Achieving ultralow lattice thermal conductivity and improved thermoelectric performance in BiSe by doping
Low lattice thermal conductivity materials are desirable for several technologically important applications such as thermoelectrics. In this work, we engineer the thermal conductivity of BiSe, a layer-structured compound exhibiting intrinsically low lattice thermal conductivity. Remarkably, we show...
Ausführliche Beschreibung
Autor*in: |
Liang, Xin [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
8 |
---|
Übergeordnetes Werk: |
Enthalten in: Improved differential evolution for RSSD-based localization in Gaussian mixture noise - Zhang, Yuanyuan ELSEVIER, 2023, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:42 ; year:2022 ; number:9 ; pages:3905-3912 ; extent:8 |
Links: |
---|
DOI / URN: |
10.1016/j.jeurceramsoc.2022.03.035 |
---|
Katalog-ID: |
ELV057363552 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV057363552 | ||
003 | DE-627 | ||
005 | 20230626044951.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220808s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jeurceramsoc.2022.03.035 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001760.pica |
035 | |a (DE-627)ELV057363552 | ||
035 | |a (ELSEVIER)S0955-2219(22)00215-1 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q VZ |
084 | |a 54.00 |2 bkl | ||
100 | 1 | |a Liang, Xin |e verfasserin |4 aut | |
245 | 1 | 0 | |a Achieving ultralow lattice thermal conductivity and improved thermoelectric performance in BiSe by doping |
264 | 1 | |c 2022transfer abstract | |
300 | |a 8 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Low lattice thermal conductivity materials are desirable for several technologically important applications such as thermoelectrics. In this work, we engineer the thermal conductivity of BiSe, a layer-structured compound exhibiting intrinsically low lattice thermal conductivity. Remarkably, we show that simply by doping, we achieve an ultralow room temperature lattice thermal conductivity of ~ 0.23 W m−1 K−1. The bipolar process is also substantially suppressed. Together with the enhanced Seebeck coefficient, thermoelectric performance is considerably improved reaching a power factor of ~12 μW cm−1 K−2 and peak zT of ~ 0.69 at 570 K in (Bi0.7Sb0.3)(Se0.95Te0.05). | ||
520 | |a Low lattice thermal conductivity materials are desirable for several technologically important applications such as thermoelectrics. In this work, we engineer the thermal conductivity of BiSe, a layer-structured compound exhibiting intrinsically low lattice thermal conductivity. Remarkably, we show that simply by doping, we achieve an ultralow room temperature lattice thermal conductivity of ~ 0.23 W m−1 K−1. The bipolar process is also substantially suppressed. Together with the enhanced Seebeck coefficient, thermoelectric performance is considerably improved reaching a power factor of ~12 μW cm−1 K−2 and peak zT of ~ 0.69 at 570 K in (Bi0.7Sb0.3)(Se0.95Te0.05). | ||
650 | 7 | |a BiSe |2 Elsevier | |
650 | 7 | |a Phonons |2 Elsevier | |
650 | 7 | |a Doping |2 Elsevier | |
650 | 7 | |a Thermal conductivity |2 Elsevier | |
650 | 7 | |a Thermoelectrics |2 Elsevier | |
700 | 1 | |a Wang, Hemeng |4 oth | |
700 | 1 | |a Ren, Jinlong |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Zhang, Yuanyuan ELSEVIER |t Improved differential evolution for RSSD-based localization in Gaussian mixture noise |d 2023 |g Amsterdam [u.a.] |w (DE-627)ELV009961755 |
773 | 1 | 8 | |g volume:42 |g year:2022 |g number:9 |g pages:3905-3912 |g extent:8 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.jeurceramsoc.2022.03.035 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
936 | b | k | |a 54.00 |j Informatik: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 42 |j 2022 |e 9 |h 3905-3912 |g 8 |
author_variant |
x l xl |
---|---|
matchkey_str |
liangxinwanghemengrenjinlong:2022----:civnutaoltiehracnutvtadmrvdhrolcrc |
hierarchy_sort_str |
2022transfer abstract |
bklnumber |
54.00 |
publishDate |
2022 |
allfields |
10.1016/j.jeurceramsoc.2022.03.035 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001760.pica (DE-627)ELV057363552 (ELSEVIER)S0955-2219(22)00215-1 DE-627 ger DE-627 rakwb eng 004 VZ 54.00 bkl Liang, Xin verfasserin aut Achieving ultralow lattice thermal conductivity and improved thermoelectric performance in BiSe by doping 2022transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Low lattice thermal conductivity materials are desirable for several technologically important applications such as thermoelectrics. In this work, we engineer the thermal conductivity of BiSe, a layer-structured compound exhibiting intrinsically low lattice thermal conductivity. Remarkably, we show that simply by doping, we achieve an ultralow room temperature lattice thermal conductivity of ~ 0.23 W m−1 K−1. The bipolar process is also substantially suppressed. Together with the enhanced Seebeck coefficient, thermoelectric performance is considerably improved reaching a power factor of ~12 μW cm−1 K−2 and peak zT of ~ 0.69 at 570 K in (Bi0.7Sb0.3)(Se0.95Te0.05). Low lattice thermal conductivity materials are desirable for several technologically important applications such as thermoelectrics. In this work, we engineer the thermal conductivity of BiSe, a layer-structured compound exhibiting intrinsically low lattice thermal conductivity. Remarkably, we show that simply by doping, we achieve an ultralow room temperature lattice thermal conductivity of ~ 0.23 W m−1 K−1. The bipolar process is also substantially suppressed. Together with the enhanced Seebeck coefficient, thermoelectric performance is considerably improved reaching a power factor of ~12 μW cm−1 K−2 and peak zT of ~ 0.69 at 570 K in (Bi0.7Sb0.3)(Se0.95Te0.05). BiSe Elsevier Phonons Elsevier Doping Elsevier Thermal conductivity Elsevier Thermoelectrics Elsevier Wang, Hemeng oth Ren, Jinlong oth Enthalten in Elsevier Science Zhang, Yuanyuan ELSEVIER Improved differential evolution for RSSD-based localization in Gaussian mixture noise 2023 Amsterdam [u.a.] (DE-627)ELV009961755 volume:42 year:2022 number:9 pages:3905-3912 extent:8 https://doi.org/10.1016/j.jeurceramsoc.2022.03.035 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 54.00 Informatik: Allgemeines VZ AR 42 2022 9 3905-3912 8 |
spelling |
10.1016/j.jeurceramsoc.2022.03.035 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001760.pica (DE-627)ELV057363552 (ELSEVIER)S0955-2219(22)00215-1 DE-627 ger DE-627 rakwb eng 004 VZ 54.00 bkl Liang, Xin verfasserin aut Achieving ultralow lattice thermal conductivity and improved thermoelectric performance in BiSe by doping 2022transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Low lattice thermal conductivity materials are desirable for several technologically important applications such as thermoelectrics. In this work, we engineer the thermal conductivity of BiSe, a layer-structured compound exhibiting intrinsically low lattice thermal conductivity. Remarkably, we show that simply by doping, we achieve an ultralow room temperature lattice thermal conductivity of ~ 0.23 W m−1 K−1. The bipolar process is also substantially suppressed. Together with the enhanced Seebeck coefficient, thermoelectric performance is considerably improved reaching a power factor of ~12 μW cm−1 K−2 and peak zT of ~ 0.69 at 570 K in (Bi0.7Sb0.3)(Se0.95Te0.05). Low lattice thermal conductivity materials are desirable for several technologically important applications such as thermoelectrics. In this work, we engineer the thermal conductivity of BiSe, a layer-structured compound exhibiting intrinsically low lattice thermal conductivity. Remarkably, we show that simply by doping, we achieve an ultralow room temperature lattice thermal conductivity of ~ 0.23 W m−1 K−1. The bipolar process is also substantially suppressed. Together with the enhanced Seebeck coefficient, thermoelectric performance is considerably improved reaching a power factor of ~12 μW cm−1 K−2 and peak zT of ~ 0.69 at 570 K in (Bi0.7Sb0.3)(Se0.95Te0.05). BiSe Elsevier Phonons Elsevier Doping Elsevier Thermal conductivity Elsevier Thermoelectrics Elsevier Wang, Hemeng oth Ren, Jinlong oth Enthalten in Elsevier Science Zhang, Yuanyuan ELSEVIER Improved differential evolution for RSSD-based localization in Gaussian mixture noise 2023 Amsterdam [u.a.] (DE-627)ELV009961755 volume:42 year:2022 number:9 pages:3905-3912 extent:8 https://doi.org/10.1016/j.jeurceramsoc.2022.03.035 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 54.00 Informatik: Allgemeines VZ AR 42 2022 9 3905-3912 8 |
allfields_unstemmed |
10.1016/j.jeurceramsoc.2022.03.035 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001760.pica (DE-627)ELV057363552 (ELSEVIER)S0955-2219(22)00215-1 DE-627 ger DE-627 rakwb eng 004 VZ 54.00 bkl Liang, Xin verfasserin aut Achieving ultralow lattice thermal conductivity and improved thermoelectric performance in BiSe by doping 2022transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Low lattice thermal conductivity materials are desirable for several technologically important applications such as thermoelectrics. In this work, we engineer the thermal conductivity of BiSe, a layer-structured compound exhibiting intrinsically low lattice thermal conductivity. Remarkably, we show that simply by doping, we achieve an ultralow room temperature lattice thermal conductivity of ~ 0.23 W m−1 K−1. The bipolar process is also substantially suppressed. Together with the enhanced Seebeck coefficient, thermoelectric performance is considerably improved reaching a power factor of ~12 μW cm−1 K−2 and peak zT of ~ 0.69 at 570 K in (Bi0.7Sb0.3)(Se0.95Te0.05). Low lattice thermal conductivity materials are desirable for several technologically important applications such as thermoelectrics. In this work, we engineer the thermal conductivity of BiSe, a layer-structured compound exhibiting intrinsically low lattice thermal conductivity. Remarkably, we show that simply by doping, we achieve an ultralow room temperature lattice thermal conductivity of ~ 0.23 W m−1 K−1. The bipolar process is also substantially suppressed. Together with the enhanced Seebeck coefficient, thermoelectric performance is considerably improved reaching a power factor of ~12 μW cm−1 K−2 and peak zT of ~ 0.69 at 570 K in (Bi0.7Sb0.3)(Se0.95Te0.05). BiSe Elsevier Phonons Elsevier Doping Elsevier Thermal conductivity Elsevier Thermoelectrics Elsevier Wang, Hemeng oth Ren, Jinlong oth Enthalten in Elsevier Science Zhang, Yuanyuan ELSEVIER Improved differential evolution for RSSD-based localization in Gaussian mixture noise 2023 Amsterdam [u.a.] (DE-627)ELV009961755 volume:42 year:2022 number:9 pages:3905-3912 extent:8 https://doi.org/10.1016/j.jeurceramsoc.2022.03.035 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 54.00 Informatik: Allgemeines VZ AR 42 2022 9 3905-3912 8 |
allfieldsGer |
10.1016/j.jeurceramsoc.2022.03.035 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001760.pica (DE-627)ELV057363552 (ELSEVIER)S0955-2219(22)00215-1 DE-627 ger DE-627 rakwb eng 004 VZ 54.00 bkl Liang, Xin verfasserin aut Achieving ultralow lattice thermal conductivity and improved thermoelectric performance in BiSe by doping 2022transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Low lattice thermal conductivity materials are desirable for several technologically important applications such as thermoelectrics. In this work, we engineer the thermal conductivity of BiSe, a layer-structured compound exhibiting intrinsically low lattice thermal conductivity. Remarkably, we show that simply by doping, we achieve an ultralow room temperature lattice thermal conductivity of ~ 0.23 W m−1 K−1. The bipolar process is also substantially suppressed. Together with the enhanced Seebeck coefficient, thermoelectric performance is considerably improved reaching a power factor of ~12 μW cm−1 K−2 and peak zT of ~ 0.69 at 570 K in (Bi0.7Sb0.3)(Se0.95Te0.05). Low lattice thermal conductivity materials are desirable for several technologically important applications such as thermoelectrics. In this work, we engineer the thermal conductivity of BiSe, a layer-structured compound exhibiting intrinsically low lattice thermal conductivity. Remarkably, we show that simply by doping, we achieve an ultralow room temperature lattice thermal conductivity of ~ 0.23 W m−1 K−1. The bipolar process is also substantially suppressed. Together with the enhanced Seebeck coefficient, thermoelectric performance is considerably improved reaching a power factor of ~12 μW cm−1 K−2 and peak zT of ~ 0.69 at 570 K in (Bi0.7Sb0.3)(Se0.95Te0.05). BiSe Elsevier Phonons Elsevier Doping Elsevier Thermal conductivity Elsevier Thermoelectrics Elsevier Wang, Hemeng oth Ren, Jinlong oth Enthalten in Elsevier Science Zhang, Yuanyuan ELSEVIER Improved differential evolution for RSSD-based localization in Gaussian mixture noise 2023 Amsterdam [u.a.] (DE-627)ELV009961755 volume:42 year:2022 number:9 pages:3905-3912 extent:8 https://doi.org/10.1016/j.jeurceramsoc.2022.03.035 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 54.00 Informatik: Allgemeines VZ AR 42 2022 9 3905-3912 8 |
allfieldsSound |
10.1016/j.jeurceramsoc.2022.03.035 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001760.pica (DE-627)ELV057363552 (ELSEVIER)S0955-2219(22)00215-1 DE-627 ger DE-627 rakwb eng 004 VZ 54.00 bkl Liang, Xin verfasserin aut Achieving ultralow lattice thermal conductivity and improved thermoelectric performance in BiSe by doping 2022transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Low lattice thermal conductivity materials are desirable for several technologically important applications such as thermoelectrics. In this work, we engineer the thermal conductivity of BiSe, a layer-structured compound exhibiting intrinsically low lattice thermal conductivity. Remarkably, we show that simply by doping, we achieve an ultralow room temperature lattice thermal conductivity of ~ 0.23 W m−1 K−1. The bipolar process is also substantially suppressed. Together with the enhanced Seebeck coefficient, thermoelectric performance is considerably improved reaching a power factor of ~12 μW cm−1 K−2 and peak zT of ~ 0.69 at 570 K in (Bi0.7Sb0.3)(Se0.95Te0.05). Low lattice thermal conductivity materials are desirable for several technologically important applications such as thermoelectrics. In this work, we engineer the thermal conductivity of BiSe, a layer-structured compound exhibiting intrinsically low lattice thermal conductivity. Remarkably, we show that simply by doping, we achieve an ultralow room temperature lattice thermal conductivity of ~ 0.23 W m−1 K−1. The bipolar process is also substantially suppressed. Together with the enhanced Seebeck coefficient, thermoelectric performance is considerably improved reaching a power factor of ~12 μW cm−1 K−2 and peak zT of ~ 0.69 at 570 K in (Bi0.7Sb0.3)(Se0.95Te0.05). BiSe Elsevier Phonons Elsevier Doping Elsevier Thermal conductivity Elsevier Thermoelectrics Elsevier Wang, Hemeng oth Ren, Jinlong oth Enthalten in Elsevier Science Zhang, Yuanyuan ELSEVIER Improved differential evolution for RSSD-based localization in Gaussian mixture noise 2023 Amsterdam [u.a.] (DE-627)ELV009961755 volume:42 year:2022 number:9 pages:3905-3912 extent:8 https://doi.org/10.1016/j.jeurceramsoc.2022.03.035 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 54.00 Informatik: Allgemeines VZ AR 42 2022 9 3905-3912 8 |
language |
English |
source |
Enthalten in Improved differential evolution for RSSD-based localization in Gaussian mixture noise Amsterdam [u.a.] volume:42 year:2022 number:9 pages:3905-3912 extent:8 |
sourceStr |
Enthalten in Improved differential evolution for RSSD-based localization in Gaussian mixture noise Amsterdam [u.a.] volume:42 year:2022 number:9 pages:3905-3912 extent:8 |
format_phy_str_mv |
Article |
bklname |
Informatik: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
BiSe Phonons Doping Thermal conductivity Thermoelectrics |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Improved differential evolution for RSSD-based localization in Gaussian mixture noise |
authorswithroles_txt_mv |
Liang, Xin @@aut@@ Wang, Hemeng @@oth@@ Ren, Jinlong @@oth@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
ELV009961755 |
dewey-sort |
14 |
id |
ELV057363552 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV057363552</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626044951.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220808s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jeurceramsoc.2022.03.035</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001760.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV057363552</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0955-2219(22)00215-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liang, Xin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Achieving ultralow lattice thermal conductivity and improved thermoelectric performance in BiSe by doping</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">8</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Low lattice thermal conductivity materials are desirable for several technologically important applications such as thermoelectrics. In this work, we engineer the thermal conductivity of BiSe, a layer-structured compound exhibiting intrinsically low lattice thermal conductivity. Remarkably, we show that simply by doping, we achieve an ultralow room temperature lattice thermal conductivity of ~ 0.23 W m−1 K−1. The bipolar process is also substantially suppressed. Together with the enhanced Seebeck coefficient, thermoelectric performance is considerably improved reaching a power factor of ~12 μW cm−1 K−2 and peak zT of ~ 0.69 at 570 K in (Bi0.7Sb0.3)(Se0.95Te0.05).</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Low lattice thermal conductivity materials are desirable for several technologically important applications such as thermoelectrics. In this work, we engineer the thermal conductivity of BiSe, a layer-structured compound exhibiting intrinsically low lattice thermal conductivity. Remarkably, we show that simply by doping, we achieve an ultralow room temperature lattice thermal conductivity of ~ 0.23 W m−1 K−1. The bipolar process is also substantially suppressed. Together with the enhanced Seebeck coefficient, thermoelectric performance is considerably improved reaching a power factor of ~12 μW cm−1 K−2 and peak zT of ~ 0.69 at 570 K in (Bi0.7Sb0.3)(Se0.95Te0.05).</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">BiSe</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Phonons</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Doping</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Thermal conductivity</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Thermoelectrics</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Hemeng</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ren, Jinlong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Zhang, Yuanyuan ELSEVIER</subfield><subfield code="t">Improved differential evolution for RSSD-based localization in Gaussian mixture noise</subfield><subfield code="d">2023</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV009961755</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:42</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:9</subfield><subfield code="g">pages:3905-3912</subfield><subfield code="g">extent:8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jeurceramsoc.2022.03.035</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.00</subfield><subfield code="j">Informatik: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">42</subfield><subfield code="j">2022</subfield><subfield code="e">9</subfield><subfield code="h">3905-3912</subfield><subfield code="g">8</subfield></datafield></record></collection>
|
author |
Liang, Xin |
spellingShingle |
Liang, Xin ddc 004 bkl 54.00 Elsevier BiSe Elsevier Phonons Elsevier Doping Elsevier Thermal conductivity Elsevier Thermoelectrics Achieving ultralow lattice thermal conductivity and improved thermoelectric performance in BiSe by doping |
authorStr |
Liang, Xin |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV009961755 |
format |
electronic Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
004 VZ 54.00 bkl Achieving ultralow lattice thermal conductivity and improved thermoelectric performance in BiSe by doping BiSe Elsevier Phonons Elsevier Doping Elsevier Thermal conductivity Elsevier Thermoelectrics Elsevier |
topic |
ddc 004 bkl 54.00 Elsevier BiSe Elsevier Phonons Elsevier Doping Elsevier Thermal conductivity Elsevier Thermoelectrics |
topic_unstemmed |
ddc 004 bkl 54.00 Elsevier BiSe Elsevier Phonons Elsevier Doping Elsevier Thermal conductivity Elsevier Thermoelectrics |
topic_browse |
ddc 004 bkl 54.00 Elsevier BiSe Elsevier Phonons Elsevier Doping Elsevier Thermal conductivity Elsevier Thermoelectrics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
h w hw j r jr |
hierarchy_parent_title |
Improved differential evolution for RSSD-based localization in Gaussian mixture noise |
hierarchy_parent_id |
ELV009961755 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
Improved differential evolution for RSSD-based localization in Gaussian mixture noise |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV009961755 |
title |
Achieving ultralow lattice thermal conductivity and improved thermoelectric performance in BiSe by doping |
ctrlnum |
(DE-627)ELV057363552 (ELSEVIER)S0955-2219(22)00215-1 |
title_full |
Achieving ultralow lattice thermal conductivity and improved thermoelectric performance in BiSe by doping |
author_sort |
Liang, Xin |
journal |
Improved differential evolution for RSSD-based localization in Gaussian mixture noise |
journalStr |
Improved differential evolution for RSSD-based localization in Gaussian mixture noise |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
zzz |
container_start_page |
3905 |
author_browse |
Liang, Xin |
container_volume |
42 |
physical |
8 |
class |
004 VZ 54.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Liang, Xin |
doi_str_mv |
10.1016/j.jeurceramsoc.2022.03.035 |
dewey-full |
004 |
title_sort |
achieving ultralow lattice thermal conductivity and improved thermoelectric performance in bise by doping |
title_auth |
Achieving ultralow lattice thermal conductivity and improved thermoelectric performance in BiSe by doping |
abstract |
Low lattice thermal conductivity materials are desirable for several technologically important applications such as thermoelectrics. In this work, we engineer the thermal conductivity of BiSe, a layer-structured compound exhibiting intrinsically low lattice thermal conductivity. Remarkably, we show that simply by doping, we achieve an ultralow room temperature lattice thermal conductivity of ~ 0.23 W m−1 K−1. The bipolar process is also substantially suppressed. Together with the enhanced Seebeck coefficient, thermoelectric performance is considerably improved reaching a power factor of ~12 μW cm−1 K−2 and peak zT of ~ 0.69 at 570 K in (Bi0.7Sb0.3)(Se0.95Te0.05). |
abstractGer |
Low lattice thermal conductivity materials are desirable for several technologically important applications such as thermoelectrics. In this work, we engineer the thermal conductivity of BiSe, a layer-structured compound exhibiting intrinsically low lattice thermal conductivity. Remarkably, we show that simply by doping, we achieve an ultralow room temperature lattice thermal conductivity of ~ 0.23 W m−1 K−1. The bipolar process is also substantially suppressed. Together with the enhanced Seebeck coefficient, thermoelectric performance is considerably improved reaching a power factor of ~12 μW cm−1 K−2 and peak zT of ~ 0.69 at 570 K in (Bi0.7Sb0.3)(Se0.95Te0.05). |
abstract_unstemmed |
Low lattice thermal conductivity materials are desirable for several technologically important applications such as thermoelectrics. In this work, we engineer the thermal conductivity of BiSe, a layer-structured compound exhibiting intrinsically low lattice thermal conductivity. Remarkably, we show that simply by doping, we achieve an ultralow room temperature lattice thermal conductivity of ~ 0.23 W m−1 K−1. The bipolar process is also substantially suppressed. Together with the enhanced Seebeck coefficient, thermoelectric performance is considerably improved reaching a power factor of ~12 μW cm−1 K−2 and peak zT of ~ 0.69 at 570 K in (Bi0.7Sb0.3)(Se0.95Te0.05). |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U |
container_issue |
9 |
title_short |
Achieving ultralow lattice thermal conductivity and improved thermoelectric performance in BiSe by doping |
url |
https://doi.org/10.1016/j.jeurceramsoc.2022.03.035 |
remote_bool |
true |
author2 |
Wang, Hemeng Ren, Jinlong |
author2Str |
Wang, Hemeng Ren, Jinlong |
ppnlink |
ELV009961755 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
doi_str |
10.1016/j.jeurceramsoc.2022.03.035 |
up_date |
2024-07-06T23:01:09.485Z |
_version_ |
1803872495979200512 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV057363552</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626044951.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220808s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jeurceramsoc.2022.03.035</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001760.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV057363552</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0955-2219(22)00215-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liang, Xin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Achieving ultralow lattice thermal conductivity and improved thermoelectric performance in BiSe by doping</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">8</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Low lattice thermal conductivity materials are desirable for several technologically important applications such as thermoelectrics. In this work, we engineer the thermal conductivity of BiSe, a layer-structured compound exhibiting intrinsically low lattice thermal conductivity. Remarkably, we show that simply by doping, we achieve an ultralow room temperature lattice thermal conductivity of ~ 0.23 W m−1 K−1. The bipolar process is also substantially suppressed. Together with the enhanced Seebeck coefficient, thermoelectric performance is considerably improved reaching a power factor of ~12 μW cm−1 K−2 and peak zT of ~ 0.69 at 570 K in (Bi0.7Sb0.3)(Se0.95Te0.05).</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Low lattice thermal conductivity materials are desirable for several technologically important applications such as thermoelectrics. In this work, we engineer the thermal conductivity of BiSe, a layer-structured compound exhibiting intrinsically low lattice thermal conductivity. Remarkably, we show that simply by doping, we achieve an ultralow room temperature lattice thermal conductivity of ~ 0.23 W m−1 K−1. The bipolar process is also substantially suppressed. Together with the enhanced Seebeck coefficient, thermoelectric performance is considerably improved reaching a power factor of ~12 μW cm−1 K−2 and peak zT of ~ 0.69 at 570 K in (Bi0.7Sb0.3)(Se0.95Te0.05).</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">BiSe</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Phonons</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Doping</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Thermal conductivity</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Thermoelectrics</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Hemeng</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ren, Jinlong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Zhang, Yuanyuan ELSEVIER</subfield><subfield code="t">Improved differential evolution for RSSD-based localization in Gaussian mixture noise</subfield><subfield code="d">2023</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV009961755</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:42</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:9</subfield><subfield code="g">pages:3905-3912</subfield><subfield code="g">extent:8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jeurceramsoc.2022.03.035</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.00</subfield><subfield code="j">Informatik: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">42</subfield><subfield code="j">2022</subfield><subfield code="e">9</subfield><subfield code="h">3905-3912</subfield><subfield code="g">8</subfield></datafield></record></collection>
|
score |
7.402237 |