Self-sustained vibrations in the system of a bi-harmonically driven pendulum
In this paper, we investigate self-sustained oscillations in a weakly damped pendulum system under the action of two harmonic forces with close frequencies. With no limitations on the amplitude of oscillations, we construct an asymptotic procedure; separating the dynamics of the system into fast, sl...
Ausführliche Beschreibung
Autor*in: |
Shaginyan, Sh.A. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022transfer abstract |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Transient response and failure of medium density fibreboard panels subjected to air-blast loading - Langdon, G.S. ELSEVIER, 2021, Amsterdam |
---|---|
Übergeordnetes Werk: |
volume:428 ; year:2022 ; day:14 ; month:03 ; pages:0 |
Links: |
---|
DOI / URN: |
10.1016/j.physleta.2022.127943 |
---|
Katalog-ID: |
ELV056703511 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV056703511 | ||
003 | DE-627 | ||
005 | 20230626043818.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220808s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.physleta.2022.127943 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001664.pica |
035 | |a (DE-627)ELV056703511 | ||
035 | |a (ELSEVIER)S0375-9601(22)00025-1 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 670 |q VZ |
084 | |a 51.75 |2 bkl | ||
100 | 1 | |a Shaginyan, Sh.A. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Self-sustained vibrations in the system of a bi-harmonically driven pendulum |
264 | 1 | |c 2022transfer abstract | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a In this paper, we investigate self-sustained oscillations in a weakly damped pendulum system under the action of two harmonic forces with close frequencies. With no limitations on the amplitude of oscillations, we construct an asymptotic procedure; separating the dynamics of the system into fast, slow, and super-slow timescales, we show that the movements of the pendulum on the fast and slow scales are decoupled. The system of equations for the amplitude of the envelope and the phase of the state function in the leading approximation on a slow scale become autonomous when the super-slow time parameter depends rather weakly on slow time. Using this technique, it is possible to analyse relaxation oscillations in a wide frequency range along with their dependence on the friction coefficient. The results obtained are in good agreement with the numerical solution of the original system. | ||
520 | |a In this paper, we investigate self-sustained oscillations in a weakly damped pendulum system under the action of two harmonic forces with close frequencies. With no limitations on the amplitude of oscillations, we construct an asymptotic procedure; separating the dynamics of the system into fast, slow, and super-slow timescales, we show that the movements of the pendulum on the fast and slow scales are decoupled. The system of equations for the amplitude of the envelope and the phase of the state function in the leading approximation on a slow scale become autonomous when the super-slow time parameter depends rather weakly on slow time. Using this technique, it is possible to analyse relaxation oscillations in a wide frequency range along with their dependence on the friction coefficient. The results obtained are in good agreement with the numerical solution of the original system. | ||
650 | 7 | |a Damped-driven pendulum |2 Elsevier | |
650 | 7 | |a Bi-harmonic forcing |2 Elsevier | |
650 | 7 | |a Semi-inverse approach |2 Elsevier | |
650 | 7 | |a Self-sustained vibrations |2 Elsevier | |
700 | 1 | |a Manevitch, L.I. |4 oth | |
700 | 1 | |a Kovaleva, M.A. |4 oth | |
773 | 0 | 8 | |i Enthalten in |n North-Holland Publ |a Langdon, G.S. ELSEVIER |t Transient response and failure of medium density fibreboard panels subjected to air-blast loading |d 2021 |g Amsterdam |w (DE-627)ELV006407811 |
773 | 1 | 8 | |g volume:428 |g year:2022 |g day:14 |g month:03 |g pages:0 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.physleta.2022.127943 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
936 | b | k | |a 51.75 |j Verbundwerkstoffe |j Schichtstoffe |q VZ |
951 | |a AR | ||
952 | |d 428 |j 2022 |b 14 |c 0314 |h 0 |
author_variant |
s s ss |
---|---|
matchkey_str |
shaginyanshamanevitchlikovalevama:2022----:efutievbainiteytmfbhroia |
hierarchy_sort_str |
2022transfer abstract |
bklnumber |
51.75 |
publishDate |
2022 |
allfields |
10.1016/j.physleta.2022.127943 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001664.pica (DE-627)ELV056703511 (ELSEVIER)S0375-9601(22)00025-1 DE-627 ger DE-627 rakwb eng 670 VZ 51.75 bkl Shaginyan, Sh.A. verfasserin aut Self-sustained vibrations in the system of a bi-harmonically driven pendulum 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this paper, we investigate self-sustained oscillations in a weakly damped pendulum system under the action of two harmonic forces with close frequencies. With no limitations on the amplitude of oscillations, we construct an asymptotic procedure; separating the dynamics of the system into fast, slow, and super-slow timescales, we show that the movements of the pendulum on the fast and slow scales are decoupled. The system of equations for the amplitude of the envelope and the phase of the state function in the leading approximation on a slow scale become autonomous when the super-slow time parameter depends rather weakly on slow time. Using this technique, it is possible to analyse relaxation oscillations in a wide frequency range along with their dependence on the friction coefficient. The results obtained are in good agreement with the numerical solution of the original system. In this paper, we investigate self-sustained oscillations in a weakly damped pendulum system under the action of two harmonic forces with close frequencies. With no limitations on the amplitude of oscillations, we construct an asymptotic procedure; separating the dynamics of the system into fast, slow, and super-slow timescales, we show that the movements of the pendulum on the fast and slow scales are decoupled. The system of equations for the amplitude of the envelope and the phase of the state function in the leading approximation on a slow scale become autonomous when the super-slow time parameter depends rather weakly on slow time. Using this technique, it is possible to analyse relaxation oscillations in a wide frequency range along with their dependence on the friction coefficient. The results obtained are in good agreement with the numerical solution of the original system. Damped-driven pendulum Elsevier Bi-harmonic forcing Elsevier Semi-inverse approach Elsevier Self-sustained vibrations Elsevier Manevitch, L.I. oth Kovaleva, M.A. oth Enthalten in North-Holland Publ Langdon, G.S. ELSEVIER Transient response and failure of medium density fibreboard panels subjected to air-blast loading 2021 Amsterdam (DE-627)ELV006407811 volume:428 year:2022 day:14 month:03 pages:0 https://doi.org/10.1016/j.physleta.2022.127943 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 51.75 Verbundwerkstoffe Schichtstoffe VZ AR 428 2022 14 0314 0 |
spelling |
10.1016/j.physleta.2022.127943 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001664.pica (DE-627)ELV056703511 (ELSEVIER)S0375-9601(22)00025-1 DE-627 ger DE-627 rakwb eng 670 VZ 51.75 bkl Shaginyan, Sh.A. verfasserin aut Self-sustained vibrations in the system of a bi-harmonically driven pendulum 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this paper, we investigate self-sustained oscillations in a weakly damped pendulum system under the action of two harmonic forces with close frequencies. With no limitations on the amplitude of oscillations, we construct an asymptotic procedure; separating the dynamics of the system into fast, slow, and super-slow timescales, we show that the movements of the pendulum on the fast and slow scales are decoupled. The system of equations for the amplitude of the envelope and the phase of the state function in the leading approximation on a slow scale become autonomous when the super-slow time parameter depends rather weakly on slow time. Using this technique, it is possible to analyse relaxation oscillations in a wide frequency range along with their dependence on the friction coefficient. The results obtained are in good agreement with the numerical solution of the original system. In this paper, we investigate self-sustained oscillations in a weakly damped pendulum system under the action of two harmonic forces with close frequencies. With no limitations on the amplitude of oscillations, we construct an asymptotic procedure; separating the dynamics of the system into fast, slow, and super-slow timescales, we show that the movements of the pendulum on the fast and slow scales are decoupled. The system of equations for the amplitude of the envelope and the phase of the state function in the leading approximation on a slow scale become autonomous when the super-slow time parameter depends rather weakly on slow time. Using this technique, it is possible to analyse relaxation oscillations in a wide frequency range along with their dependence on the friction coefficient. The results obtained are in good agreement with the numerical solution of the original system. Damped-driven pendulum Elsevier Bi-harmonic forcing Elsevier Semi-inverse approach Elsevier Self-sustained vibrations Elsevier Manevitch, L.I. oth Kovaleva, M.A. oth Enthalten in North-Holland Publ Langdon, G.S. ELSEVIER Transient response and failure of medium density fibreboard panels subjected to air-blast loading 2021 Amsterdam (DE-627)ELV006407811 volume:428 year:2022 day:14 month:03 pages:0 https://doi.org/10.1016/j.physleta.2022.127943 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 51.75 Verbundwerkstoffe Schichtstoffe VZ AR 428 2022 14 0314 0 |
allfields_unstemmed |
10.1016/j.physleta.2022.127943 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001664.pica (DE-627)ELV056703511 (ELSEVIER)S0375-9601(22)00025-1 DE-627 ger DE-627 rakwb eng 670 VZ 51.75 bkl Shaginyan, Sh.A. verfasserin aut Self-sustained vibrations in the system of a bi-harmonically driven pendulum 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this paper, we investigate self-sustained oscillations in a weakly damped pendulum system under the action of two harmonic forces with close frequencies. With no limitations on the amplitude of oscillations, we construct an asymptotic procedure; separating the dynamics of the system into fast, slow, and super-slow timescales, we show that the movements of the pendulum on the fast and slow scales are decoupled. The system of equations for the amplitude of the envelope and the phase of the state function in the leading approximation on a slow scale become autonomous when the super-slow time parameter depends rather weakly on slow time. Using this technique, it is possible to analyse relaxation oscillations in a wide frequency range along with their dependence on the friction coefficient. The results obtained are in good agreement with the numerical solution of the original system. In this paper, we investigate self-sustained oscillations in a weakly damped pendulum system under the action of two harmonic forces with close frequencies. With no limitations on the amplitude of oscillations, we construct an asymptotic procedure; separating the dynamics of the system into fast, slow, and super-slow timescales, we show that the movements of the pendulum on the fast and slow scales are decoupled. The system of equations for the amplitude of the envelope and the phase of the state function in the leading approximation on a slow scale become autonomous when the super-slow time parameter depends rather weakly on slow time. Using this technique, it is possible to analyse relaxation oscillations in a wide frequency range along with their dependence on the friction coefficient. The results obtained are in good agreement with the numerical solution of the original system. Damped-driven pendulum Elsevier Bi-harmonic forcing Elsevier Semi-inverse approach Elsevier Self-sustained vibrations Elsevier Manevitch, L.I. oth Kovaleva, M.A. oth Enthalten in North-Holland Publ Langdon, G.S. ELSEVIER Transient response and failure of medium density fibreboard panels subjected to air-blast loading 2021 Amsterdam (DE-627)ELV006407811 volume:428 year:2022 day:14 month:03 pages:0 https://doi.org/10.1016/j.physleta.2022.127943 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 51.75 Verbundwerkstoffe Schichtstoffe VZ AR 428 2022 14 0314 0 |
allfieldsGer |
10.1016/j.physleta.2022.127943 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001664.pica (DE-627)ELV056703511 (ELSEVIER)S0375-9601(22)00025-1 DE-627 ger DE-627 rakwb eng 670 VZ 51.75 bkl Shaginyan, Sh.A. verfasserin aut Self-sustained vibrations in the system of a bi-harmonically driven pendulum 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this paper, we investigate self-sustained oscillations in a weakly damped pendulum system under the action of two harmonic forces with close frequencies. With no limitations on the amplitude of oscillations, we construct an asymptotic procedure; separating the dynamics of the system into fast, slow, and super-slow timescales, we show that the movements of the pendulum on the fast and slow scales are decoupled. The system of equations for the amplitude of the envelope and the phase of the state function in the leading approximation on a slow scale become autonomous when the super-slow time parameter depends rather weakly on slow time. Using this technique, it is possible to analyse relaxation oscillations in a wide frequency range along with their dependence on the friction coefficient. The results obtained are in good agreement with the numerical solution of the original system. In this paper, we investigate self-sustained oscillations in a weakly damped pendulum system under the action of two harmonic forces with close frequencies. With no limitations on the amplitude of oscillations, we construct an asymptotic procedure; separating the dynamics of the system into fast, slow, and super-slow timescales, we show that the movements of the pendulum on the fast and slow scales are decoupled. The system of equations for the amplitude of the envelope and the phase of the state function in the leading approximation on a slow scale become autonomous when the super-slow time parameter depends rather weakly on slow time. Using this technique, it is possible to analyse relaxation oscillations in a wide frequency range along with their dependence on the friction coefficient. The results obtained are in good agreement with the numerical solution of the original system. Damped-driven pendulum Elsevier Bi-harmonic forcing Elsevier Semi-inverse approach Elsevier Self-sustained vibrations Elsevier Manevitch, L.I. oth Kovaleva, M.A. oth Enthalten in North-Holland Publ Langdon, G.S. ELSEVIER Transient response and failure of medium density fibreboard panels subjected to air-blast loading 2021 Amsterdam (DE-627)ELV006407811 volume:428 year:2022 day:14 month:03 pages:0 https://doi.org/10.1016/j.physleta.2022.127943 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 51.75 Verbundwerkstoffe Schichtstoffe VZ AR 428 2022 14 0314 0 |
allfieldsSound |
10.1016/j.physleta.2022.127943 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001664.pica (DE-627)ELV056703511 (ELSEVIER)S0375-9601(22)00025-1 DE-627 ger DE-627 rakwb eng 670 VZ 51.75 bkl Shaginyan, Sh.A. verfasserin aut Self-sustained vibrations in the system of a bi-harmonically driven pendulum 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this paper, we investigate self-sustained oscillations in a weakly damped pendulum system under the action of two harmonic forces with close frequencies. With no limitations on the amplitude of oscillations, we construct an asymptotic procedure; separating the dynamics of the system into fast, slow, and super-slow timescales, we show that the movements of the pendulum on the fast and slow scales are decoupled. The system of equations for the amplitude of the envelope and the phase of the state function in the leading approximation on a slow scale become autonomous when the super-slow time parameter depends rather weakly on slow time. Using this technique, it is possible to analyse relaxation oscillations in a wide frequency range along with their dependence on the friction coefficient. The results obtained are in good agreement with the numerical solution of the original system. In this paper, we investigate self-sustained oscillations in a weakly damped pendulum system under the action of two harmonic forces with close frequencies. With no limitations on the amplitude of oscillations, we construct an asymptotic procedure; separating the dynamics of the system into fast, slow, and super-slow timescales, we show that the movements of the pendulum on the fast and slow scales are decoupled. The system of equations for the amplitude of the envelope and the phase of the state function in the leading approximation on a slow scale become autonomous when the super-slow time parameter depends rather weakly on slow time. Using this technique, it is possible to analyse relaxation oscillations in a wide frequency range along with their dependence on the friction coefficient. The results obtained are in good agreement with the numerical solution of the original system. Damped-driven pendulum Elsevier Bi-harmonic forcing Elsevier Semi-inverse approach Elsevier Self-sustained vibrations Elsevier Manevitch, L.I. oth Kovaleva, M.A. oth Enthalten in North-Holland Publ Langdon, G.S. ELSEVIER Transient response and failure of medium density fibreboard panels subjected to air-blast loading 2021 Amsterdam (DE-627)ELV006407811 volume:428 year:2022 day:14 month:03 pages:0 https://doi.org/10.1016/j.physleta.2022.127943 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 51.75 Verbundwerkstoffe Schichtstoffe VZ AR 428 2022 14 0314 0 |
language |
English |
source |
Enthalten in Transient response and failure of medium density fibreboard panels subjected to air-blast loading Amsterdam volume:428 year:2022 day:14 month:03 pages:0 |
sourceStr |
Enthalten in Transient response and failure of medium density fibreboard panels subjected to air-blast loading Amsterdam volume:428 year:2022 day:14 month:03 pages:0 |
format_phy_str_mv |
Article |
bklname |
Verbundwerkstoffe Schichtstoffe |
institution |
findex.gbv.de |
topic_facet |
Damped-driven pendulum Bi-harmonic forcing Semi-inverse approach Self-sustained vibrations |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
Transient response and failure of medium density fibreboard panels subjected to air-blast loading |
authorswithroles_txt_mv |
Shaginyan, Sh.A. @@aut@@ Manevitch, L.I. @@oth@@ Kovaleva, M.A. @@oth@@ |
publishDateDaySort_date |
2022-01-14T00:00:00Z |
hierarchy_top_id |
ELV006407811 |
dewey-sort |
3670 |
id |
ELV056703511 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV056703511</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626043818.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220808s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.physleta.2022.127943</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001664.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV056703511</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0375-9601(22)00025-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.75</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Shaginyan, Sh.A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Self-sustained vibrations in the system of a bi-harmonically driven pendulum</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, we investigate self-sustained oscillations in a weakly damped pendulum system under the action of two harmonic forces with close frequencies. With no limitations on the amplitude of oscillations, we construct an asymptotic procedure; separating the dynamics of the system into fast, slow, and super-slow timescales, we show that the movements of the pendulum on the fast and slow scales are decoupled. The system of equations for the amplitude of the envelope and the phase of the state function in the leading approximation on a slow scale become autonomous when the super-slow time parameter depends rather weakly on slow time. Using this technique, it is possible to analyse relaxation oscillations in a wide frequency range along with their dependence on the friction coefficient. The results obtained are in good agreement with the numerical solution of the original system.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, we investigate self-sustained oscillations in a weakly damped pendulum system under the action of two harmonic forces with close frequencies. With no limitations on the amplitude of oscillations, we construct an asymptotic procedure; separating the dynamics of the system into fast, slow, and super-slow timescales, we show that the movements of the pendulum on the fast and slow scales are decoupled. The system of equations for the amplitude of the envelope and the phase of the state function in the leading approximation on a slow scale become autonomous when the super-slow time parameter depends rather weakly on slow time. Using this technique, it is possible to analyse relaxation oscillations in a wide frequency range along with their dependence on the friction coefficient. The results obtained are in good agreement with the numerical solution of the original system.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Damped-driven pendulum</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Bi-harmonic forcing</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Semi-inverse approach</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Self-sustained vibrations</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Manevitch, L.I.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kovaleva, M.A.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">North-Holland Publ</subfield><subfield code="a">Langdon, G.S. ELSEVIER</subfield><subfield code="t">Transient response and failure of medium density fibreboard panels subjected to air-blast loading</subfield><subfield code="d">2021</subfield><subfield code="g">Amsterdam</subfield><subfield code="w">(DE-627)ELV006407811</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:428</subfield><subfield code="g">year:2022</subfield><subfield code="g">day:14</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.physleta.2022.127943</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.75</subfield><subfield code="j">Verbundwerkstoffe</subfield><subfield code="j">Schichtstoffe</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">428</subfield><subfield code="j">2022</subfield><subfield code="b">14</subfield><subfield code="c">0314</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
author |
Shaginyan, Sh.A. |
spellingShingle |
Shaginyan, Sh.A. ddc 670 bkl 51.75 Elsevier Damped-driven pendulum Elsevier Bi-harmonic forcing Elsevier Semi-inverse approach Elsevier Self-sustained vibrations Self-sustained vibrations in the system of a bi-harmonically driven pendulum |
authorStr |
Shaginyan, Sh.A. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV006407811 |
format |
electronic Article |
dewey-ones |
670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
670 VZ 51.75 bkl Self-sustained vibrations in the system of a bi-harmonically driven pendulum Damped-driven pendulum Elsevier Bi-harmonic forcing Elsevier Semi-inverse approach Elsevier Self-sustained vibrations Elsevier |
topic |
ddc 670 bkl 51.75 Elsevier Damped-driven pendulum Elsevier Bi-harmonic forcing Elsevier Semi-inverse approach Elsevier Self-sustained vibrations |
topic_unstemmed |
ddc 670 bkl 51.75 Elsevier Damped-driven pendulum Elsevier Bi-harmonic forcing Elsevier Semi-inverse approach Elsevier Self-sustained vibrations |
topic_browse |
ddc 670 bkl 51.75 Elsevier Damped-driven pendulum Elsevier Bi-harmonic forcing Elsevier Semi-inverse approach Elsevier Self-sustained vibrations |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
l m lm m k mk |
hierarchy_parent_title |
Transient response and failure of medium density fibreboard panels subjected to air-blast loading |
hierarchy_parent_id |
ELV006407811 |
dewey-tens |
670 - Manufacturing |
hierarchy_top_title |
Transient response and failure of medium density fibreboard panels subjected to air-blast loading |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV006407811 |
title |
Self-sustained vibrations in the system of a bi-harmonically driven pendulum |
ctrlnum |
(DE-627)ELV056703511 (ELSEVIER)S0375-9601(22)00025-1 |
title_full |
Self-sustained vibrations in the system of a bi-harmonically driven pendulum |
author_sort |
Shaginyan, Sh.A. |
journal |
Transient response and failure of medium density fibreboard panels subjected to air-blast loading |
journalStr |
Transient response and failure of medium density fibreboard panels subjected to air-blast loading |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
zzz |
container_start_page |
0 |
author_browse |
Shaginyan, Sh.A. |
container_volume |
428 |
class |
670 VZ 51.75 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Shaginyan, Sh.A. |
doi_str_mv |
10.1016/j.physleta.2022.127943 |
dewey-full |
670 |
title_sort |
self-sustained vibrations in the system of a bi-harmonically driven pendulum |
title_auth |
Self-sustained vibrations in the system of a bi-harmonically driven pendulum |
abstract |
In this paper, we investigate self-sustained oscillations in a weakly damped pendulum system under the action of two harmonic forces with close frequencies. With no limitations on the amplitude of oscillations, we construct an asymptotic procedure; separating the dynamics of the system into fast, slow, and super-slow timescales, we show that the movements of the pendulum on the fast and slow scales are decoupled. The system of equations for the amplitude of the envelope and the phase of the state function in the leading approximation on a slow scale become autonomous when the super-slow time parameter depends rather weakly on slow time. Using this technique, it is possible to analyse relaxation oscillations in a wide frequency range along with their dependence on the friction coefficient. The results obtained are in good agreement with the numerical solution of the original system. |
abstractGer |
In this paper, we investigate self-sustained oscillations in a weakly damped pendulum system under the action of two harmonic forces with close frequencies. With no limitations on the amplitude of oscillations, we construct an asymptotic procedure; separating the dynamics of the system into fast, slow, and super-slow timescales, we show that the movements of the pendulum on the fast and slow scales are decoupled. The system of equations for the amplitude of the envelope and the phase of the state function in the leading approximation on a slow scale become autonomous when the super-slow time parameter depends rather weakly on slow time. Using this technique, it is possible to analyse relaxation oscillations in a wide frequency range along with their dependence on the friction coefficient. The results obtained are in good agreement with the numerical solution of the original system. |
abstract_unstemmed |
In this paper, we investigate self-sustained oscillations in a weakly damped pendulum system under the action of two harmonic forces with close frequencies. With no limitations on the amplitude of oscillations, we construct an asymptotic procedure; separating the dynamics of the system into fast, slow, and super-slow timescales, we show that the movements of the pendulum on the fast and slow scales are decoupled. The system of equations for the amplitude of the envelope and the phase of the state function in the leading approximation on a slow scale become autonomous when the super-slow time parameter depends rather weakly on slow time. Using this technique, it is possible to analyse relaxation oscillations in a wide frequency range along with their dependence on the friction coefficient. The results obtained are in good agreement with the numerical solution of the original system. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U |
title_short |
Self-sustained vibrations in the system of a bi-harmonically driven pendulum |
url |
https://doi.org/10.1016/j.physleta.2022.127943 |
remote_bool |
true |
author2 |
Manevitch, L.I. Kovaleva, M.A. |
author2Str |
Manevitch, L.I. Kovaleva, M.A. |
ppnlink |
ELV006407811 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
doi_str |
10.1016/j.physleta.2022.127943 |
up_date |
2024-07-06T21:09:34.906Z |
_version_ |
1803865476205379584 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV056703511</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626043818.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220808s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.physleta.2022.127943</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001664.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV056703511</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0375-9601(22)00025-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.75</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Shaginyan, Sh.A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Self-sustained vibrations in the system of a bi-harmonically driven pendulum</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, we investigate self-sustained oscillations in a weakly damped pendulum system under the action of two harmonic forces with close frequencies. With no limitations on the amplitude of oscillations, we construct an asymptotic procedure; separating the dynamics of the system into fast, slow, and super-slow timescales, we show that the movements of the pendulum on the fast and slow scales are decoupled. The system of equations for the amplitude of the envelope and the phase of the state function in the leading approximation on a slow scale become autonomous when the super-slow time parameter depends rather weakly on slow time. Using this technique, it is possible to analyse relaxation oscillations in a wide frequency range along with their dependence on the friction coefficient. The results obtained are in good agreement with the numerical solution of the original system.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, we investigate self-sustained oscillations in a weakly damped pendulum system under the action of two harmonic forces with close frequencies. With no limitations on the amplitude of oscillations, we construct an asymptotic procedure; separating the dynamics of the system into fast, slow, and super-slow timescales, we show that the movements of the pendulum on the fast and slow scales are decoupled. The system of equations for the amplitude of the envelope and the phase of the state function in the leading approximation on a slow scale become autonomous when the super-slow time parameter depends rather weakly on slow time. Using this technique, it is possible to analyse relaxation oscillations in a wide frequency range along with their dependence on the friction coefficient. The results obtained are in good agreement with the numerical solution of the original system.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Damped-driven pendulum</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Bi-harmonic forcing</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Semi-inverse approach</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Self-sustained vibrations</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Manevitch, L.I.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kovaleva, M.A.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">North-Holland Publ</subfield><subfield code="a">Langdon, G.S. ELSEVIER</subfield><subfield code="t">Transient response and failure of medium density fibreboard panels subjected to air-blast loading</subfield><subfield code="d">2021</subfield><subfield code="g">Amsterdam</subfield><subfield code="w">(DE-627)ELV006407811</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:428</subfield><subfield code="g">year:2022</subfield><subfield code="g">day:14</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.physleta.2022.127943</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.75</subfield><subfield code="j">Verbundwerkstoffe</subfield><subfield code="j">Schichtstoffe</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">428</subfield><subfield code="j">2022</subfield><subfield code="b">14</subfield><subfield code="c">0314</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
score |
7.4000845 |