Augmented Graph Neural Network with hierarchical global-based residual connections

Graph Neural Networks (GNNs) are powerful architectures for learning on graphs. They are efficient for predicting nodes, links and graphs properties. Standard GNN variants follow a message passing schema to update nodes representations using information from higher-order neighborhoods iteratively. C...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Rassil, Asmaa [verfasserIn]

Chougrad, Hiba

Zouaki, Hamid

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2022transfer abstract

Schlagwörter:

Graph representation learning

Residual connections

Reversible networks

Graph Neural Networks

Umfang:

18

Übergeordnetes Werk:

Enthalten in: Regulatory design for RES-E support mechanisms: Learning curves, market structure, and burden-sharing - 2012, the official journal of the International Neural Network Society, European Neural Network Society and Japanese Neural Network Society, Amsterdam

Übergeordnetes Werk:

volume:150 ; year:2022 ; pages:149-166 ; extent:18

Links:

Volltext

DOI / URN:

10.1016/j.neunet.2022.03.008

Katalog-ID:

ELV057342938

Nicht das Richtige dabei?

Schreiben Sie uns!