated with increased global network segregation detected by FBI-based tractography. We propose exploring FBI as a clinically feasible alternative to quantify topological changes that could be used to track disease progression and inform on clinical outcomes.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Diffusion magnetic resonance imaging (dMRI) tractography has played a critical role in characterizing patterns of aberrant brain network reorganization among patients with epilepsy. However, the accuracy of dMRI tractography is hampered by the complex biophysical properties of white matter tissue. High b-value diffusion imaging overcomes this limitation by better isolating axonal pathways. In this study, we introduce tractography derived from fiber ball imaging (FBI), a high b-value approach which excludes non-axonal signals, to identify atypical neuronal networks in patients with epilepsy. Specifically, we compared network properties obtained from multiple diffusion tractography approaches (diffusion tensor imaging, diffusion kurtosis imaging, FBI) in order to assess the pathophysiological relevance of network rearrangement in medication-responsive vs. medication-refractory adults with focal epilepsy. We show that drug-resistant epilepsy is associated with increased global network segregation detected by FBI-based tractography. We propose exploring FBI as a clinically feasible alternative to quantify topological changes that could be used to track disease progression and inform on clinical outcomes.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">DKI</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">DTI</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">FBI</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Keller, Simon S.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bryant, Lorna</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Moss, Hunter</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kellermann, Tanja S.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Biswas, Shubhabrata</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Marson, Anthony G.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wilmskoetter, Janina</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jensen, Jens H.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bonilha, Leonardo</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Academic Press</subfield><subfield code="a">Nicosia, Alessia ELSEVIER</subfield><subfield code="t">Field study of a soft X-ray aerosol neutralizer combined with electrostatic classifiers for nanoparticle size distribution measurements</subfield><subfield code="d">2017</subfield><subfield code="d">a journal of brain function</subfield><subfield code="g">Orlando, Fla</subfield><subfield code="w">(DE-627)ELV001942808</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:248</subfield><subfield code="g">year:2022</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.neuroimage.2021.118866</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">248</subfield><subfield code="j">2022</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
author |
Gleichgerrcht, Ezequiel |
spellingShingle |
Gleichgerrcht, Ezequiel Elsevier DKI Elsevier DTI Elsevier FBI High b-value diffusion tractography: Abnormal axonal network organization associated with medication-refractory epilepsy |
authorStr |
Gleichgerrcht, Ezequiel |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV001942808 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
High b-value diffusion tractography: Abnormal axonal network organization associated with medication-refractory epilepsy DKI Elsevier DTI Elsevier FBI Elsevier |
topic |
Elsevier DKI Elsevier DTI Elsevier FBI |
topic_unstemmed |
Elsevier DKI Elsevier DTI Elsevier FBI |
topic_browse |
Elsevier DKI Elsevier DTI Elsevier FBI |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
s s k ss ssk l b lb h m hm t s k ts tsk s b sb a g m ag agm j w jw j h j jh jhj l b lb |
hierarchy_parent_title |
Field study of a soft X-ray aerosol neutralizer combined with electrostatic classifiers for nanoparticle size distribution measurements |
hierarchy_parent_id |
ELV001942808 |
hierarchy_top_title |
Field study of a soft X-ray aerosol neutralizer combined with electrostatic classifiers for nanoparticle size distribution measurements |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV001942808 |
title |
High b-value diffusion tractography: Abnormal axonal network organization associated with medication-refractory epilepsy |
ctrlnum |
(DE-627)ELV056596944 (ELSEVIER)S1053-8119(21)01137-X |
title_full |
High b-value diffusion tractography: Abnormal axonal network organization associated with medication-refractory epilepsy |
author_sort |
Gleichgerrcht, Ezequiel |
journal |
Field study of a soft X-ray aerosol neutralizer combined with electrostatic classifiers for nanoparticle size distribution measurements |
journalStr |
Field study of a soft X-ray aerosol neutralizer combined with electrostatic classifiers for nanoparticle size distribution measurements |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
zzz |
container_start_page |
0 |
author_browse |
Gleichgerrcht, Ezequiel |
container_volume |
248 |
format_se |
Elektronische Aufsätze |
author-letter |
Gleichgerrcht, Ezequiel |
doi_str_mv |
10.1016/j.neuroimage.2021.118866 |
title_sort |
high b-value diffusion tractography: abnormal axonal network organization associated with medication-refractory epilepsy |
title_auth |
High b-value diffusion tractography: Abnormal axonal network organization associated with medication-refractory epilepsy |
abstract |
Diffusion magnetic resonance imaging (dMRI) tractography has played a critical role in characterizing patterns of aberrant brain network reorganization among patients with epilepsy. However, the accuracy of dMRI tractography is hampered by the complex biophysical properties of white matter tissue. High b-value diffusion imaging overcomes this limitation by better isolating axonal pathways. In this study, we introduce tractography derived from fiber ball imaging (FBI), a high b-value approach which excludes non-axonal signals, to identify atypical neuronal networks in patients with epilepsy. Specifically, we compared network properties obtained from multiple diffusion tractography approaches (diffusion tensor imaging, diffusion kurtosis imaging, FBI) in order to assess the pathophysiological relevance of network rearrangement in medication-responsive vs. medication-refractory adults with focal epilepsy. We show that drug-resistant epilepsy is associated with increased global network segregation detected by FBI-based tractography. We propose exploring FBI as a clinically feasible alternative to quantify topological changes that could be used to track disease progression and inform on clinical outcomes. |
abstractGer |
Diffusion magnetic resonance imaging (dMRI) tractography has played a critical role in characterizing patterns of aberrant brain network reorganization among patients with epilepsy. However, the accuracy of dMRI tractography is hampered by the complex biophysical properties of white matter tissue. High b-value diffusion imaging overcomes this limitation by better isolating axonal pathways. In this study, we introduce tractography derived from fiber ball imaging (FBI), a high b-value approach which excludes non-axonal signals, to identify atypical neuronal networks in patients with epilepsy. Specifically, we compared network properties obtained from multiple diffusion tractography approaches (diffusion tensor imaging, diffusion kurtosis imaging, FBI) in order to assess the pathophysiological relevance of network rearrangement in medication-responsive vs. medication-refractory adults with focal epilepsy. We show that drug-resistant epilepsy is associated with increased global network segregation detected by FBI-based tractography. We propose exploring FBI as a clinically feasible alternative to quantify topological changes that could be used to track disease progression and inform on clinical outcomes. |
abstract_unstemmed |
Diffusion magnetic resonance imaging (dMRI) tractography has played a critical role in characterizing patterns of aberrant brain network reorganization among patients with epilepsy. However, the accuracy of dMRI tractography is hampered by the complex biophysical properties of white matter tissue. High b-value diffusion imaging overcomes this limitation by better isolating axonal pathways. In this study, we introduce tractography derived from fiber ball imaging (FBI), a high b-value approach which excludes non-axonal signals, to identify atypical neuronal networks in patients with epilepsy. Specifically, we compared network properties obtained from multiple diffusion tractography approaches (diffusion tensor imaging, diffusion kurtosis imaging, FBI) in order to assess the pathophysiological relevance of network rearrangement in medication-responsive vs. medication-refractory adults with focal epilepsy. We show that drug-resistant epilepsy is associated with increased global network segregation detected by FBI-based tractography. We propose exploring FBI as a clinically feasible alternative to quantify topological changes that could be used to track disease progression and inform on clinical outcomes. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U |
title_short |
High b-value diffusion tractography: Abnormal axonal network organization associated with medication-refractory epilepsy |
url |
https://doi.org/10.1016/j.neuroimage.2021.118866 |
remote_bool |
true |
author2 |
Keller, Simon S. Bryant, Lorna Moss, Hunter Kellermann, Tanja S. Biswas, Shubhabrata Marson, Anthony G. Wilmskoetter, Janina Jensen, Jens H. Bonilha, Leonardo |
author2Str |
Keller, Simon S. Bryant, Lorna Moss, Hunter Kellermann, Tanja S. Biswas, Shubhabrata Marson, Anthony G. Wilmskoetter, Janina Jensen, Jens H. Bonilha, Leonardo |
ppnlink |
ELV001942808 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth oth oth oth |
doi_str |
10.1016/j.neuroimage.2021.118866 |
up_date |
2024-07-06T20:51:14.666Z |
_version_ |
1803864322516975616 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV056596944</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626043624.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220205s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.neuroimage.2021.118866</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001829.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV056596944</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1053-8119(21)01137-X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gleichgerrcht, Ezequiel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">High b-value diffusion tractography: Abnormal axonal network organization associated with medication-refractory epilepsy</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Diffusion magnetic resonance imaging (dMRI) tractography has played a critical role in characterizing patterns of aberrant brain network reorganization among patients with epilepsy. However, the accuracy of dMRI tractography is hampered by the complex biophysical properties of white matter tissue. High b-value diffusion imaging overcomes this limitation by better isolating axonal pathways. In this study, we introduce tractography derived from fiber ball imaging (FBI), a high b-value approach which excludes non-axonal signals, to identify atypical neuronal networks in patients with epilepsy. Specifically, we compared network properties obtained from multiple diffusion tractography approaches (diffusion tensor imaging, diffusion kurtosis imaging, FBI) in order to assess the pathophysiological relevance of network rearrangement in medication-responsive vs. medication-refractory adults with focal epilepsy. We show that drug-resistant epilepsy is associated with increased global network segregation detected by FBI-based tractography. We propose exploring FBI as a clinically feasible alternative to quantify topological changes that could be used to track disease progression and inform on clinical outcomes.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Diffusion magnetic resonance imaging (dMRI) tractography has played a critical role in characterizing patterns of aberrant brain network reorganization among patients with epilepsy. However, the accuracy of dMRI tractography is hampered by the complex biophysical properties of white matter tissue. High b-value diffusion imaging overcomes this limitation by better isolating axonal pathways. In this study, we introduce tractography derived from fiber ball imaging (FBI), a high b-value approach which excludes non-axonal signals, to identify atypical neuronal networks in patients with epilepsy. Specifically, we compared network properties obtained from multiple diffusion tractography approaches (diffusion tensor imaging, diffusion kurtosis imaging, FBI) in order to assess the pathophysiological relevance of network rearrangement in medication-responsive vs. medication-refractory adults with focal epilepsy. We show that drug-resistant epilepsy is associated with increased global network segregation detected by FBI-based tractography. We propose exploring FBI as a clinically feasible alternative to quantify topological changes that could be used to track disease progression and inform on clinical outcomes.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">DKI</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">DTI</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">FBI</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Keller, Simon S.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bryant, Lorna</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Moss, Hunter</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kellermann, Tanja S.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Biswas, Shubhabrata</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Marson, Anthony G.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wilmskoetter, Janina</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jensen, Jens H.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bonilha, Leonardo</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Academic Press</subfield><subfield code="a">Nicosia, Alessia ELSEVIER</subfield><subfield code="t">Field study of a soft X-ray aerosol neutralizer combined with electrostatic classifiers for nanoparticle size distribution measurements</subfield><subfield code="d">2017</subfield><subfield code="d">a journal of brain function</subfield><subfield code="g">Orlando, Fla</subfield><subfield code="w">(DE-627)ELV001942808</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:248</subfield><subfield code="g">year:2022</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.neuroimage.2021.118866</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">248</subfield><subfield code="j">2022</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
score |
7.401086 |