Bioactive and technological properties of an α-D-glucan synthesized by Weissella cibaria PDER21
A slimy-mucinous-type colony of EPS-producing Weissella cibaria PDER21 was isolated and identified. The monomer composition was glucose, showing that the EPS is a glucan type homopolysaccharide, The core structure of (1 → 6)-linked α-d-glucose units including (1 → 3)-linked α-d-glucose branches at a...
Ausführliche Beschreibung
Autor*in: |
Yilmaz, Mustafa Tahsin [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022transfer abstract |
---|
Übergeordnetes Werk: |
Enthalten in: Residue co-evolution helps predict interaction sites in α-helical membrane proteins - Zeng, Bo ELSEVIER, 2019, an international journal devoted to scientific and technological aspects of industrially important polysaccharides, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:285 ; year:2022 ; day:1 ; month:06 ; pages:0 |
Links: |
---|
DOI / URN: |
10.1016/j.carbpol.2022.119227 |
---|
Katalog-ID: |
ELV057091536 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV057091536 | ||
003 | DE-627 | ||
005 | 20230626044516.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220808s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.carbpol.2022.119227 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001737.pica |
035 | |a (DE-627)ELV057091536 | ||
035 | |a (ELSEVIER)S0144-8617(22)00131-X | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 540 |q VZ |
084 | |a BIODIV |q DE-30 |2 fid | ||
084 | |a 42.13 |2 bkl | ||
100 | 1 | |a Yilmaz, Mustafa Tahsin |e verfasserin |4 aut | |
245 | 1 | 0 | |a Bioactive and technological properties of an α-D-glucan synthesized by Weissella cibaria PDER21 |
264 | 1 | |c 2022transfer abstract | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a A slimy-mucinous-type colony of EPS-producing Weissella cibaria PDER21 was isolated and identified. The monomer composition was glucose, showing that the EPS is a glucan type homopolysaccharide, The core structure of (1 → 6)-linked α-d-glucose units including (1 → 3)-linked α-d-glucose branches at a ratio of 93.4/6.6 was revealed by 1H and 13C NMR spectra and confirmed by FTIR analysis. The glucan showed a superior thermal stability with almost no degradation in structure up to 300 °C. XRD analysis revealed the amorphous structure while SEM analysis confirmed the layer-like morphology. The glucan had an antioxidant activity (89.5%), water-holding capacity (103.7%) and water solubility index (80.7%) values, suggesting that the glucan had a strong level of antioxidant properties; good water binding capacity and excellent solubility. The glucan PDER21 is a polysaccharide possessing a good combination of technical and functional attributes, suggesting a great deal of potential for use in the food industry. | ||
520 | |a A slimy-mucinous-type colony of EPS-producing Weissella cibaria PDER21 was isolated and identified. The monomer composition was glucose, showing that the EPS is a glucan type homopolysaccharide, The core structure of (1 → 6)-linked α-d-glucose units including (1 → 3)-linked α-d-glucose branches at a ratio of 93.4/6.6 was revealed by 1H and 13C NMR spectra and confirmed by FTIR analysis. The glucan showed a superior thermal stability with almost no degradation in structure up to 300 °C. XRD analysis revealed the amorphous structure while SEM analysis confirmed the layer-like morphology. The glucan had an antioxidant activity (89.5%), water-holding capacity (103.7%) and water solubility index (80.7%) values, suggesting that the glucan had a strong level of antioxidant properties; good water binding capacity and excellent solubility. The glucan PDER21 is a polysaccharide possessing a good combination of technical and functional attributes, suggesting a great deal of potential for use in the food industry. | ||
700 | 1 | |a Ispirli, Humeyra |4 oth | |
700 | 1 | |a Taylan, Osman |4 oth | |
700 | 1 | |a Alamoudi, Mohammed |4 oth | |
700 | 1 | |a Dertli, Enes |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Zeng, Bo ELSEVIER |t Residue co-evolution helps predict interaction sites in α-helical membrane proteins |d 2019 |d an international journal devoted to scientific and technological aspects of industrially important polysaccharides |g Amsterdam [u.a.] |w (DE-627)ELV002183382 |
773 | 1 | 8 | |g volume:285 |g year:2022 |g day:1 |g month:06 |g pages:0 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.carbpol.2022.119227 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a FID-BIODIV | ||
912 | |a SSG-OLC-PHA | ||
936 | b | k | |a 42.13 |j Molekularbiologie |q VZ |
951 | |a AR | ||
952 | |d 285 |j 2022 |b 1 |c 0601 |h 0 |
author_variant |
m t y mt mty |
---|---|
matchkey_str |
yilmazmustafatahsinispirlihumeyrataylano:2022----:iatvadehooiapoeteoadlcnyteiebw |
hierarchy_sort_str |
2022transfer abstract |
bklnumber |
42.13 |
publishDate |
2022 |
allfields |
10.1016/j.carbpol.2022.119227 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001737.pica (DE-627)ELV057091536 (ELSEVIER)S0144-8617(22)00131-X DE-627 ger DE-627 rakwb eng 540 VZ BIODIV DE-30 fid 42.13 bkl Yilmaz, Mustafa Tahsin verfasserin aut Bioactive and technological properties of an α-D-glucan synthesized by Weissella cibaria PDER21 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier A slimy-mucinous-type colony of EPS-producing Weissella cibaria PDER21 was isolated and identified. The monomer composition was glucose, showing that the EPS is a glucan type homopolysaccharide, The core structure of (1 → 6)-linked α-d-glucose units including (1 → 3)-linked α-d-glucose branches at a ratio of 93.4/6.6 was revealed by 1H and 13C NMR spectra and confirmed by FTIR analysis. The glucan showed a superior thermal stability with almost no degradation in structure up to 300 °C. XRD analysis revealed the amorphous structure while SEM analysis confirmed the layer-like morphology. The glucan had an antioxidant activity (89.5%), water-holding capacity (103.7%) and water solubility index (80.7%) values, suggesting that the glucan had a strong level of antioxidant properties; good water binding capacity and excellent solubility. The glucan PDER21 is a polysaccharide possessing a good combination of technical and functional attributes, suggesting a great deal of potential for use in the food industry. A slimy-mucinous-type colony of EPS-producing Weissella cibaria PDER21 was isolated and identified. The monomer composition was glucose, showing that the EPS is a glucan type homopolysaccharide, The core structure of (1 → 6)-linked α-d-glucose units including (1 → 3)-linked α-d-glucose branches at a ratio of 93.4/6.6 was revealed by 1H and 13C NMR spectra and confirmed by FTIR analysis. The glucan showed a superior thermal stability with almost no degradation in structure up to 300 °C. XRD analysis revealed the amorphous structure while SEM analysis confirmed the layer-like morphology. The glucan had an antioxidant activity (89.5%), water-holding capacity (103.7%) and water solubility index (80.7%) values, suggesting that the glucan had a strong level of antioxidant properties; good water binding capacity and excellent solubility. The glucan PDER21 is a polysaccharide possessing a good combination of technical and functional attributes, suggesting a great deal of potential for use in the food industry. Ispirli, Humeyra oth Taylan, Osman oth Alamoudi, Mohammed oth Dertli, Enes oth Enthalten in Elsevier Science Zeng, Bo ELSEVIER Residue co-evolution helps predict interaction sites in α-helical membrane proteins 2019 an international journal devoted to scientific and technological aspects of industrially important polysaccharides Amsterdam [u.a.] (DE-627)ELV002183382 volume:285 year:2022 day:1 month:06 pages:0 https://doi.org/10.1016/j.carbpol.2022.119227 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA 42.13 Molekularbiologie VZ AR 285 2022 1 0601 0 |
spelling |
10.1016/j.carbpol.2022.119227 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001737.pica (DE-627)ELV057091536 (ELSEVIER)S0144-8617(22)00131-X DE-627 ger DE-627 rakwb eng 540 VZ BIODIV DE-30 fid 42.13 bkl Yilmaz, Mustafa Tahsin verfasserin aut Bioactive and technological properties of an α-D-glucan synthesized by Weissella cibaria PDER21 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier A slimy-mucinous-type colony of EPS-producing Weissella cibaria PDER21 was isolated and identified. The monomer composition was glucose, showing that the EPS is a glucan type homopolysaccharide, The core structure of (1 → 6)-linked α-d-glucose units including (1 → 3)-linked α-d-glucose branches at a ratio of 93.4/6.6 was revealed by 1H and 13C NMR spectra and confirmed by FTIR analysis. The glucan showed a superior thermal stability with almost no degradation in structure up to 300 °C. XRD analysis revealed the amorphous structure while SEM analysis confirmed the layer-like morphology. The glucan had an antioxidant activity (89.5%), water-holding capacity (103.7%) and water solubility index (80.7%) values, suggesting that the glucan had a strong level of antioxidant properties; good water binding capacity and excellent solubility. The glucan PDER21 is a polysaccharide possessing a good combination of technical and functional attributes, suggesting a great deal of potential for use in the food industry. A slimy-mucinous-type colony of EPS-producing Weissella cibaria PDER21 was isolated and identified. The monomer composition was glucose, showing that the EPS is a glucan type homopolysaccharide, The core structure of (1 → 6)-linked α-d-glucose units including (1 → 3)-linked α-d-glucose branches at a ratio of 93.4/6.6 was revealed by 1H and 13C NMR spectra and confirmed by FTIR analysis. The glucan showed a superior thermal stability with almost no degradation in structure up to 300 °C. XRD analysis revealed the amorphous structure while SEM analysis confirmed the layer-like morphology. The glucan had an antioxidant activity (89.5%), water-holding capacity (103.7%) and water solubility index (80.7%) values, suggesting that the glucan had a strong level of antioxidant properties; good water binding capacity and excellent solubility. The glucan PDER21 is a polysaccharide possessing a good combination of technical and functional attributes, suggesting a great deal of potential for use in the food industry. Ispirli, Humeyra oth Taylan, Osman oth Alamoudi, Mohammed oth Dertli, Enes oth Enthalten in Elsevier Science Zeng, Bo ELSEVIER Residue co-evolution helps predict interaction sites in α-helical membrane proteins 2019 an international journal devoted to scientific and technological aspects of industrially important polysaccharides Amsterdam [u.a.] (DE-627)ELV002183382 volume:285 year:2022 day:1 month:06 pages:0 https://doi.org/10.1016/j.carbpol.2022.119227 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA 42.13 Molekularbiologie VZ AR 285 2022 1 0601 0 |
allfields_unstemmed |
10.1016/j.carbpol.2022.119227 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001737.pica (DE-627)ELV057091536 (ELSEVIER)S0144-8617(22)00131-X DE-627 ger DE-627 rakwb eng 540 VZ BIODIV DE-30 fid 42.13 bkl Yilmaz, Mustafa Tahsin verfasserin aut Bioactive and technological properties of an α-D-glucan synthesized by Weissella cibaria PDER21 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier A slimy-mucinous-type colony of EPS-producing Weissella cibaria PDER21 was isolated and identified. The monomer composition was glucose, showing that the EPS is a glucan type homopolysaccharide, The core structure of (1 → 6)-linked α-d-glucose units including (1 → 3)-linked α-d-glucose branches at a ratio of 93.4/6.6 was revealed by 1H and 13C NMR spectra and confirmed by FTIR analysis. The glucan showed a superior thermal stability with almost no degradation in structure up to 300 °C. XRD analysis revealed the amorphous structure while SEM analysis confirmed the layer-like morphology. The glucan had an antioxidant activity (89.5%), water-holding capacity (103.7%) and water solubility index (80.7%) values, suggesting that the glucan had a strong level of antioxidant properties; good water binding capacity and excellent solubility. The glucan PDER21 is a polysaccharide possessing a good combination of technical and functional attributes, suggesting a great deal of potential for use in the food industry. A slimy-mucinous-type colony of EPS-producing Weissella cibaria PDER21 was isolated and identified. The monomer composition was glucose, showing that the EPS is a glucan type homopolysaccharide, The core structure of (1 → 6)-linked α-d-glucose units including (1 → 3)-linked α-d-glucose branches at a ratio of 93.4/6.6 was revealed by 1H and 13C NMR spectra and confirmed by FTIR analysis. The glucan showed a superior thermal stability with almost no degradation in structure up to 300 °C. XRD analysis revealed the amorphous structure while SEM analysis confirmed the layer-like morphology. The glucan had an antioxidant activity (89.5%), water-holding capacity (103.7%) and water solubility index (80.7%) values, suggesting that the glucan had a strong level of antioxidant properties; good water binding capacity and excellent solubility. The glucan PDER21 is a polysaccharide possessing a good combination of technical and functional attributes, suggesting a great deal of potential for use in the food industry. Ispirli, Humeyra oth Taylan, Osman oth Alamoudi, Mohammed oth Dertli, Enes oth Enthalten in Elsevier Science Zeng, Bo ELSEVIER Residue co-evolution helps predict interaction sites in α-helical membrane proteins 2019 an international journal devoted to scientific and technological aspects of industrially important polysaccharides Amsterdam [u.a.] (DE-627)ELV002183382 volume:285 year:2022 day:1 month:06 pages:0 https://doi.org/10.1016/j.carbpol.2022.119227 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA 42.13 Molekularbiologie VZ AR 285 2022 1 0601 0 |
allfieldsGer |
10.1016/j.carbpol.2022.119227 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001737.pica (DE-627)ELV057091536 (ELSEVIER)S0144-8617(22)00131-X DE-627 ger DE-627 rakwb eng 540 VZ BIODIV DE-30 fid 42.13 bkl Yilmaz, Mustafa Tahsin verfasserin aut Bioactive and technological properties of an α-D-glucan synthesized by Weissella cibaria PDER21 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier A slimy-mucinous-type colony of EPS-producing Weissella cibaria PDER21 was isolated and identified. The monomer composition was glucose, showing that the EPS is a glucan type homopolysaccharide, The core structure of (1 → 6)-linked α-d-glucose units including (1 → 3)-linked α-d-glucose branches at a ratio of 93.4/6.6 was revealed by 1H and 13C NMR spectra and confirmed by FTIR analysis. The glucan showed a superior thermal stability with almost no degradation in structure up to 300 °C. XRD analysis revealed the amorphous structure while SEM analysis confirmed the layer-like morphology. The glucan had an antioxidant activity (89.5%), water-holding capacity (103.7%) and water solubility index (80.7%) values, suggesting that the glucan had a strong level of antioxidant properties; good water binding capacity and excellent solubility. The glucan PDER21 is a polysaccharide possessing a good combination of technical and functional attributes, suggesting a great deal of potential for use in the food industry. A slimy-mucinous-type colony of EPS-producing Weissella cibaria PDER21 was isolated and identified. The monomer composition was glucose, showing that the EPS is a glucan type homopolysaccharide, The core structure of (1 → 6)-linked α-d-glucose units including (1 → 3)-linked α-d-glucose branches at a ratio of 93.4/6.6 was revealed by 1H and 13C NMR spectra and confirmed by FTIR analysis. The glucan showed a superior thermal stability with almost no degradation in structure up to 300 °C. XRD analysis revealed the amorphous structure while SEM analysis confirmed the layer-like morphology. The glucan had an antioxidant activity (89.5%), water-holding capacity (103.7%) and water solubility index (80.7%) values, suggesting that the glucan had a strong level of antioxidant properties; good water binding capacity and excellent solubility. The glucan PDER21 is a polysaccharide possessing a good combination of technical and functional attributes, suggesting a great deal of potential for use in the food industry. Ispirli, Humeyra oth Taylan, Osman oth Alamoudi, Mohammed oth Dertli, Enes oth Enthalten in Elsevier Science Zeng, Bo ELSEVIER Residue co-evolution helps predict interaction sites in α-helical membrane proteins 2019 an international journal devoted to scientific and technological aspects of industrially important polysaccharides Amsterdam [u.a.] (DE-627)ELV002183382 volume:285 year:2022 day:1 month:06 pages:0 https://doi.org/10.1016/j.carbpol.2022.119227 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA 42.13 Molekularbiologie VZ AR 285 2022 1 0601 0 |
allfieldsSound |
10.1016/j.carbpol.2022.119227 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001737.pica (DE-627)ELV057091536 (ELSEVIER)S0144-8617(22)00131-X DE-627 ger DE-627 rakwb eng 540 VZ BIODIV DE-30 fid 42.13 bkl Yilmaz, Mustafa Tahsin verfasserin aut Bioactive and technological properties of an α-D-glucan synthesized by Weissella cibaria PDER21 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier A slimy-mucinous-type colony of EPS-producing Weissella cibaria PDER21 was isolated and identified. The monomer composition was glucose, showing that the EPS is a glucan type homopolysaccharide, The core structure of (1 → 6)-linked α-d-glucose units including (1 → 3)-linked α-d-glucose branches at a ratio of 93.4/6.6 was revealed by 1H and 13C NMR spectra and confirmed by FTIR analysis. The glucan showed a superior thermal stability with almost no degradation in structure up to 300 °C. XRD analysis revealed the amorphous structure while SEM analysis confirmed the layer-like morphology. The glucan had an antioxidant activity (89.5%), water-holding capacity (103.7%) and water solubility index (80.7%) values, suggesting that the glucan had a strong level of antioxidant properties; good water binding capacity and excellent solubility. The glucan PDER21 is a polysaccharide possessing a good combination of technical and functional attributes, suggesting a great deal of potential for use in the food industry. A slimy-mucinous-type colony of EPS-producing Weissella cibaria PDER21 was isolated and identified. The monomer composition was glucose, showing that the EPS is a glucan type homopolysaccharide, The core structure of (1 → 6)-linked α-d-glucose units including (1 → 3)-linked α-d-glucose branches at a ratio of 93.4/6.6 was revealed by 1H and 13C NMR spectra and confirmed by FTIR analysis. The glucan showed a superior thermal stability with almost no degradation in structure up to 300 °C. XRD analysis revealed the amorphous structure while SEM analysis confirmed the layer-like morphology. The glucan had an antioxidant activity (89.5%), water-holding capacity (103.7%) and water solubility index (80.7%) values, suggesting that the glucan had a strong level of antioxidant properties; good water binding capacity and excellent solubility. The glucan PDER21 is a polysaccharide possessing a good combination of technical and functional attributes, suggesting a great deal of potential for use in the food industry. Ispirli, Humeyra oth Taylan, Osman oth Alamoudi, Mohammed oth Dertli, Enes oth Enthalten in Elsevier Science Zeng, Bo ELSEVIER Residue co-evolution helps predict interaction sites in α-helical membrane proteins 2019 an international journal devoted to scientific and technological aspects of industrially important polysaccharides Amsterdam [u.a.] (DE-627)ELV002183382 volume:285 year:2022 day:1 month:06 pages:0 https://doi.org/10.1016/j.carbpol.2022.119227 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA 42.13 Molekularbiologie VZ AR 285 2022 1 0601 0 |
language |
English |
source |
Enthalten in Residue co-evolution helps predict interaction sites in α-helical membrane proteins Amsterdam [u.a.] volume:285 year:2022 day:1 month:06 pages:0 |
sourceStr |
Enthalten in Residue co-evolution helps predict interaction sites in α-helical membrane proteins Amsterdam [u.a.] volume:285 year:2022 day:1 month:06 pages:0 |
format_phy_str_mv |
Article |
bklname |
Molekularbiologie |
institution |
findex.gbv.de |
dewey-raw |
540 |
isfreeaccess_bool |
false |
container_title |
Residue co-evolution helps predict interaction sites in α-helical membrane proteins |
authorswithroles_txt_mv |
Yilmaz, Mustafa Tahsin @@aut@@ Ispirli, Humeyra @@oth@@ Taylan, Osman @@oth@@ Alamoudi, Mohammed @@oth@@ Dertli, Enes @@oth@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
ELV002183382 |
dewey-sort |
3540 |
id |
ELV057091536 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV057091536</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626044516.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220808s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.carbpol.2022.119227</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001737.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV057091536</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0144-8617(22)00131-X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42.13</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yilmaz, Mustafa Tahsin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Bioactive and technological properties of an α-D-glucan synthesized by Weissella cibaria PDER21</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A slimy-mucinous-type colony of EPS-producing Weissella cibaria PDER21 was isolated and identified. The monomer composition was glucose, showing that the EPS is a glucan type homopolysaccharide, The core structure of (1 → 6)-linked α-d-glucose units including (1 → 3)-linked α-d-glucose branches at a ratio of 93.4/6.6 was revealed by 1H and 13C NMR spectra and confirmed by FTIR analysis. The glucan showed a superior thermal stability with almost no degradation in structure up to 300 °C. XRD analysis revealed the amorphous structure while SEM analysis confirmed the layer-like morphology. The glucan had an antioxidant activity (89.5%), water-holding capacity (103.7%) and water solubility index (80.7%) values, suggesting that the glucan had a strong level of antioxidant properties; good water binding capacity and excellent solubility. The glucan PDER21 is a polysaccharide possessing a good combination of technical and functional attributes, suggesting a great deal of potential for use in the food industry.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A slimy-mucinous-type colony of EPS-producing Weissella cibaria PDER21 was isolated and identified. The monomer composition was glucose, showing that the EPS is a glucan type homopolysaccharide, The core structure of (1 → 6)-linked α-d-glucose units including (1 → 3)-linked α-d-glucose branches at a ratio of 93.4/6.6 was revealed by 1H and 13C NMR spectra and confirmed by FTIR analysis. The glucan showed a superior thermal stability with almost no degradation in structure up to 300 °C. XRD analysis revealed the amorphous structure while SEM analysis confirmed the layer-like morphology. The glucan had an antioxidant activity (89.5%), water-holding capacity (103.7%) and water solubility index (80.7%) values, suggesting that the glucan had a strong level of antioxidant properties; good water binding capacity and excellent solubility. The glucan PDER21 is a polysaccharide possessing a good combination of technical and functional attributes, suggesting a great deal of potential for use in the food industry.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ispirli, Humeyra</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Taylan, Osman</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Alamoudi, Mohammed</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dertli, Enes</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Zeng, Bo ELSEVIER</subfield><subfield code="t">Residue co-evolution helps predict interaction sites in α-helical membrane proteins</subfield><subfield code="d">2019</subfield><subfield code="d">an international journal devoted to scientific and technological aspects of industrially important polysaccharides</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV002183382</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:285</subfield><subfield code="g">year:2022</subfield><subfield code="g">day:1</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.carbpol.2022.119227</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">42.13</subfield><subfield code="j">Molekularbiologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">285</subfield><subfield code="j">2022</subfield><subfield code="b">1</subfield><subfield code="c">0601</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
author |
Yilmaz, Mustafa Tahsin |
spellingShingle |
Yilmaz, Mustafa Tahsin ddc 540 fid BIODIV bkl 42.13 Bioactive and technological properties of an α-D-glucan synthesized by Weissella cibaria PDER21 |
authorStr |
Yilmaz, Mustafa Tahsin |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV002183382 |
format |
electronic Article |
dewey-ones |
540 - Chemistry & allied sciences |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
540 VZ BIODIV DE-30 fid 42.13 bkl Bioactive and technological properties of an α-D-glucan synthesized by Weissella cibaria PDER21 |
topic |
ddc 540 fid BIODIV bkl 42.13 |
topic_unstemmed |
ddc 540 fid BIODIV bkl 42.13 |
topic_browse |
ddc 540 fid BIODIV bkl 42.13 |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
h i hi o t ot m a ma e d ed |
hierarchy_parent_title |
Residue co-evolution helps predict interaction sites in α-helical membrane proteins |
hierarchy_parent_id |
ELV002183382 |
dewey-tens |
540 - Chemistry |
hierarchy_top_title |
Residue co-evolution helps predict interaction sites in α-helical membrane proteins |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV002183382 |
title |
Bioactive and technological properties of an α-D-glucan synthesized by Weissella cibaria PDER21 |
ctrlnum |
(DE-627)ELV057091536 (ELSEVIER)S0144-8617(22)00131-X |
title_full |
Bioactive and technological properties of an α-D-glucan synthesized by Weissella cibaria PDER21 |
author_sort |
Yilmaz, Mustafa Tahsin |
journal |
Residue co-evolution helps predict interaction sites in α-helical membrane proteins |
journalStr |
Residue co-evolution helps predict interaction sites in α-helical membrane proteins |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
zzz |
container_start_page |
0 |
author_browse |
Yilmaz, Mustafa Tahsin |
container_volume |
285 |
class |
540 VZ BIODIV DE-30 fid 42.13 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Yilmaz, Mustafa Tahsin |
doi_str_mv |
10.1016/j.carbpol.2022.119227 |
dewey-full |
540 |
title_sort |
bioactive and technological properties of an α-d-glucan synthesized by weissella cibaria pder21 |
title_auth |
Bioactive and technological properties of an α-D-glucan synthesized by Weissella cibaria PDER21 |
abstract |
A slimy-mucinous-type colony of EPS-producing Weissella cibaria PDER21 was isolated and identified. The monomer composition was glucose, showing that the EPS is a glucan type homopolysaccharide, The core structure of (1 → 6)-linked α-d-glucose units including (1 → 3)-linked α-d-glucose branches at a ratio of 93.4/6.6 was revealed by 1H and 13C NMR spectra and confirmed by FTIR analysis. The glucan showed a superior thermal stability with almost no degradation in structure up to 300 °C. XRD analysis revealed the amorphous structure while SEM analysis confirmed the layer-like morphology. The glucan had an antioxidant activity (89.5%), water-holding capacity (103.7%) and water solubility index (80.7%) values, suggesting that the glucan had a strong level of antioxidant properties; good water binding capacity and excellent solubility. The glucan PDER21 is a polysaccharide possessing a good combination of technical and functional attributes, suggesting a great deal of potential for use in the food industry. |
abstractGer |
A slimy-mucinous-type colony of EPS-producing Weissella cibaria PDER21 was isolated and identified. The monomer composition was glucose, showing that the EPS is a glucan type homopolysaccharide, The core structure of (1 → 6)-linked α-d-glucose units including (1 → 3)-linked α-d-glucose branches at a ratio of 93.4/6.6 was revealed by 1H and 13C NMR spectra and confirmed by FTIR analysis. The glucan showed a superior thermal stability with almost no degradation in structure up to 300 °C. XRD analysis revealed the amorphous structure while SEM analysis confirmed the layer-like morphology. The glucan had an antioxidant activity (89.5%), water-holding capacity (103.7%) and water solubility index (80.7%) values, suggesting that the glucan had a strong level of antioxidant properties; good water binding capacity and excellent solubility. The glucan PDER21 is a polysaccharide possessing a good combination of technical and functional attributes, suggesting a great deal of potential for use in the food industry. |
abstract_unstemmed |
A slimy-mucinous-type colony of EPS-producing Weissella cibaria PDER21 was isolated and identified. The monomer composition was glucose, showing that the EPS is a glucan type homopolysaccharide, The core structure of (1 → 6)-linked α-d-glucose units including (1 → 3)-linked α-d-glucose branches at a ratio of 93.4/6.6 was revealed by 1H and 13C NMR spectra and confirmed by FTIR analysis. The glucan showed a superior thermal stability with almost no degradation in structure up to 300 °C. XRD analysis revealed the amorphous structure while SEM analysis confirmed the layer-like morphology. The glucan had an antioxidant activity (89.5%), water-holding capacity (103.7%) and water solubility index (80.7%) values, suggesting that the glucan had a strong level of antioxidant properties; good water binding capacity and excellent solubility. The glucan PDER21 is a polysaccharide possessing a good combination of technical and functional attributes, suggesting a great deal of potential for use in the food industry. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA |
title_short |
Bioactive and technological properties of an α-D-glucan synthesized by Weissella cibaria PDER21 |
url |
https://doi.org/10.1016/j.carbpol.2022.119227 |
remote_bool |
true |
author2 |
Ispirli, Humeyra Taylan, Osman Alamoudi, Mohammed Dertli, Enes |
author2Str |
Ispirli, Humeyra Taylan, Osman Alamoudi, Mohammed Dertli, Enes |
ppnlink |
ELV002183382 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth |
doi_str |
10.1016/j.carbpol.2022.119227 |
up_date |
2024-07-06T22:15:54.400Z |
_version_ |
1803869649005182976 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV057091536</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626044516.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220808s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.carbpol.2022.119227</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001737.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV057091536</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0144-8617(22)00131-X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42.13</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yilmaz, Mustafa Tahsin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Bioactive and technological properties of an α-D-glucan synthesized by Weissella cibaria PDER21</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A slimy-mucinous-type colony of EPS-producing Weissella cibaria PDER21 was isolated and identified. The monomer composition was glucose, showing that the EPS is a glucan type homopolysaccharide, The core structure of (1 → 6)-linked α-d-glucose units including (1 → 3)-linked α-d-glucose branches at a ratio of 93.4/6.6 was revealed by 1H and 13C NMR spectra and confirmed by FTIR analysis. The glucan showed a superior thermal stability with almost no degradation in structure up to 300 °C. XRD analysis revealed the amorphous structure while SEM analysis confirmed the layer-like morphology. The glucan had an antioxidant activity (89.5%), water-holding capacity (103.7%) and water solubility index (80.7%) values, suggesting that the glucan had a strong level of antioxidant properties; good water binding capacity and excellent solubility. The glucan PDER21 is a polysaccharide possessing a good combination of technical and functional attributes, suggesting a great deal of potential for use in the food industry.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A slimy-mucinous-type colony of EPS-producing Weissella cibaria PDER21 was isolated and identified. The monomer composition was glucose, showing that the EPS is a glucan type homopolysaccharide, The core structure of (1 → 6)-linked α-d-glucose units including (1 → 3)-linked α-d-glucose branches at a ratio of 93.4/6.6 was revealed by 1H and 13C NMR spectra and confirmed by FTIR analysis. The glucan showed a superior thermal stability with almost no degradation in structure up to 300 °C. XRD analysis revealed the amorphous structure while SEM analysis confirmed the layer-like morphology. The glucan had an antioxidant activity (89.5%), water-holding capacity (103.7%) and water solubility index (80.7%) values, suggesting that the glucan had a strong level of antioxidant properties; good water binding capacity and excellent solubility. The glucan PDER21 is a polysaccharide possessing a good combination of technical and functional attributes, suggesting a great deal of potential for use in the food industry.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ispirli, Humeyra</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Taylan, Osman</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Alamoudi, Mohammed</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dertli, Enes</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Zeng, Bo ELSEVIER</subfield><subfield code="t">Residue co-evolution helps predict interaction sites in α-helical membrane proteins</subfield><subfield code="d">2019</subfield><subfield code="d">an international journal devoted to scientific and technological aspects of industrially important polysaccharides</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV002183382</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:285</subfield><subfield code="g">year:2022</subfield><subfield code="g">day:1</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.carbpol.2022.119227</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">42.13</subfield><subfield code="j">Molekularbiologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">285</subfield><subfield code="j">2022</subfield><subfield code="b">1</subfield><subfield code="c">0601</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
score |
7.4017277 |