Relying on machine learning methods for predicting hydrogen solubility in different alcoholic solvents
There are high demands for reliable hydrogen-alcohol phase equilibria in separation and conversion-related industrial processes. Since experimental measurements cannot be directly included in the computer-aided handling of these processes, this study utilizes various computational techniques for est...
Ausführliche Beschreibung
Autor*in: |
Zhou, Zongming [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
11 |
---|
Übergeordnetes Werk: |
Enthalten in: External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs - Dedhia, Kavita ELSEVIER, 2018, official journal of the International Association for Hydrogen Energy, New York, NY [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:47 ; year:2022 ; number:9 ; day:29 ; month:01 ; pages:5817-5827 ; extent:11 |
Links: |
---|
DOI / URN: |
10.1016/j.ijhydene.2021.11.121 |
---|
Katalog-ID: |
ELV056638876 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV056638876 | ||
003 | DE-627 | ||
005 | 20230626043710.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220205s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ijhydene.2021.11.121 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001658.pica |
035 | |a (DE-627)ELV056638876 | ||
035 | |a (ELSEVIER)S0360-3199(21)04508-0 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 610 |q VZ |
084 | |a 44.94 |2 bkl | ||
100 | 1 | |a Zhou, Zongming |e verfasserin |4 aut | |
245 | 1 | 0 | |a Relying on machine learning methods for predicting hydrogen solubility in different alcoholic solvents |
264 | 1 | |c 2022transfer abstract | |
300 | |a 11 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a There are high demands for reliable hydrogen-alcohol phase equilibria in separation and conversion-related industrial processes. Since experimental measurements cannot be directly included in the computer-aided handling of these processes, this study utilizes various computational techniques for estimating hydrogen solubility in seven alcoholic solvents (methanol, ethanol, 1-propanol, 2-propanol, allyl alcohol, 1-butanol, and furfuryl alcohol). Ranking analysis shows that the adaptive-neuro fuzzy inference system having genfis2 (ANFIS2) is the best choice for this purpose. The model predictions are in excellent agreement with the 194 laboratory measurements (RAD = 3.32%, MSE = 6.9 × 10−4, and R2 = 0.998896). Statistical uncertainty analysis confirms that the ANFIS2 model is superior to the previously proposed equations of state and empirical correlations in the literature. Simulation results confirm that 1-butanol and furfuryl alcohol has the highest and lowest hydrogen absorption tendency, respectively. Furthermore, the ANFIS2 justifies that the solubility of hydrogen in all alcohols obeys Henry's law and decreases by decreasing temperature and pressure. | ||
520 | |a There are high demands for reliable hydrogen-alcohol phase equilibria in separation and conversion-related industrial processes. Since experimental measurements cannot be directly included in the computer-aided handling of these processes, this study utilizes various computational techniques for estimating hydrogen solubility in seven alcoholic solvents (methanol, ethanol, 1-propanol, 2-propanol, allyl alcohol, 1-butanol, and furfuryl alcohol). Ranking analysis shows that the adaptive-neuro fuzzy inference system having genfis2 (ANFIS2) is the best choice for this purpose. The model predictions are in excellent agreement with the 194 laboratory measurements (RAD = 3.32%, MSE = 6.9 × 10−4, and R2 = 0.998896). Statistical uncertainty analysis confirms that the ANFIS2 model is superior to the previously proposed equations of state and empirical correlations in the literature. Simulation results confirm that 1-butanol and furfuryl alcohol has the highest and lowest hydrogen absorption tendency, respectively. Furthermore, the ANFIS2 justifies that the solubility of hydrogen in all alcohols obeys Henry's law and decreases by decreasing temperature and pressure. | ||
650 | 7 | |a Computational modeling |2 Elsevier | |
650 | 7 | |a Adaptive-neuro fuzzy inference system |2 Elsevier | |
650 | 7 | |a Phase equilibria |2 Elsevier | |
650 | 7 | |a Hydrogen-alcohol mixtures |2 Elsevier | |
650 | 7 | |a Henry law |2 Elsevier | |
700 | 1 | |a Nourani, Pejman |4 oth | |
700 | 1 | |a Karimi, Mehdi |4 oth | |
700 | 1 | |a Kamrani, Elham |4 oth | |
700 | 1 | |a Anqi, Ali E. |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Dedhia, Kavita ELSEVIER |t External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs |d 2018 |d official journal of the International Association for Hydrogen Energy |g New York, NY [u.a.] |w (DE-627)ELV000127019 |
773 | 1 | 8 | |g volume:47 |g year:2022 |g number:9 |g day:29 |g month:01 |g pages:5817-5827 |g extent:11 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.ijhydene.2021.11.121 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
936 | b | k | |a 44.94 |j Hals-Nasen-Ohrenheilkunde |q VZ |
951 | |a AR | ||
952 | |d 47 |j 2022 |e 9 |b 29 |c 0129 |h 5817-5827 |g 11 |
author_variant |
z z zz |
---|---|
matchkey_str |
zhouzongmingnouranipejmankarimimehdikamr:2022----:eynomcieerigehdfrrdcigyrgnouiiyni |
hierarchy_sort_str |
2022transfer abstract |
bklnumber |
44.94 |
publishDate |
2022 |
allfields |
10.1016/j.ijhydene.2021.11.121 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001658.pica (DE-627)ELV056638876 (ELSEVIER)S0360-3199(21)04508-0 DE-627 ger DE-627 rakwb eng 610 VZ 44.94 bkl Zhou, Zongming verfasserin aut Relying on machine learning methods for predicting hydrogen solubility in different alcoholic solvents 2022transfer abstract 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier There are high demands for reliable hydrogen-alcohol phase equilibria in separation and conversion-related industrial processes. Since experimental measurements cannot be directly included in the computer-aided handling of these processes, this study utilizes various computational techniques for estimating hydrogen solubility in seven alcoholic solvents (methanol, ethanol, 1-propanol, 2-propanol, allyl alcohol, 1-butanol, and furfuryl alcohol). Ranking analysis shows that the adaptive-neuro fuzzy inference system having genfis2 (ANFIS2) is the best choice for this purpose. The model predictions are in excellent agreement with the 194 laboratory measurements (RAD = 3.32%, MSE = 6.9 × 10−4, and R2 = 0.998896). Statistical uncertainty analysis confirms that the ANFIS2 model is superior to the previously proposed equations of state and empirical correlations in the literature. Simulation results confirm that 1-butanol and furfuryl alcohol has the highest and lowest hydrogen absorption tendency, respectively. Furthermore, the ANFIS2 justifies that the solubility of hydrogen in all alcohols obeys Henry's law and decreases by decreasing temperature and pressure. There are high demands for reliable hydrogen-alcohol phase equilibria in separation and conversion-related industrial processes. Since experimental measurements cannot be directly included in the computer-aided handling of these processes, this study utilizes various computational techniques for estimating hydrogen solubility in seven alcoholic solvents (methanol, ethanol, 1-propanol, 2-propanol, allyl alcohol, 1-butanol, and furfuryl alcohol). Ranking analysis shows that the adaptive-neuro fuzzy inference system having genfis2 (ANFIS2) is the best choice for this purpose. The model predictions are in excellent agreement with the 194 laboratory measurements (RAD = 3.32%, MSE = 6.9 × 10−4, and R2 = 0.998896). Statistical uncertainty analysis confirms that the ANFIS2 model is superior to the previously proposed equations of state and empirical correlations in the literature. Simulation results confirm that 1-butanol and furfuryl alcohol has the highest and lowest hydrogen absorption tendency, respectively. Furthermore, the ANFIS2 justifies that the solubility of hydrogen in all alcohols obeys Henry's law and decreases by decreasing temperature and pressure. Computational modeling Elsevier Adaptive-neuro fuzzy inference system Elsevier Phase equilibria Elsevier Hydrogen-alcohol mixtures Elsevier Henry law Elsevier Nourani, Pejman oth Karimi, Mehdi oth Kamrani, Elham oth Anqi, Ali E. oth Enthalten in Elsevier Dedhia, Kavita ELSEVIER External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs 2018 official journal of the International Association for Hydrogen Energy New York, NY [u.a.] (DE-627)ELV000127019 volume:47 year:2022 number:9 day:29 month:01 pages:5817-5827 extent:11 https://doi.org/10.1016/j.ijhydene.2021.11.121 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.94 Hals-Nasen-Ohrenheilkunde VZ AR 47 2022 9 29 0129 5817-5827 11 |
spelling |
10.1016/j.ijhydene.2021.11.121 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001658.pica (DE-627)ELV056638876 (ELSEVIER)S0360-3199(21)04508-0 DE-627 ger DE-627 rakwb eng 610 VZ 44.94 bkl Zhou, Zongming verfasserin aut Relying on machine learning methods for predicting hydrogen solubility in different alcoholic solvents 2022transfer abstract 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier There are high demands for reliable hydrogen-alcohol phase equilibria in separation and conversion-related industrial processes. Since experimental measurements cannot be directly included in the computer-aided handling of these processes, this study utilizes various computational techniques for estimating hydrogen solubility in seven alcoholic solvents (methanol, ethanol, 1-propanol, 2-propanol, allyl alcohol, 1-butanol, and furfuryl alcohol). Ranking analysis shows that the adaptive-neuro fuzzy inference system having genfis2 (ANFIS2) is the best choice for this purpose. The model predictions are in excellent agreement with the 194 laboratory measurements (RAD = 3.32%, MSE = 6.9 × 10−4, and R2 = 0.998896). Statistical uncertainty analysis confirms that the ANFIS2 model is superior to the previously proposed equations of state and empirical correlations in the literature. Simulation results confirm that 1-butanol and furfuryl alcohol has the highest and lowest hydrogen absorption tendency, respectively. Furthermore, the ANFIS2 justifies that the solubility of hydrogen in all alcohols obeys Henry's law and decreases by decreasing temperature and pressure. There are high demands for reliable hydrogen-alcohol phase equilibria in separation and conversion-related industrial processes. Since experimental measurements cannot be directly included in the computer-aided handling of these processes, this study utilizes various computational techniques for estimating hydrogen solubility in seven alcoholic solvents (methanol, ethanol, 1-propanol, 2-propanol, allyl alcohol, 1-butanol, and furfuryl alcohol). Ranking analysis shows that the adaptive-neuro fuzzy inference system having genfis2 (ANFIS2) is the best choice for this purpose. The model predictions are in excellent agreement with the 194 laboratory measurements (RAD = 3.32%, MSE = 6.9 × 10−4, and R2 = 0.998896). Statistical uncertainty analysis confirms that the ANFIS2 model is superior to the previously proposed equations of state and empirical correlations in the literature. Simulation results confirm that 1-butanol and furfuryl alcohol has the highest and lowest hydrogen absorption tendency, respectively. Furthermore, the ANFIS2 justifies that the solubility of hydrogen in all alcohols obeys Henry's law and decreases by decreasing temperature and pressure. Computational modeling Elsevier Adaptive-neuro fuzzy inference system Elsevier Phase equilibria Elsevier Hydrogen-alcohol mixtures Elsevier Henry law Elsevier Nourani, Pejman oth Karimi, Mehdi oth Kamrani, Elham oth Anqi, Ali E. oth Enthalten in Elsevier Dedhia, Kavita ELSEVIER External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs 2018 official journal of the International Association for Hydrogen Energy New York, NY [u.a.] (DE-627)ELV000127019 volume:47 year:2022 number:9 day:29 month:01 pages:5817-5827 extent:11 https://doi.org/10.1016/j.ijhydene.2021.11.121 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.94 Hals-Nasen-Ohrenheilkunde VZ AR 47 2022 9 29 0129 5817-5827 11 |
allfields_unstemmed |
10.1016/j.ijhydene.2021.11.121 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001658.pica (DE-627)ELV056638876 (ELSEVIER)S0360-3199(21)04508-0 DE-627 ger DE-627 rakwb eng 610 VZ 44.94 bkl Zhou, Zongming verfasserin aut Relying on machine learning methods for predicting hydrogen solubility in different alcoholic solvents 2022transfer abstract 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier There are high demands for reliable hydrogen-alcohol phase equilibria in separation and conversion-related industrial processes. Since experimental measurements cannot be directly included in the computer-aided handling of these processes, this study utilizes various computational techniques for estimating hydrogen solubility in seven alcoholic solvents (methanol, ethanol, 1-propanol, 2-propanol, allyl alcohol, 1-butanol, and furfuryl alcohol). Ranking analysis shows that the adaptive-neuro fuzzy inference system having genfis2 (ANFIS2) is the best choice for this purpose. The model predictions are in excellent agreement with the 194 laboratory measurements (RAD = 3.32%, MSE = 6.9 × 10−4, and R2 = 0.998896). Statistical uncertainty analysis confirms that the ANFIS2 model is superior to the previously proposed equations of state and empirical correlations in the literature. Simulation results confirm that 1-butanol and furfuryl alcohol has the highest and lowest hydrogen absorption tendency, respectively. Furthermore, the ANFIS2 justifies that the solubility of hydrogen in all alcohols obeys Henry's law and decreases by decreasing temperature and pressure. There are high demands for reliable hydrogen-alcohol phase equilibria in separation and conversion-related industrial processes. Since experimental measurements cannot be directly included in the computer-aided handling of these processes, this study utilizes various computational techniques for estimating hydrogen solubility in seven alcoholic solvents (methanol, ethanol, 1-propanol, 2-propanol, allyl alcohol, 1-butanol, and furfuryl alcohol). Ranking analysis shows that the adaptive-neuro fuzzy inference system having genfis2 (ANFIS2) is the best choice for this purpose. The model predictions are in excellent agreement with the 194 laboratory measurements (RAD = 3.32%, MSE = 6.9 × 10−4, and R2 = 0.998896). Statistical uncertainty analysis confirms that the ANFIS2 model is superior to the previously proposed equations of state and empirical correlations in the literature. Simulation results confirm that 1-butanol and furfuryl alcohol has the highest and lowest hydrogen absorption tendency, respectively. Furthermore, the ANFIS2 justifies that the solubility of hydrogen in all alcohols obeys Henry's law and decreases by decreasing temperature and pressure. Computational modeling Elsevier Adaptive-neuro fuzzy inference system Elsevier Phase equilibria Elsevier Hydrogen-alcohol mixtures Elsevier Henry law Elsevier Nourani, Pejman oth Karimi, Mehdi oth Kamrani, Elham oth Anqi, Ali E. oth Enthalten in Elsevier Dedhia, Kavita ELSEVIER External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs 2018 official journal of the International Association for Hydrogen Energy New York, NY [u.a.] (DE-627)ELV000127019 volume:47 year:2022 number:9 day:29 month:01 pages:5817-5827 extent:11 https://doi.org/10.1016/j.ijhydene.2021.11.121 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.94 Hals-Nasen-Ohrenheilkunde VZ AR 47 2022 9 29 0129 5817-5827 11 |
allfieldsGer |
10.1016/j.ijhydene.2021.11.121 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001658.pica (DE-627)ELV056638876 (ELSEVIER)S0360-3199(21)04508-0 DE-627 ger DE-627 rakwb eng 610 VZ 44.94 bkl Zhou, Zongming verfasserin aut Relying on machine learning methods for predicting hydrogen solubility in different alcoholic solvents 2022transfer abstract 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier There are high demands for reliable hydrogen-alcohol phase equilibria in separation and conversion-related industrial processes. Since experimental measurements cannot be directly included in the computer-aided handling of these processes, this study utilizes various computational techniques for estimating hydrogen solubility in seven alcoholic solvents (methanol, ethanol, 1-propanol, 2-propanol, allyl alcohol, 1-butanol, and furfuryl alcohol). Ranking analysis shows that the adaptive-neuro fuzzy inference system having genfis2 (ANFIS2) is the best choice for this purpose. The model predictions are in excellent agreement with the 194 laboratory measurements (RAD = 3.32%, MSE = 6.9 × 10−4, and R2 = 0.998896). Statistical uncertainty analysis confirms that the ANFIS2 model is superior to the previously proposed equations of state and empirical correlations in the literature. Simulation results confirm that 1-butanol and furfuryl alcohol has the highest and lowest hydrogen absorption tendency, respectively. Furthermore, the ANFIS2 justifies that the solubility of hydrogen in all alcohols obeys Henry's law and decreases by decreasing temperature and pressure. There are high demands for reliable hydrogen-alcohol phase equilibria in separation and conversion-related industrial processes. Since experimental measurements cannot be directly included in the computer-aided handling of these processes, this study utilizes various computational techniques for estimating hydrogen solubility in seven alcoholic solvents (methanol, ethanol, 1-propanol, 2-propanol, allyl alcohol, 1-butanol, and furfuryl alcohol). Ranking analysis shows that the adaptive-neuro fuzzy inference system having genfis2 (ANFIS2) is the best choice for this purpose. The model predictions are in excellent agreement with the 194 laboratory measurements (RAD = 3.32%, MSE = 6.9 × 10−4, and R2 = 0.998896). Statistical uncertainty analysis confirms that the ANFIS2 model is superior to the previously proposed equations of state and empirical correlations in the literature. Simulation results confirm that 1-butanol and furfuryl alcohol has the highest and lowest hydrogen absorption tendency, respectively. Furthermore, the ANFIS2 justifies that the solubility of hydrogen in all alcohols obeys Henry's law and decreases by decreasing temperature and pressure. Computational modeling Elsevier Adaptive-neuro fuzzy inference system Elsevier Phase equilibria Elsevier Hydrogen-alcohol mixtures Elsevier Henry law Elsevier Nourani, Pejman oth Karimi, Mehdi oth Kamrani, Elham oth Anqi, Ali E. oth Enthalten in Elsevier Dedhia, Kavita ELSEVIER External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs 2018 official journal of the International Association for Hydrogen Energy New York, NY [u.a.] (DE-627)ELV000127019 volume:47 year:2022 number:9 day:29 month:01 pages:5817-5827 extent:11 https://doi.org/10.1016/j.ijhydene.2021.11.121 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.94 Hals-Nasen-Ohrenheilkunde VZ AR 47 2022 9 29 0129 5817-5827 11 |
allfieldsSound |
10.1016/j.ijhydene.2021.11.121 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001658.pica (DE-627)ELV056638876 (ELSEVIER)S0360-3199(21)04508-0 DE-627 ger DE-627 rakwb eng 610 VZ 44.94 bkl Zhou, Zongming verfasserin aut Relying on machine learning methods for predicting hydrogen solubility in different alcoholic solvents 2022transfer abstract 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier There are high demands for reliable hydrogen-alcohol phase equilibria in separation and conversion-related industrial processes. Since experimental measurements cannot be directly included in the computer-aided handling of these processes, this study utilizes various computational techniques for estimating hydrogen solubility in seven alcoholic solvents (methanol, ethanol, 1-propanol, 2-propanol, allyl alcohol, 1-butanol, and furfuryl alcohol). Ranking analysis shows that the adaptive-neuro fuzzy inference system having genfis2 (ANFIS2) is the best choice for this purpose. The model predictions are in excellent agreement with the 194 laboratory measurements (RAD = 3.32%, MSE = 6.9 × 10−4, and R2 = 0.998896). Statistical uncertainty analysis confirms that the ANFIS2 model is superior to the previously proposed equations of state and empirical correlations in the literature. Simulation results confirm that 1-butanol and furfuryl alcohol has the highest and lowest hydrogen absorption tendency, respectively. Furthermore, the ANFIS2 justifies that the solubility of hydrogen in all alcohols obeys Henry's law and decreases by decreasing temperature and pressure. There are high demands for reliable hydrogen-alcohol phase equilibria in separation and conversion-related industrial processes. Since experimental measurements cannot be directly included in the computer-aided handling of these processes, this study utilizes various computational techniques for estimating hydrogen solubility in seven alcoholic solvents (methanol, ethanol, 1-propanol, 2-propanol, allyl alcohol, 1-butanol, and furfuryl alcohol). Ranking analysis shows that the adaptive-neuro fuzzy inference system having genfis2 (ANFIS2) is the best choice for this purpose. The model predictions are in excellent agreement with the 194 laboratory measurements (RAD = 3.32%, MSE = 6.9 × 10−4, and R2 = 0.998896). Statistical uncertainty analysis confirms that the ANFIS2 model is superior to the previously proposed equations of state and empirical correlations in the literature. Simulation results confirm that 1-butanol and furfuryl alcohol has the highest and lowest hydrogen absorption tendency, respectively. Furthermore, the ANFIS2 justifies that the solubility of hydrogen in all alcohols obeys Henry's law and decreases by decreasing temperature and pressure. Computational modeling Elsevier Adaptive-neuro fuzzy inference system Elsevier Phase equilibria Elsevier Hydrogen-alcohol mixtures Elsevier Henry law Elsevier Nourani, Pejman oth Karimi, Mehdi oth Kamrani, Elham oth Anqi, Ali E. oth Enthalten in Elsevier Dedhia, Kavita ELSEVIER External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs 2018 official journal of the International Association for Hydrogen Energy New York, NY [u.a.] (DE-627)ELV000127019 volume:47 year:2022 number:9 day:29 month:01 pages:5817-5827 extent:11 https://doi.org/10.1016/j.ijhydene.2021.11.121 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.94 Hals-Nasen-Ohrenheilkunde VZ AR 47 2022 9 29 0129 5817-5827 11 |
language |
English |
source |
Enthalten in External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs New York, NY [u.a.] volume:47 year:2022 number:9 day:29 month:01 pages:5817-5827 extent:11 |
sourceStr |
Enthalten in External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs New York, NY [u.a.] volume:47 year:2022 number:9 day:29 month:01 pages:5817-5827 extent:11 |
format_phy_str_mv |
Article |
bklname |
Hals-Nasen-Ohrenheilkunde |
institution |
findex.gbv.de |
topic_facet |
Computational modeling Adaptive-neuro fuzzy inference system Phase equilibria Hydrogen-alcohol mixtures Henry law |
dewey-raw |
610 |
isfreeaccess_bool |
false |
container_title |
External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs |
authorswithroles_txt_mv |
Zhou, Zongming @@aut@@ Nourani, Pejman @@oth@@ Karimi, Mehdi @@oth@@ Kamrani, Elham @@oth@@ Anqi, Ali E. @@oth@@ |
publishDateDaySort_date |
2022-01-29T00:00:00Z |
hierarchy_top_id |
ELV000127019 |
dewey-sort |
3610 |
id |
ELV056638876 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV056638876</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626043710.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220205s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijhydene.2021.11.121</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001658.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV056638876</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0360-3199(21)04508-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.94</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhou, Zongming</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Relying on machine learning methods for predicting hydrogen solubility in different alcoholic solvents</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">11</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">There are high demands for reliable hydrogen-alcohol phase equilibria in separation and conversion-related industrial processes. Since experimental measurements cannot be directly included in the computer-aided handling of these processes, this study utilizes various computational techniques for estimating hydrogen solubility in seven alcoholic solvents (methanol, ethanol, 1-propanol, 2-propanol, allyl alcohol, 1-butanol, and furfuryl alcohol). Ranking analysis shows that the adaptive-neuro fuzzy inference system having genfis2 (ANFIS2) is the best choice for this purpose. The model predictions are in excellent agreement with the 194 laboratory measurements (RAD = 3.32%, MSE = 6.9 × 10−4, and R2 = 0.998896). Statistical uncertainty analysis confirms that the ANFIS2 model is superior to the previously proposed equations of state and empirical correlations in the literature. Simulation results confirm that 1-butanol and furfuryl alcohol has the highest and lowest hydrogen absorption tendency, respectively. Furthermore, the ANFIS2 justifies that the solubility of hydrogen in all alcohols obeys Henry's law and decreases by decreasing temperature and pressure.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">There are high demands for reliable hydrogen-alcohol phase equilibria in separation and conversion-related industrial processes. Since experimental measurements cannot be directly included in the computer-aided handling of these processes, this study utilizes various computational techniques for estimating hydrogen solubility in seven alcoholic solvents (methanol, ethanol, 1-propanol, 2-propanol, allyl alcohol, 1-butanol, and furfuryl alcohol). Ranking analysis shows that the adaptive-neuro fuzzy inference system having genfis2 (ANFIS2) is the best choice for this purpose. The model predictions are in excellent agreement with the 194 laboratory measurements (RAD = 3.32%, MSE = 6.9 × 10−4, and R2 = 0.998896). Statistical uncertainty analysis confirms that the ANFIS2 model is superior to the previously proposed equations of state and empirical correlations in the literature. Simulation results confirm that 1-butanol and furfuryl alcohol has the highest and lowest hydrogen absorption tendency, respectively. Furthermore, the ANFIS2 justifies that the solubility of hydrogen in all alcohols obeys Henry's law and decreases by decreasing temperature and pressure.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Computational modeling</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Adaptive-neuro fuzzy inference system</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Phase equilibria</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Hydrogen-alcohol mixtures</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Henry law</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nourani, Pejman</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Karimi, Mehdi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kamrani, Elham</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Anqi, Ali E.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Dedhia, Kavita ELSEVIER</subfield><subfield code="t">External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs</subfield><subfield code="d">2018</subfield><subfield code="d">official journal of the International Association for Hydrogen Energy</subfield><subfield code="g">New York, NY [u.a.]</subfield><subfield code="w">(DE-627)ELV000127019</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:47</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:9</subfield><subfield code="g">day:29</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:5817-5827</subfield><subfield code="g">extent:11</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ijhydene.2021.11.121</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.94</subfield><subfield code="j">Hals-Nasen-Ohrenheilkunde</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">47</subfield><subfield code="j">2022</subfield><subfield code="e">9</subfield><subfield code="b">29</subfield><subfield code="c">0129</subfield><subfield code="h">5817-5827</subfield><subfield code="g">11</subfield></datafield></record></collection>
|
author |
Zhou, Zongming |
spellingShingle |
Zhou, Zongming ddc 610 bkl 44.94 Elsevier Computational modeling Elsevier Adaptive-neuro fuzzy inference system Elsevier Phase equilibria Elsevier Hydrogen-alcohol mixtures Elsevier Henry law Relying on machine learning methods for predicting hydrogen solubility in different alcoholic solvents |
authorStr |
Zhou, Zongming |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV000127019 |
format |
electronic Article |
dewey-ones |
610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
610 VZ 44.94 bkl Relying on machine learning methods for predicting hydrogen solubility in different alcoholic solvents Computational modeling Elsevier Adaptive-neuro fuzzy inference system Elsevier Phase equilibria Elsevier Hydrogen-alcohol mixtures Elsevier Henry law Elsevier |
topic |
ddc 610 bkl 44.94 Elsevier Computational modeling Elsevier Adaptive-neuro fuzzy inference system Elsevier Phase equilibria Elsevier Hydrogen-alcohol mixtures Elsevier Henry law |
topic_unstemmed |
ddc 610 bkl 44.94 Elsevier Computational modeling Elsevier Adaptive-neuro fuzzy inference system Elsevier Phase equilibria Elsevier Hydrogen-alcohol mixtures Elsevier Henry law |
topic_browse |
ddc 610 bkl 44.94 Elsevier Computational modeling Elsevier Adaptive-neuro fuzzy inference system Elsevier Phase equilibria Elsevier Hydrogen-alcohol mixtures Elsevier Henry law |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
p n pn m k mk e k ek a e a ae aea |
hierarchy_parent_title |
External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs |
hierarchy_parent_id |
ELV000127019 |
dewey-tens |
610 - Medicine & health |
hierarchy_top_title |
External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV000127019 |
title |
Relying on machine learning methods for predicting hydrogen solubility in different alcoholic solvents |
ctrlnum |
(DE-627)ELV056638876 (ELSEVIER)S0360-3199(21)04508-0 |
title_full |
Relying on machine learning methods for predicting hydrogen solubility in different alcoholic solvents |
author_sort |
Zhou, Zongming |
journal |
External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs |
journalStr |
External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
zzz |
container_start_page |
5817 |
author_browse |
Zhou, Zongming |
container_volume |
47 |
physical |
11 |
class |
610 VZ 44.94 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Zhou, Zongming |
doi_str_mv |
10.1016/j.ijhydene.2021.11.121 |
dewey-full |
610 |
title_sort |
relying on machine learning methods for predicting hydrogen solubility in different alcoholic solvents |
title_auth |
Relying on machine learning methods for predicting hydrogen solubility in different alcoholic solvents |
abstract |
There are high demands for reliable hydrogen-alcohol phase equilibria in separation and conversion-related industrial processes. Since experimental measurements cannot be directly included in the computer-aided handling of these processes, this study utilizes various computational techniques for estimating hydrogen solubility in seven alcoholic solvents (methanol, ethanol, 1-propanol, 2-propanol, allyl alcohol, 1-butanol, and furfuryl alcohol). Ranking analysis shows that the adaptive-neuro fuzzy inference system having genfis2 (ANFIS2) is the best choice for this purpose. The model predictions are in excellent agreement with the 194 laboratory measurements (RAD = 3.32%, MSE = 6.9 × 10−4, and R2 = 0.998896). Statistical uncertainty analysis confirms that the ANFIS2 model is superior to the previously proposed equations of state and empirical correlations in the literature. Simulation results confirm that 1-butanol and furfuryl alcohol has the highest and lowest hydrogen absorption tendency, respectively. Furthermore, the ANFIS2 justifies that the solubility of hydrogen in all alcohols obeys Henry's law and decreases by decreasing temperature and pressure. |
abstractGer |
There are high demands for reliable hydrogen-alcohol phase equilibria in separation and conversion-related industrial processes. Since experimental measurements cannot be directly included in the computer-aided handling of these processes, this study utilizes various computational techniques for estimating hydrogen solubility in seven alcoholic solvents (methanol, ethanol, 1-propanol, 2-propanol, allyl alcohol, 1-butanol, and furfuryl alcohol). Ranking analysis shows that the adaptive-neuro fuzzy inference system having genfis2 (ANFIS2) is the best choice for this purpose. The model predictions are in excellent agreement with the 194 laboratory measurements (RAD = 3.32%, MSE = 6.9 × 10−4, and R2 = 0.998896). Statistical uncertainty analysis confirms that the ANFIS2 model is superior to the previously proposed equations of state and empirical correlations in the literature. Simulation results confirm that 1-butanol and furfuryl alcohol has the highest and lowest hydrogen absorption tendency, respectively. Furthermore, the ANFIS2 justifies that the solubility of hydrogen in all alcohols obeys Henry's law and decreases by decreasing temperature and pressure. |
abstract_unstemmed |
There are high demands for reliable hydrogen-alcohol phase equilibria in separation and conversion-related industrial processes. Since experimental measurements cannot be directly included in the computer-aided handling of these processes, this study utilizes various computational techniques for estimating hydrogen solubility in seven alcoholic solvents (methanol, ethanol, 1-propanol, 2-propanol, allyl alcohol, 1-butanol, and furfuryl alcohol). Ranking analysis shows that the adaptive-neuro fuzzy inference system having genfis2 (ANFIS2) is the best choice for this purpose. The model predictions are in excellent agreement with the 194 laboratory measurements (RAD = 3.32%, MSE = 6.9 × 10−4, and R2 = 0.998896). Statistical uncertainty analysis confirms that the ANFIS2 model is superior to the previously proposed equations of state and empirical correlations in the literature. Simulation results confirm that 1-butanol and furfuryl alcohol has the highest and lowest hydrogen absorption tendency, respectively. Furthermore, the ANFIS2 justifies that the solubility of hydrogen in all alcohols obeys Henry's law and decreases by decreasing temperature and pressure. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA |
container_issue |
9 |
title_short |
Relying on machine learning methods for predicting hydrogen solubility in different alcoholic solvents |
url |
https://doi.org/10.1016/j.ijhydene.2021.11.121 |
remote_bool |
true |
author2 |
Nourani, Pejman Karimi, Mehdi Kamrani, Elham Anqi, Ali E. |
author2Str |
Nourani, Pejman Karimi, Mehdi Kamrani, Elham Anqi, Ali E. |
ppnlink |
ELV000127019 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth |
doi_str |
10.1016/j.ijhydene.2021.11.121 |
up_date |
2024-07-06T20:58:39.422Z |
_version_ |
1803864788879540224 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV056638876</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626043710.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220205s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijhydene.2021.11.121</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001658.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV056638876</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0360-3199(21)04508-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.94</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhou, Zongming</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Relying on machine learning methods for predicting hydrogen solubility in different alcoholic solvents</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">11</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">There are high demands for reliable hydrogen-alcohol phase equilibria in separation and conversion-related industrial processes. Since experimental measurements cannot be directly included in the computer-aided handling of these processes, this study utilizes various computational techniques for estimating hydrogen solubility in seven alcoholic solvents (methanol, ethanol, 1-propanol, 2-propanol, allyl alcohol, 1-butanol, and furfuryl alcohol). Ranking analysis shows that the adaptive-neuro fuzzy inference system having genfis2 (ANFIS2) is the best choice for this purpose. The model predictions are in excellent agreement with the 194 laboratory measurements (RAD = 3.32%, MSE = 6.9 × 10−4, and R2 = 0.998896). Statistical uncertainty analysis confirms that the ANFIS2 model is superior to the previously proposed equations of state and empirical correlations in the literature. Simulation results confirm that 1-butanol and furfuryl alcohol has the highest and lowest hydrogen absorption tendency, respectively. Furthermore, the ANFIS2 justifies that the solubility of hydrogen in all alcohols obeys Henry's law and decreases by decreasing temperature and pressure.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">There are high demands for reliable hydrogen-alcohol phase equilibria in separation and conversion-related industrial processes. Since experimental measurements cannot be directly included in the computer-aided handling of these processes, this study utilizes various computational techniques for estimating hydrogen solubility in seven alcoholic solvents (methanol, ethanol, 1-propanol, 2-propanol, allyl alcohol, 1-butanol, and furfuryl alcohol). Ranking analysis shows that the adaptive-neuro fuzzy inference system having genfis2 (ANFIS2) is the best choice for this purpose. The model predictions are in excellent agreement with the 194 laboratory measurements (RAD = 3.32%, MSE = 6.9 × 10−4, and R2 = 0.998896). Statistical uncertainty analysis confirms that the ANFIS2 model is superior to the previously proposed equations of state and empirical correlations in the literature. Simulation results confirm that 1-butanol and furfuryl alcohol has the highest and lowest hydrogen absorption tendency, respectively. Furthermore, the ANFIS2 justifies that the solubility of hydrogen in all alcohols obeys Henry's law and decreases by decreasing temperature and pressure.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Computational modeling</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Adaptive-neuro fuzzy inference system</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Phase equilibria</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Hydrogen-alcohol mixtures</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Henry law</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nourani, Pejman</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Karimi, Mehdi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kamrani, Elham</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Anqi, Ali E.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Dedhia, Kavita ELSEVIER</subfield><subfield code="t">External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs</subfield><subfield code="d">2018</subfield><subfield code="d">official journal of the International Association for Hydrogen Energy</subfield><subfield code="g">New York, NY [u.a.]</subfield><subfield code="w">(DE-627)ELV000127019</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:47</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:9</subfield><subfield code="g">day:29</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:5817-5827</subfield><subfield code="g">extent:11</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ijhydene.2021.11.121</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.94</subfield><subfield code="j">Hals-Nasen-Ohrenheilkunde</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">47</subfield><subfield code="j">2022</subfield><subfield code="e">9</subfield><subfield code="b">29</subfield><subfield code="c">0129</subfield><subfield code="h">5817-5827</subfield><subfield code="g">11</subfield></datafield></record></collection>
|
score |
7.40221 |