Self-interaction of an arbitrary moving dislocation
The action functional for a linear elastic medium with dislocations is given. The equations of motion following from this action reproduce the Peach–Köhler and Lorentzian forces experienced by dislocations. The explicit expressions for singular and finite parts of the self-force acting on a curved d...
Ausführliche Beschreibung
Autor*in: |
Kazinski, P.O. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022transfer abstract |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: One pot synthesis of poly(5-hydroxyl-1,4-naphthoquinone) stabilized gold nanoparticles using the monomer as the reducing agent for nonenzymatic electrochemical detection of glucose - Cooray, M.C. Dilusha ELSEVIER, 2015, New York, NY [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:242 ; year:2022 ; day:1 ; month:05 ; pages:0 |
Links: |
---|
DOI / URN: |
10.1016/j.ijsolstr.2022.111538 |
---|
Katalog-ID: |
ELV057140499 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV057140499 | ||
003 | DE-627 | ||
005 | 20230626044604.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220808s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ijsolstr.2022.111538 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001744.pica |
035 | |a (DE-627)ELV057140499 | ||
035 | |a (ELSEVIER)S0020-7683(22)00088-9 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 540 |q VZ |
082 | 0 | 4 | |a 610 |q VZ |
082 | 0 | 4 | |a 540 |q VZ |
084 | |a 35.10 |2 bkl | ||
100 | 1 | |a Kazinski, P.O. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Self-interaction of an arbitrary moving dislocation |
264 | 1 | |c 2022transfer abstract | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a The action functional for a linear elastic medium with dislocations is given. The equations of motion following from this action reproduce the Peach–Köhler and Lorentzian forces experienced by dislocations. The explicit expressions for singular and finite parts of the self-force acting on a curved dislocation are derived in the framework of linear theory of elasticity of an isotropic medium. The velocity of dislocation is assumed to be arbitrary but less than the shear wave velocity. The slow speed and near-sonic motions of a dislocation are investigated. In the near-sonic limit, the explicit expression for the leading contribution to the self-force is obtained. In the case of slowly moving dislocations, the effective equations of motion derived in the present paper reproduce the known results. | ||
520 | |a The action functional for a linear elastic medium with dislocations is given. The equations of motion following from this action reproduce the Peach–Köhler and Lorentzian forces experienced by dislocations. The explicit expressions for singular and finite parts of the self-force acting on a curved dislocation are derived in the framework of linear theory of elasticity of an isotropic medium. The velocity of dislocation is assumed to be arbitrary but less than the shear wave velocity. The slow speed and near-sonic motions of a dislocation are investigated. In the near-sonic limit, the explicit expression for the leading contribution to the self-force is obtained. In the case of slowly moving dislocations, the effective equations of motion derived in the present paper reproduce the known results. | ||
650 | 7 | |a Dislocation gliding |2 Elsevier | |
650 | 7 | |a Dislocation theory |2 Elsevier | |
650 | 7 | |a Dislocation dynamics |2 Elsevier | |
700 | 1 | |a Ryakin, V.A. |4 oth | |
700 | 1 | |a Sokolov, A.A. |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Cooray, M.C. Dilusha ELSEVIER |t One pot synthesis of poly(5-hydroxyl-1,4-naphthoquinone) stabilized gold nanoparticles using the monomer as the reducing agent for nonenzymatic electrochemical detection of glucose |d 2015 |g New York, NY [u.a.] |w (DE-627)ELV023913754 |
773 | 1 | 8 | |g volume:242 |g year:2022 |g day:1 |g month:05 |g pages:0 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.ijsolstr.2022.111538 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_70 | ||
936 | b | k | |a 35.10 |j Physikalische Chemie: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 242 |j 2022 |b 1 |c 0501 |h 0 |
author_variant |
p k pk |
---|---|
matchkey_str |
kazinskiporyakinvasokolovaa:2022----:efneatooaabtayoi |
hierarchy_sort_str |
2022transfer abstract |
bklnumber |
35.10 |
publishDate |
2022 |
allfields |
10.1016/j.ijsolstr.2022.111538 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001744.pica (DE-627)ELV057140499 (ELSEVIER)S0020-7683(22)00088-9 DE-627 ger DE-627 rakwb eng 540 VZ 610 VZ 540 VZ 35.10 bkl Kazinski, P.O. verfasserin aut Self-interaction of an arbitrary moving dislocation 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The action functional for a linear elastic medium with dislocations is given. The equations of motion following from this action reproduce the Peach–Köhler and Lorentzian forces experienced by dislocations. The explicit expressions for singular and finite parts of the self-force acting on a curved dislocation are derived in the framework of linear theory of elasticity of an isotropic medium. The velocity of dislocation is assumed to be arbitrary but less than the shear wave velocity. The slow speed and near-sonic motions of a dislocation are investigated. In the near-sonic limit, the explicit expression for the leading contribution to the self-force is obtained. In the case of slowly moving dislocations, the effective equations of motion derived in the present paper reproduce the known results. The action functional for a linear elastic medium with dislocations is given. The equations of motion following from this action reproduce the Peach–Köhler and Lorentzian forces experienced by dislocations. The explicit expressions for singular and finite parts of the self-force acting on a curved dislocation are derived in the framework of linear theory of elasticity of an isotropic medium. The velocity of dislocation is assumed to be arbitrary but less than the shear wave velocity. The slow speed and near-sonic motions of a dislocation are investigated. In the near-sonic limit, the explicit expression for the leading contribution to the self-force is obtained. In the case of slowly moving dislocations, the effective equations of motion derived in the present paper reproduce the known results. Dislocation gliding Elsevier Dislocation theory Elsevier Dislocation dynamics Elsevier Ryakin, V.A. oth Sokolov, A.A. oth Enthalten in Elsevier Cooray, M.C. Dilusha ELSEVIER One pot synthesis of poly(5-hydroxyl-1,4-naphthoquinone) stabilized gold nanoparticles using the monomer as the reducing agent for nonenzymatic electrochemical detection of glucose 2015 New York, NY [u.a.] (DE-627)ELV023913754 volume:242 year:2022 day:1 month:05 pages:0 https://doi.org/10.1016/j.ijsolstr.2022.111538 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_70 35.10 Physikalische Chemie: Allgemeines VZ AR 242 2022 1 0501 0 |
spelling |
10.1016/j.ijsolstr.2022.111538 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001744.pica (DE-627)ELV057140499 (ELSEVIER)S0020-7683(22)00088-9 DE-627 ger DE-627 rakwb eng 540 VZ 610 VZ 540 VZ 35.10 bkl Kazinski, P.O. verfasserin aut Self-interaction of an arbitrary moving dislocation 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The action functional for a linear elastic medium with dislocations is given. The equations of motion following from this action reproduce the Peach–Köhler and Lorentzian forces experienced by dislocations. The explicit expressions for singular and finite parts of the self-force acting on a curved dislocation are derived in the framework of linear theory of elasticity of an isotropic medium. The velocity of dislocation is assumed to be arbitrary but less than the shear wave velocity. The slow speed and near-sonic motions of a dislocation are investigated. In the near-sonic limit, the explicit expression for the leading contribution to the self-force is obtained. In the case of slowly moving dislocations, the effective equations of motion derived in the present paper reproduce the known results. The action functional for a linear elastic medium with dislocations is given. The equations of motion following from this action reproduce the Peach–Köhler and Lorentzian forces experienced by dislocations. The explicit expressions for singular and finite parts of the self-force acting on a curved dislocation are derived in the framework of linear theory of elasticity of an isotropic medium. The velocity of dislocation is assumed to be arbitrary but less than the shear wave velocity. The slow speed and near-sonic motions of a dislocation are investigated. In the near-sonic limit, the explicit expression for the leading contribution to the self-force is obtained. In the case of slowly moving dislocations, the effective equations of motion derived in the present paper reproduce the known results. Dislocation gliding Elsevier Dislocation theory Elsevier Dislocation dynamics Elsevier Ryakin, V.A. oth Sokolov, A.A. oth Enthalten in Elsevier Cooray, M.C. Dilusha ELSEVIER One pot synthesis of poly(5-hydroxyl-1,4-naphthoquinone) stabilized gold nanoparticles using the monomer as the reducing agent for nonenzymatic electrochemical detection of glucose 2015 New York, NY [u.a.] (DE-627)ELV023913754 volume:242 year:2022 day:1 month:05 pages:0 https://doi.org/10.1016/j.ijsolstr.2022.111538 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_70 35.10 Physikalische Chemie: Allgemeines VZ AR 242 2022 1 0501 0 |
allfields_unstemmed |
10.1016/j.ijsolstr.2022.111538 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001744.pica (DE-627)ELV057140499 (ELSEVIER)S0020-7683(22)00088-9 DE-627 ger DE-627 rakwb eng 540 VZ 610 VZ 540 VZ 35.10 bkl Kazinski, P.O. verfasserin aut Self-interaction of an arbitrary moving dislocation 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The action functional for a linear elastic medium with dislocations is given. The equations of motion following from this action reproduce the Peach–Köhler and Lorentzian forces experienced by dislocations. The explicit expressions for singular and finite parts of the self-force acting on a curved dislocation are derived in the framework of linear theory of elasticity of an isotropic medium. The velocity of dislocation is assumed to be arbitrary but less than the shear wave velocity. The slow speed and near-sonic motions of a dislocation are investigated. In the near-sonic limit, the explicit expression for the leading contribution to the self-force is obtained. In the case of slowly moving dislocations, the effective equations of motion derived in the present paper reproduce the known results. The action functional for a linear elastic medium with dislocations is given. The equations of motion following from this action reproduce the Peach–Köhler and Lorentzian forces experienced by dislocations. The explicit expressions for singular and finite parts of the self-force acting on a curved dislocation are derived in the framework of linear theory of elasticity of an isotropic medium. The velocity of dislocation is assumed to be arbitrary but less than the shear wave velocity. The slow speed and near-sonic motions of a dislocation are investigated. In the near-sonic limit, the explicit expression for the leading contribution to the self-force is obtained. In the case of slowly moving dislocations, the effective equations of motion derived in the present paper reproduce the known results. Dislocation gliding Elsevier Dislocation theory Elsevier Dislocation dynamics Elsevier Ryakin, V.A. oth Sokolov, A.A. oth Enthalten in Elsevier Cooray, M.C. Dilusha ELSEVIER One pot synthesis of poly(5-hydroxyl-1,4-naphthoquinone) stabilized gold nanoparticles using the monomer as the reducing agent for nonenzymatic electrochemical detection of glucose 2015 New York, NY [u.a.] (DE-627)ELV023913754 volume:242 year:2022 day:1 month:05 pages:0 https://doi.org/10.1016/j.ijsolstr.2022.111538 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_70 35.10 Physikalische Chemie: Allgemeines VZ AR 242 2022 1 0501 0 |
allfieldsGer |
10.1016/j.ijsolstr.2022.111538 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001744.pica (DE-627)ELV057140499 (ELSEVIER)S0020-7683(22)00088-9 DE-627 ger DE-627 rakwb eng 540 VZ 610 VZ 540 VZ 35.10 bkl Kazinski, P.O. verfasserin aut Self-interaction of an arbitrary moving dislocation 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The action functional for a linear elastic medium with dislocations is given. The equations of motion following from this action reproduce the Peach–Köhler and Lorentzian forces experienced by dislocations. The explicit expressions for singular and finite parts of the self-force acting on a curved dislocation are derived in the framework of linear theory of elasticity of an isotropic medium. The velocity of dislocation is assumed to be arbitrary but less than the shear wave velocity. The slow speed and near-sonic motions of a dislocation are investigated. In the near-sonic limit, the explicit expression for the leading contribution to the self-force is obtained. In the case of slowly moving dislocations, the effective equations of motion derived in the present paper reproduce the known results. The action functional for a linear elastic medium with dislocations is given. The equations of motion following from this action reproduce the Peach–Köhler and Lorentzian forces experienced by dislocations. The explicit expressions for singular and finite parts of the self-force acting on a curved dislocation are derived in the framework of linear theory of elasticity of an isotropic medium. The velocity of dislocation is assumed to be arbitrary but less than the shear wave velocity. The slow speed and near-sonic motions of a dislocation are investigated. In the near-sonic limit, the explicit expression for the leading contribution to the self-force is obtained. In the case of slowly moving dislocations, the effective equations of motion derived in the present paper reproduce the known results. Dislocation gliding Elsevier Dislocation theory Elsevier Dislocation dynamics Elsevier Ryakin, V.A. oth Sokolov, A.A. oth Enthalten in Elsevier Cooray, M.C. Dilusha ELSEVIER One pot synthesis of poly(5-hydroxyl-1,4-naphthoquinone) stabilized gold nanoparticles using the monomer as the reducing agent for nonenzymatic electrochemical detection of glucose 2015 New York, NY [u.a.] (DE-627)ELV023913754 volume:242 year:2022 day:1 month:05 pages:0 https://doi.org/10.1016/j.ijsolstr.2022.111538 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_70 35.10 Physikalische Chemie: Allgemeines VZ AR 242 2022 1 0501 0 |
allfieldsSound |
10.1016/j.ijsolstr.2022.111538 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001744.pica (DE-627)ELV057140499 (ELSEVIER)S0020-7683(22)00088-9 DE-627 ger DE-627 rakwb eng 540 VZ 610 VZ 540 VZ 35.10 bkl Kazinski, P.O. verfasserin aut Self-interaction of an arbitrary moving dislocation 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The action functional for a linear elastic medium with dislocations is given. The equations of motion following from this action reproduce the Peach–Köhler and Lorentzian forces experienced by dislocations. The explicit expressions for singular and finite parts of the self-force acting on a curved dislocation are derived in the framework of linear theory of elasticity of an isotropic medium. The velocity of dislocation is assumed to be arbitrary but less than the shear wave velocity. The slow speed and near-sonic motions of a dislocation are investigated. In the near-sonic limit, the explicit expression for the leading contribution to the self-force is obtained. In the case of slowly moving dislocations, the effective equations of motion derived in the present paper reproduce the known results. The action functional for a linear elastic medium with dislocations is given. The equations of motion following from this action reproduce the Peach–Köhler and Lorentzian forces experienced by dislocations. The explicit expressions for singular and finite parts of the self-force acting on a curved dislocation are derived in the framework of linear theory of elasticity of an isotropic medium. The velocity of dislocation is assumed to be arbitrary but less than the shear wave velocity. The slow speed and near-sonic motions of a dislocation are investigated. In the near-sonic limit, the explicit expression for the leading contribution to the self-force is obtained. In the case of slowly moving dislocations, the effective equations of motion derived in the present paper reproduce the known results. Dislocation gliding Elsevier Dislocation theory Elsevier Dislocation dynamics Elsevier Ryakin, V.A. oth Sokolov, A.A. oth Enthalten in Elsevier Cooray, M.C. Dilusha ELSEVIER One pot synthesis of poly(5-hydroxyl-1,4-naphthoquinone) stabilized gold nanoparticles using the monomer as the reducing agent for nonenzymatic electrochemical detection of glucose 2015 New York, NY [u.a.] (DE-627)ELV023913754 volume:242 year:2022 day:1 month:05 pages:0 https://doi.org/10.1016/j.ijsolstr.2022.111538 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_70 35.10 Physikalische Chemie: Allgemeines VZ AR 242 2022 1 0501 0 |
language |
English |
source |
Enthalten in One pot synthesis of poly(5-hydroxyl-1,4-naphthoquinone) stabilized gold nanoparticles using the monomer as the reducing agent for nonenzymatic electrochemical detection of glucose New York, NY [u.a.] volume:242 year:2022 day:1 month:05 pages:0 |
sourceStr |
Enthalten in One pot synthesis of poly(5-hydroxyl-1,4-naphthoquinone) stabilized gold nanoparticles using the monomer as the reducing agent for nonenzymatic electrochemical detection of glucose New York, NY [u.a.] volume:242 year:2022 day:1 month:05 pages:0 |
format_phy_str_mv |
Article |
bklname |
Physikalische Chemie: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Dislocation gliding Dislocation theory Dislocation dynamics |
dewey-raw |
540 |
isfreeaccess_bool |
false |
container_title |
One pot synthesis of poly(5-hydroxyl-1,4-naphthoquinone) stabilized gold nanoparticles using the monomer as the reducing agent for nonenzymatic electrochemical detection of glucose |
authorswithroles_txt_mv |
Kazinski, P.O. @@aut@@ Ryakin, V.A. @@oth@@ Sokolov, A.A. @@oth@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
ELV023913754 |
dewey-sort |
3540 |
id |
ELV057140499 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV057140499</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626044604.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220808s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijsolstr.2022.111538</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001744.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV057140499</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0020-7683(22)00088-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.10</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kazinski, P.O.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Self-interaction of an arbitrary moving dislocation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The action functional for a linear elastic medium with dislocations is given. The equations of motion following from this action reproduce the Peach–Köhler and Lorentzian forces experienced by dislocations. The explicit expressions for singular and finite parts of the self-force acting on a curved dislocation are derived in the framework of linear theory of elasticity of an isotropic medium. The velocity of dislocation is assumed to be arbitrary but less than the shear wave velocity. The slow speed and near-sonic motions of a dislocation are investigated. In the near-sonic limit, the explicit expression for the leading contribution to the self-force is obtained. In the case of slowly moving dislocations, the effective equations of motion derived in the present paper reproduce the known results.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The action functional for a linear elastic medium with dislocations is given. The equations of motion following from this action reproduce the Peach–Köhler and Lorentzian forces experienced by dislocations. The explicit expressions for singular and finite parts of the self-force acting on a curved dislocation are derived in the framework of linear theory of elasticity of an isotropic medium. The velocity of dislocation is assumed to be arbitrary but less than the shear wave velocity. The slow speed and near-sonic motions of a dislocation are investigated. In the near-sonic limit, the explicit expression for the leading contribution to the self-force is obtained. In the case of slowly moving dislocations, the effective equations of motion derived in the present paper reproduce the known results.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Dislocation gliding</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Dislocation theory</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Dislocation dynamics</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ryakin, V.A.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sokolov, A.A.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Cooray, M.C. Dilusha ELSEVIER</subfield><subfield code="t">One pot synthesis of poly(5-hydroxyl-1,4-naphthoquinone) stabilized gold nanoparticles using the monomer as the reducing agent for nonenzymatic electrochemical detection of glucose</subfield><subfield code="d">2015</subfield><subfield code="g">New York, NY [u.a.]</subfield><subfield code="w">(DE-627)ELV023913754</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:242</subfield><subfield code="g">year:2022</subfield><subfield code="g">day:1</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ijsolstr.2022.111538</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.10</subfield><subfield code="j">Physikalische Chemie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">242</subfield><subfield code="j">2022</subfield><subfield code="b">1</subfield><subfield code="c">0501</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
author |
Kazinski, P.O. |
spellingShingle |
Kazinski, P.O. ddc 540 ddc 610 bkl 35.10 Elsevier Dislocation gliding Elsevier Dislocation theory Elsevier Dislocation dynamics Self-interaction of an arbitrary moving dislocation |
authorStr |
Kazinski, P.O. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV023913754 |
format |
electronic Article |
dewey-ones |
540 - Chemistry & allied sciences 610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
540 VZ 610 VZ 35.10 bkl Self-interaction of an arbitrary moving dislocation Dislocation gliding Elsevier Dislocation theory Elsevier Dislocation dynamics Elsevier |
topic |
ddc 540 ddc 610 bkl 35.10 Elsevier Dislocation gliding Elsevier Dislocation theory Elsevier Dislocation dynamics |
topic_unstemmed |
ddc 540 ddc 610 bkl 35.10 Elsevier Dislocation gliding Elsevier Dislocation theory Elsevier Dislocation dynamics |
topic_browse |
ddc 540 ddc 610 bkl 35.10 Elsevier Dislocation gliding Elsevier Dislocation theory Elsevier Dislocation dynamics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
v r vr a s as |
hierarchy_parent_title |
One pot synthesis of poly(5-hydroxyl-1,4-naphthoquinone) stabilized gold nanoparticles using the monomer as the reducing agent for nonenzymatic electrochemical detection of glucose |
hierarchy_parent_id |
ELV023913754 |
dewey-tens |
540 - Chemistry 610 - Medicine & health |
hierarchy_top_title |
One pot synthesis of poly(5-hydroxyl-1,4-naphthoquinone) stabilized gold nanoparticles using the monomer as the reducing agent for nonenzymatic electrochemical detection of glucose |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV023913754 |
title |
Self-interaction of an arbitrary moving dislocation |
ctrlnum |
(DE-627)ELV057140499 (ELSEVIER)S0020-7683(22)00088-9 |
title_full |
Self-interaction of an arbitrary moving dislocation |
author_sort |
Kazinski, P.O. |
journal |
One pot synthesis of poly(5-hydroxyl-1,4-naphthoquinone) stabilized gold nanoparticles using the monomer as the reducing agent for nonenzymatic electrochemical detection of glucose |
journalStr |
One pot synthesis of poly(5-hydroxyl-1,4-naphthoquinone) stabilized gold nanoparticles using the monomer as the reducing agent for nonenzymatic electrochemical detection of glucose |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
zzz |
container_start_page |
0 |
author_browse |
Kazinski, P.O. |
container_volume |
242 |
class |
540 VZ 610 VZ 35.10 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Kazinski, P.O. |
doi_str_mv |
10.1016/j.ijsolstr.2022.111538 |
dewey-full |
540 610 |
title_sort |
self-interaction of an arbitrary moving dislocation |
title_auth |
Self-interaction of an arbitrary moving dislocation |
abstract |
The action functional for a linear elastic medium with dislocations is given. The equations of motion following from this action reproduce the Peach–Köhler and Lorentzian forces experienced by dislocations. The explicit expressions for singular and finite parts of the self-force acting on a curved dislocation are derived in the framework of linear theory of elasticity of an isotropic medium. The velocity of dislocation is assumed to be arbitrary but less than the shear wave velocity. The slow speed and near-sonic motions of a dislocation are investigated. In the near-sonic limit, the explicit expression for the leading contribution to the self-force is obtained. In the case of slowly moving dislocations, the effective equations of motion derived in the present paper reproduce the known results. |
abstractGer |
The action functional for a linear elastic medium with dislocations is given. The equations of motion following from this action reproduce the Peach–Köhler and Lorentzian forces experienced by dislocations. The explicit expressions for singular and finite parts of the self-force acting on a curved dislocation are derived in the framework of linear theory of elasticity of an isotropic medium. The velocity of dislocation is assumed to be arbitrary but less than the shear wave velocity. The slow speed and near-sonic motions of a dislocation are investigated. In the near-sonic limit, the explicit expression for the leading contribution to the self-force is obtained. In the case of slowly moving dislocations, the effective equations of motion derived in the present paper reproduce the known results. |
abstract_unstemmed |
The action functional for a linear elastic medium with dislocations is given. The equations of motion following from this action reproduce the Peach–Köhler and Lorentzian forces experienced by dislocations. The explicit expressions for singular and finite parts of the self-force acting on a curved dislocation are derived in the framework of linear theory of elasticity of an isotropic medium. The velocity of dislocation is assumed to be arbitrary but less than the shear wave velocity. The slow speed and near-sonic motions of a dislocation are investigated. In the near-sonic limit, the explicit expression for the leading contribution to the self-force is obtained. In the case of slowly moving dislocations, the effective equations of motion derived in the present paper reproduce the known results. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_70 |
title_short |
Self-interaction of an arbitrary moving dislocation |
url |
https://doi.org/10.1016/j.ijsolstr.2022.111538 |
remote_bool |
true |
author2 |
Ryakin, V.A. Sokolov, A.A. |
author2Str |
Ryakin, V.A. Sokolov, A.A. |
ppnlink |
ELV023913754 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
doi_str |
10.1016/j.ijsolstr.2022.111538 |
up_date |
2024-07-06T22:24:04.208Z |
_version_ |
1803870162606096384 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV057140499</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626044604.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220808s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijsolstr.2022.111538</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001744.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV057140499</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0020-7683(22)00088-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.10</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kazinski, P.O.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Self-interaction of an arbitrary moving dislocation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The action functional for a linear elastic medium with dislocations is given. The equations of motion following from this action reproduce the Peach–Köhler and Lorentzian forces experienced by dislocations. The explicit expressions for singular and finite parts of the self-force acting on a curved dislocation are derived in the framework of linear theory of elasticity of an isotropic medium. The velocity of dislocation is assumed to be arbitrary but less than the shear wave velocity. The slow speed and near-sonic motions of a dislocation are investigated. In the near-sonic limit, the explicit expression for the leading contribution to the self-force is obtained. In the case of slowly moving dislocations, the effective equations of motion derived in the present paper reproduce the known results.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The action functional for a linear elastic medium with dislocations is given. The equations of motion following from this action reproduce the Peach–Köhler and Lorentzian forces experienced by dislocations. The explicit expressions for singular and finite parts of the self-force acting on a curved dislocation are derived in the framework of linear theory of elasticity of an isotropic medium. The velocity of dislocation is assumed to be arbitrary but less than the shear wave velocity. The slow speed and near-sonic motions of a dislocation are investigated. In the near-sonic limit, the explicit expression for the leading contribution to the self-force is obtained. In the case of slowly moving dislocations, the effective equations of motion derived in the present paper reproduce the known results.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Dislocation gliding</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Dislocation theory</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Dislocation dynamics</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ryakin, V.A.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sokolov, A.A.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Cooray, M.C. Dilusha ELSEVIER</subfield><subfield code="t">One pot synthesis of poly(5-hydroxyl-1,4-naphthoquinone) stabilized gold nanoparticles using the monomer as the reducing agent for nonenzymatic electrochemical detection of glucose</subfield><subfield code="d">2015</subfield><subfield code="g">New York, NY [u.a.]</subfield><subfield code="w">(DE-627)ELV023913754</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:242</subfield><subfield code="g">year:2022</subfield><subfield code="g">day:1</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ijsolstr.2022.111538</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.10</subfield><subfield code="j">Physikalische Chemie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">242</subfield><subfield code="j">2022</subfield><subfield code="b">1</subfield><subfield code="c">0501</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
score |
7.401602 |