EBC-SURE (exhaled breath condensate- scanning using rapid electro analytics): A non-faradaic and non-invasive electrochemical assay to screen for pro-inflammatory biomarkers in human breath condensate
The innovation of this work lies in the trace detection of inflammatory biomarkers (IL-6, hs-CRP) in human exhaled breath condensate on the developed EBC-SURE platform as a point-of-care aid for respiratory disorder diagnosis. The unique design of the EBC-SURE leverages non-faradaic electrochemical...
Ausführliche Beschreibung
Autor*in: |
Bhide, Ashlesha [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022transfer abstract |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Vertical differentiation via multi-tier geographical indications and the consumer perception of quality: The case of Chianti wines - Costanigro, Marco ELSEVIER, 2019, the principal international journal devoted to research, design development and application of biosensors and bioelectronics, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:206 ; year:2022 ; day:15 ; month:06 ; pages:0 |
Links: |
---|
DOI / URN: |
10.1016/j.bios.2022.114117 |
---|
Katalog-ID: |
ELV057363684 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV057363684 | ||
003 | DE-627 | ||
005 | 20230626044951.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220808s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.bios.2022.114117 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001731.pica |
035 | |a (DE-627)ELV057363684 | ||
035 | |a (ELSEVIER)S0956-5663(22)00157-9 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 630 |a 640 |q VZ |
084 | |a 49.00 |2 bkl | ||
100 | 1 | |a Bhide, Ashlesha |e verfasserin |4 aut | |
245 | 1 | 0 | |a EBC-SURE (exhaled breath condensate- scanning using rapid electro analytics): A non-faradaic and non-invasive electrochemical assay to screen for pro-inflammatory biomarkers in human breath condensate |
264 | 1 | |c 2022transfer abstract | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a The innovation of this work lies in the trace detection of inflammatory biomarkers (IL-6, hs-CRP) in human exhaled breath condensate on the developed EBC-SURE platform as a point-of-care aid for respiratory disorder diagnosis. The unique design of the EBC-SURE leverages non-faradaic electrochemical impedance spectroscopy to capture target-specific biomolecular interactions for highly sensitive biomarker detection. For sensor calibration, EBC-SURE's performance is assessed to measure the response of the sensor to a known concentration by spike and recovery analysis with a recovery error of <20% and an extended dynamic range over 3-log orders. The lowest detection limits for IL-6 and hs-CRP detection in EBC were found to be 3.2 pg/mL and 4 pg/mL respectively. The intra-assay and inter-assay efficacy of EBC-SURE for its usage as a diagnostic device was established through repeatability and reproducibility (over 48 h s) performance testing. The percentage variations (<20%) met the Clinical and Laboratory Standards Institute standards (CLSI) indicating a highly stable performance for robust biomarker detection. EBC-SURE generated highly selective IL-6 and hs-CRP responses in the presence of other non-specific cytokines. Statistical validation methods- Correlation and Bland Altman analysis established the one-to-one agreement between EBC-SURE and the reference method. Correlation analysis generated a Pearson's R value of 0.99 for IL-6 and hs-CRP. Bland-Altman analysis indicated a good agreement between both the methods with all data points confined within the ±2SD limits. We have demonstrated EBC-SURE's ability in detecting inflammatory biomarkers in human breath condensate towards developing a non-invasive technology that can quantify biomarker levels associated with healthy and acute inflammatory conditions. | ||
520 | |a The innovation of this work lies in the trace detection of inflammatory biomarkers (IL-6, hs-CRP) in human exhaled breath condensate on the developed EBC-SURE platform as a point-of-care aid for respiratory disorder diagnosis. The unique design of the EBC-SURE leverages non-faradaic electrochemical impedance spectroscopy to capture target-specific biomolecular interactions for highly sensitive biomarker detection. For sensor calibration, EBC-SURE's performance is assessed to measure the response of the sensor to a known concentration by spike and recovery analysis with a recovery error of <20% and an extended dynamic range over 3-log orders. The lowest detection limits for IL-6 and hs-CRP detection in EBC were found to be 3.2 pg/mL and 4 pg/mL respectively. The intra-assay and inter-assay efficacy of EBC-SURE for its usage as a diagnostic device was established through repeatability and reproducibility (over 48 h s) performance testing. The percentage variations (<20%) met the Clinical and Laboratory Standards Institute standards (CLSI) indicating a highly stable performance for robust biomarker detection. EBC-SURE generated highly selective IL-6 and hs-CRP responses in the presence of other non-specific cytokines. Statistical validation methods- Correlation and Bland Altman analysis established the one-to-one agreement between EBC-SURE and the reference method. Correlation analysis generated a Pearson's R value of 0.99 for IL-6 and hs-CRP. Bland-Altman analysis indicated a good agreement between both the methods with all data points confined within the ±2SD limits. We have demonstrated EBC-SURE's ability in detecting inflammatory biomarkers in human breath condensate towards developing a non-invasive technology that can quantify biomarker levels associated with healthy and acute inflammatory conditions. | ||
650 | 7 | |a Non-invasive |2 Elsevier | |
650 | 7 | |a Respiratory disorder |2 Elsevier | |
650 | 7 | |a Exhaled breath condensate |2 Elsevier | |
650 | 7 | |a Inflammatory biomarker |2 Elsevier | |
650 | 7 | |a Electrochemical impedance spectroscopy |2 Elsevier | |
700 | 1 | |a Pali, Madhavi |4 oth | |
700 | 1 | |a Muthukumar, Sriram |4 oth | |
700 | 1 | |a Prasad, Shalini |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Costanigro, Marco ELSEVIER |t Vertical differentiation via multi-tier geographical indications and the consumer perception of quality: The case of Chianti wines |d 2019 |d the principal international journal devoted to research, design development and application of biosensors and bioelectronics |g Amsterdam [u.a.] |w (DE-627)ELV001931067 |
773 | 1 | 8 | |g volume:206 |g year:2022 |g day:15 |g month:06 |g pages:0 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.bios.2022.114117 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
936 | b | k | |a 49.00 |j Hauswirtschaft: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 206 |j 2022 |b 15 |c 0615 |h 0 |
author_variant |
a b ab |
---|---|
matchkey_str |
bhideashleshapalimadhavimuthukumarsriram:2022----:bsrehldrahodnaecnigsnrpdlcraayisnnaaacnnnnaielcrceiaasyocenopon |
hierarchy_sort_str |
2022transfer abstract |
bklnumber |
49.00 |
publishDate |
2022 |
allfields |
10.1016/j.bios.2022.114117 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001731.pica (DE-627)ELV057363684 (ELSEVIER)S0956-5663(22)00157-9 DE-627 ger DE-627 rakwb eng 630 640 VZ 49.00 bkl Bhide, Ashlesha verfasserin aut EBC-SURE (exhaled breath condensate- scanning using rapid electro analytics): A non-faradaic and non-invasive electrochemical assay to screen for pro-inflammatory biomarkers in human breath condensate 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The innovation of this work lies in the trace detection of inflammatory biomarkers (IL-6, hs-CRP) in human exhaled breath condensate on the developed EBC-SURE platform as a point-of-care aid for respiratory disorder diagnosis. The unique design of the EBC-SURE leverages non-faradaic electrochemical impedance spectroscopy to capture target-specific biomolecular interactions for highly sensitive biomarker detection. For sensor calibration, EBC-SURE's performance is assessed to measure the response of the sensor to a known concentration by spike and recovery analysis with a recovery error of <20% and an extended dynamic range over 3-log orders. The lowest detection limits for IL-6 and hs-CRP detection in EBC were found to be 3.2 pg/mL and 4 pg/mL respectively. The intra-assay and inter-assay efficacy of EBC-SURE for its usage as a diagnostic device was established through repeatability and reproducibility (over 48 h s) performance testing. The percentage variations (<20%) met the Clinical and Laboratory Standards Institute standards (CLSI) indicating a highly stable performance for robust biomarker detection. EBC-SURE generated highly selective IL-6 and hs-CRP responses in the presence of other non-specific cytokines. Statistical validation methods- Correlation and Bland Altman analysis established the one-to-one agreement between EBC-SURE and the reference method. Correlation analysis generated a Pearson's R value of 0.99 for IL-6 and hs-CRP. Bland-Altman analysis indicated a good agreement between both the methods with all data points confined within the ±2SD limits. We have demonstrated EBC-SURE's ability in detecting inflammatory biomarkers in human breath condensate towards developing a non-invasive technology that can quantify biomarker levels associated with healthy and acute inflammatory conditions. The innovation of this work lies in the trace detection of inflammatory biomarkers (IL-6, hs-CRP) in human exhaled breath condensate on the developed EBC-SURE platform as a point-of-care aid for respiratory disorder diagnosis. The unique design of the EBC-SURE leverages non-faradaic electrochemical impedance spectroscopy to capture target-specific biomolecular interactions for highly sensitive biomarker detection. For sensor calibration, EBC-SURE's performance is assessed to measure the response of the sensor to a known concentration by spike and recovery analysis with a recovery error of <20% and an extended dynamic range over 3-log orders. The lowest detection limits for IL-6 and hs-CRP detection in EBC were found to be 3.2 pg/mL and 4 pg/mL respectively. The intra-assay and inter-assay efficacy of EBC-SURE for its usage as a diagnostic device was established through repeatability and reproducibility (over 48 h s) performance testing. The percentage variations (<20%) met the Clinical and Laboratory Standards Institute standards (CLSI) indicating a highly stable performance for robust biomarker detection. EBC-SURE generated highly selective IL-6 and hs-CRP responses in the presence of other non-specific cytokines. Statistical validation methods- Correlation and Bland Altman analysis established the one-to-one agreement between EBC-SURE and the reference method. Correlation analysis generated a Pearson's R value of 0.99 for IL-6 and hs-CRP. Bland-Altman analysis indicated a good agreement between both the methods with all data points confined within the ±2SD limits. We have demonstrated EBC-SURE's ability in detecting inflammatory biomarkers in human breath condensate towards developing a non-invasive technology that can quantify biomarker levels associated with healthy and acute inflammatory conditions. Non-invasive Elsevier Respiratory disorder Elsevier Exhaled breath condensate Elsevier Inflammatory biomarker Elsevier Electrochemical impedance spectroscopy Elsevier Pali, Madhavi oth Muthukumar, Sriram oth Prasad, Shalini oth Enthalten in Elsevier Science Costanigro, Marco ELSEVIER Vertical differentiation via multi-tier geographical indications and the consumer perception of quality: The case of Chianti wines 2019 the principal international journal devoted to research, design development and application of biosensors and bioelectronics Amsterdam [u.a.] (DE-627)ELV001931067 volume:206 year:2022 day:15 month:06 pages:0 https://doi.org/10.1016/j.bios.2022.114117 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 49.00 Hauswirtschaft: Allgemeines VZ AR 206 2022 15 0615 0 |
spelling |
10.1016/j.bios.2022.114117 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001731.pica (DE-627)ELV057363684 (ELSEVIER)S0956-5663(22)00157-9 DE-627 ger DE-627 rakwb eng 630 640 VZ 49.00 bkl Bhide, Ashlesha verfasserin aut EBC-SURE (exhaled breath condensate- scanning using rapid electro analytics): A non-faradaic and non-invasive electrochemical assay to screen for pro-inflammatory biomarkers in human breath condensate 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The innovation of this work lies in the trace detection of inflammatory biomarkers (IL-6, hs-CRP) in human exhaled breath condensate on the developed EBC-SURE platform as a point-of-care aid for respiratory disorder diagnosis. The unique design of the EBC-SURE leverages non-faradaic electrochemical impedance spectroscopy to capture target-specific biomolecular interactions for highly sensitive biomarker detection. For sensor calibration, EBC-SURE's performance is assessed to measure the response of the sensor to a known concentration by spike and recovery analysis with a recovery error of <20% and an extended dynamic range over 3-log orders. The lowest detection limits for IL-6 and hs-CRP detection in EBC were found to be 3.2 pg/mL and 4 pg/mL respectively. The intra-assay and inter-assay efficacy of EBC-SURE for its usage as a diagnostic device was established through repeatability and reproducibility (over 48 h s) performance testing. The percentage variations (<20%) met the Clinical and Laboratory Standards Institute standards (CLSI) indicating a highly stable performance for robust biomarker detection. EBC-SURE generated highly selective IL-6 and hs-CRP responses in the presence of other non-specific cytokines. Statistical validation methods- Correlation and Bland Altman analysis established the one-to-one agreement between EBC-SURE and the reference method. Correlation analysis generated a Pearson's R value of 0.99 for IL-6 and hs-CRP. Bland-Altman analysis indicated a good agreement between both the methods with all data points confined within the ±2SD limits. We have demonstrated EBC-SURE's ability in detecting inflammatory biomarkers in human breath condensate towards developing a non-invasive technology that can quantify biomarker levels associated with healthy and acute inflammatory conditions. The innovation of this work lies in the trace detection of inflammatory biomarkers (IL-6, hs-CRP) in human exhaled breath condensate on the developed EBC-SURE platform as a point-of-care aid for respiratory disorder diagnosis. The unique design of the EBC-SURE leverages non-faradaic electrochemical impedance spectroscopy to capture target-specific biomolecular interactions for highly sensitive biomarker detection. For sensor calibration, EBC-SURE's performance is assessed to measure the response of the sensor to a known concentration by spike and recovery analysis with a recovery error of <20% and an extended dynamic range over 3-log orders. The lowest detection limits for IL-6 and hs-CRP detection in EBC were found to be 3.2 pg/mL and 4 pg/mL respectively. The intra-assay and inter-assay efficacy of EBC-SURE for its usage as a diagnostic device was established through repeatability and reproducibility (over 48 h s) performance testing. The percentage variations (<20%) met the Clinical and Laboratory Standards Institute standards (CLSI) indicating a highly stable performance for robust biomarker detection. EBC-SURE generated highly selective IL-6 and hs-CRP responses in the presence of other non-specific cytokines. Statistical validation methods- Correlation and Bland Altman analysis established the one-to-one agreement between EBC-SURE and the reference method. Correlation analysis generated a Pearson's R value of 0.99 for IL-6 and hs-CRP. Bland-Altman analysis indicated a good agreement between both the methods with all data points confined within the ±2SD limits. We have demonstrated EBC-SURE's ability in detecting inflammatory biomarkers in human breath condensate towards developing a non-invasive technology that can quantify biomarker levels associated with healthy and acute inflammatory conditions. Non-invasive Elsevier Respiratory disorder Elsevier Exhaled breath condensate Elsevier Inflammatory biomarker Elsevier Electrochemical impedance spectroscopy Elsevier Pali, Madhavi oth Muthukumar, Sriram oth Prasad, Shalini oth Enthalten in Elsevier Science Costanigro, Marco ELSEVIER Vertical differentiation via multi-tier geographical indications and the consumer perception of quality: The case of Chianti wines 2019 the principal international journal devoted to research, design development and application of biosensors and bioelectronics Amsterdam [u.a.] (DE-627)ELV001931067 volume:206 year:2022 day:15 month:06 pages:0 https://doi.org/10.1016/j.bios.2022.114117 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 49.00 Hauswirtschaft: Allgemeines VZ AR 206 2022 15 0615 0 |
allfields_unstemmed |
10.1016/j.bios.2022.114117 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001731.pica (DE-627)ELV057363684 (ELSEVIER)S0956-5663(22)00157-9 DE-627 ger DE-627 rakwb eng 630 640 VZ 49.00 bkl Bhide, Ashlesha verfasserin aut EBC-SURE (exhaled breath condensate- scanning using rapid electro analytics): A non-faradaic and non-invasive electrochemical assay to screen for pro-inflammatory biomarkers in human breath condensate 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The innovation of this work lies in the trace detection of inflammatory biomarkers (IL-6, hs-CRP) in human exhaled breath condensate on the developed EBC-SURE platform as a point-of-care aid for respiratory disorder diagnosis. The unique design of the EBC-SURE leverages non-faradaic electrochemical impedance spectroscopy to capture target-specific biomolecular interactions for highly sensitive biomarker detection. For sensor calibration, EBC-SURE's performance is assessed to measure the response of the sensor to a known concentration by spike and recovery analysis with a recovery error of <20% and an extended dynamic range over 3-log orders. The lowest detection limits for IL-6 and hs-CRP detection in EBC were found to be 3.2 pg/mL and 4 pg/mL respectively. The intra-assay and inter-assay efficacy of EBC-SURE for its usage as a diagnostic device was established through repeatability and reproducibility (over 48 h s) performance testing. The percentage variations (<20%) met the Clinical and Laboratory Standards Institute standards (CLSI) indicating a highly stable performance for robust biomarker detection. EBC-SURE generated highly selective IL-6 and hs-CRP responses in the presence of other non-specific cytokines. Statistical validation methods- Correlation and Bland Altman analysis established the one-to-one agreement between EBC-SURE and the reference method. Correlation analysis generated a Pearson's R value of 0.99 for IL-6 and hs-CRP. Bland-Altman analysis indicated a good agreement between both the methods with all data points confined within the ±2SD limits. We have demonstrated EBC-SURE's ability in detecting inflammatory biomarkers in human breath condensate towards developing a non-invasive technology that can quantify biomarker levels associated with healthy and acute inflammatory conditions. The innovation of this work lies in the trace detection of inflammatory biomarkers (IL-6, hs-CRP) in human exhaled breath condensate on the developed EBC-SURE platform as a point-of-care aid for respiratory disorder diagnosis. The unique design of the EBC-SURE leverages non-faradaic electrochemical impedance spectroscopy to capture target-specific biomolecular interactions for highly sensitive biomarker detection. For sensor calibration, EBC-SURE's performance is assessed to measure the response of the sensor to a known concentration by spike and recovery analysis with a recovery error of <20% and an extended dynamic range over 3-log orders. The lowest detection limits for IL-6 and hs-CRP detection in EBC were found to be 3.2 pg/mL and 4 pg/mL respectively. The intra-assay and inter-assay efficacy of EBC-SURE for its usage as a diagnostic device was established through repeatability and reproducibility (over 48 h s) performance testing. The percentage variations (<20%) met the Clinical and Laboratory Standards Institute standards (CLSI) indicating a highly stable performance for robust biomarker detection. EBC-SURE generated highly selective IL-6 and hs-CRP responses in the presence of other non-specific cytokines. Statistical validation methods- Correlation and Bland Altman analysis established the one-to-one agreement between EBC-SURE and the reference method. Correlation analysis generated a Pearson's R value of 0.99 for IL-6 and hs-CRP. Bland-Altman analysis indicated a good agreement between both the methods with all data points confined within the ±2SD limits. We have demonstrated EBC-SURE's ability in detecting inflammatory biomarkers in human breath condensate towards developing a non-invasive technology that can quantify biomarker levels associated with healthy and acute inflammatory conditions. Non-invasive Elsevier Respiratory disorder Elsevier Exhaled breath condensate Elsevier Inflammatory biomarker Elsevier Electrochemical impedance spectroscopy Elsevier Pali, Madhavi oth Muthukumar, Sriram oth Prasad, Shalini oth Enthalten in Elsevier Science Costanigro, Marco ELSEVIER Vertical differentiation via multi-tier geographical indications and the consumer perception of quality: The case of Chianti wines 2019 the principal international journal devoted to research, design development and application of biosensors and bioelectronics Amsterdam [u.a.] (DE-627)ELV001931067 volume:206 year:2022 day:15 month:06 pages:0 https://doi.org/10.1016/j.bios.2022.114117 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 49.00 Hauswirtschaft: Allgemeines VZ AR 206 2022 15 0615 0 |
allfieldsGer |
10.1016/j.bios.2022.114117 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001731.pica (DE-627)ELV057363684 (ELSEVIER)S0956-5663(22)00157-9 DE-627 ger DE-627 rakwb eng 630 640 VZ 49.00 bkl Bhide, Ashlesha verfasserin aut EBC-SURE (exhaled breath condensate- scanning using rapid electro analytics): A non-faradaic and non-invasive electrochemical assay to screen for pro-inflammatory biomarkers in human breath condensate 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The innovation of this work lies in the trace detection of inflammatory biomarkers (IL-6, hs-CRP) in human exhaled breath condensate on the developed EBC-SURE platform as a point-of-care aid for respiratory disorder diagnosis. The unique design of the EBC-SURE leverages non-faradaic electrochemical impedance spectroscopy to capture target-specific biomolecular interactions for highly sensitive biomarker detection. For sensor calibration, EBC-SURE's performance is assessed to measure the response of the sensor to a known concentration by spike and recovery analysis with a recovery error of <20% and an extended dynamic range over 3-log orders. The lowest detection limits for IL-6 and hs-CRP detection in EBC were found to be 3.2 pg/mL and 4 pg/mL respectively. The intra-assay and inter-assay efficacy of EBC-SURE for its usage as a diagnostic device was established through repeatability and reproducibility (over 48 h s) performance testing. The percentage variations (<20%) met the Clinical and Laboratory Standards Institute standards (CLSI) indicating a highly stable performance for robust biomarker detection. EBC-SURE generated highly selective IL-6 and hs-CRP responses in the presence of other non-specific cytokines. Statistical validation methods- Correlation and Bland Altman analysis established the one-to-one agreement between EBC-SURE and the reference method. Correlation analysis generated a Pearson's R value of 0.99 for IL-6 and hs-CRP. Bland-Altman analysis indicated a good agreement between both the methods with all data points confined within the ±2SD limits. We have demonstrated EBC-SURE's ability in detecting inflammatory biomarkers in human breath condensate towards developing a non-invasive technology that can quantify biomarker levels associated with healthy and acute inflammatory conditions. The innovation of this work lies in the trace detection of inflammatory biomarkers (IL-6, hs-CRP) in human exhaled breath condensate on the developed EBC-SURE platform as a point-of-care aid for respiratory disorder diagnosis. The unique design of the EBC-SURE leverages non-faradaic electrochemical impedance spectroscopy to capture target-specific biomolecular interactions for highly sensitive biomarker detection. For sensor calibration, EBC-SURE's performance is assessed to measure the response of the sensor to a known concentration by spike and recovery analysis with a recovery error of <20% and an extended dynamic range over 3-log orders. The lowest detection limits for IL-6 and hs-CRP detection in EBC were found to be 3.2 pg/mL and 4 pg/mL respectively. The intra-assay and inter-assay efficacy of EBC-SURE for its usage as a diagnostic device was established through repeatability and reproducibility (over 48 h s) performance testing. The percentage variations (<20%) met the Clinical and Laboratory Standards Institute standards (CLSI) indicating a highly stable performance for robust biomarker detection. EBC-SURE generated highly selective IL-6 and hs-CRP responses in the presence of other non-specific cytokines. Statistical validation methods- Correlation and Bland Altman analysis established the one-to-one agreement between EBC-SURE and the reference method. Correlation analysis generated a Pearson's R value of 0.99 for IL-6 and hs-CRP. Bland-Altman analysis indicated a good agreement between both the methods with all data points confined within the ±2SD limits. We have demonstrated EBC-SURE's ability in detecting inflammatory biomarkers in human breath condensate towards developing a non-invasive technology that can quantify biomarker levels associated with healthy and acute inflammatory conditions. Non-invasive Elsevier Respiratory disorder Elsevier Exhaled breath condensate Elsevier Inflammatory biomarker Elsevier Electrochemical impedance spectroscopy Elsevier Pali, Madhavi oth Muthukumar, Sriram oth Prasad, Shalini oth Enthalten in Elsevier Science Costanigro, Marco ELSEVIER Vertical differentiation via multi-tier geographical indications and the consumer perception of quality: The case of Chianti wines 2019 the principal international journal devoted to research, design development and application of biosensors and bioelectronics Amsterdam [u.a.] (DE-627)ELV001931067 volume:206 year:2022 day:15 month:06 pages:0 https://doi.org/10.1016/j.bios.2022.114117 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 49.00 Hauswirtschaft: Allgemeines VZ AR 206 2022 15 0615 0 |
allfieldsSound |
10.1016/j.bios.2022.114117 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001731.pica (DE-627)ELV057363684 (ELSEVIER)S0956-5663(22)00157-9 DE-627 ger DE-627 rakwb eng 630 640 VZ 49.00 bkl Bhide, Ashlesha verfasserin aut EBC-SURE (exhaled breath condensate- scanning using rapid electro analytics): A non-faradaic and non-invasive electrochemical assay to screen for pro-inflammatory biomarkers in human breath condensate 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The innovation of this work lies in the trace detection of inflammatory biomarkers (IL-6, hs-CRP) in human exhaled breath condensate on the developed EBC-SURE platform as a point-of-care aid for respiratory disorder diagnosis. The unique design of the EBC-SURE leverages non-faradaic electrochemical impedance spectroscopy to capture target-specific biomolecular interactions for highly sensitive biomarker detection. For sensor calibration, EBC-SURE's performance is assessed to measure the response of the sensor to a known concentration by spike and recovery analysis with a recovery error of <20% and an extended dynamic range over 3-log orders. The lowest detection limits for IL-6 and hs-CRP detection in EBC were found to be 3.2 pg/mL and 4 pg/mL respectively. The intra-assay and inter-assay efficacy of EBC-SURE for its usage as a diagnostic device was established through repeatability and reproducibility (over 48 h s) performance testing. The percentage variations (<20%) met the Clinical and Laboratory Standards Institute standards (CLSI) indicating a highly stable performance for robust biomarker detection. EBC-SURE generated highly selective IL-6 and hs-CRP responses in the presence of other non-specific cytokines. Statistical validation methods- Correlation and Bland Altman analysis established the one-to-one agreement between EBC-SURE and the reference method. Correlation analysis generated a Pearson's R value of 0.99 for IL-6 and hs-CRP. Bland-Altman analysis indicated a good agreement between both the methods with all data points confined within the ±2SD limits. We have demonstrated EBC-SURE's ability in detecting inflammatory biomarkers in human breath condensate towards developing a non-invasive technology that can quantify biomarker levels associated with healthy and acute inflammatory conditions. The innovation of this work lies in the trace detection of inflammatory biomarkers (IL-6, hs-CRP) in human exhaled breath condensate on the developed EBC-SURE platform as a point-of-care aid for respiratory disorder diagnosis. The unique design of the EBC-SURE leverages non-faradaic electrochemical impedance spectroscopy to capture target-specific biomolecular interactions for highly sensitive biomarker detection. For sensor calibration, EBC-SURE's performance is assessed to measure the response of the sensor to a known concentration by spike and recovery analysis with a recovery error of <20% and an extended dynamic range over 3-log orders. The lowest detection limits for IL-6 and hs-CRP detection in EBC were found to be 3.2 pg/mL and 4 pg/mL respectively. The intra-assay and inter-assay efficacy of EBC-SURE for its usage as a diagnostic device was established through repeatability and reproducibility (over 48 h s) performance testing. The percentage variations (<20%) met the Clinical and Laboratory Standards Institute standards (CLSI) indicating a highly stable performance for robust biomarker detection. EBC-SURE generated highly selective IL-6 and hs-CRP responses in the presence of other non-specific cytokines. Statistical validation methods- Correlation and Bland Altman analysis established the one-to-one agreement between EBC-SURE and the reference method. Correlation analysis generated a Pearson's R value of 0.99 for IL-6 and hs-CRP. Bland-Altman analysis indicated a good agreement between both the methods with all data points confined within the ±2SD limits. We have demonstrated EBC-SURE's ability in detecting inflammatory biomarkers in human breath condensate towards developing a non-invasive technology that can quantify biomarker levels associated with healthy and acute inflammatory conditions. Non-invasive Elsevier Respiratory disorder Elsevier Exhaled breath condensate Elsevier Inflammatory biomarker Elsevier Electrochemical impedance spectroscopy Elsevier Pali, Madhavi oth Muthukumar, Sriram oth Prasad, Shalini oth Enthalten in Elsevier Science Costanigro, Marco ELSEVIER Vertical differentiation via multi-tier geographical indications and the consumer perception of quality: The case of Chianti wines 2019 the principal international journal devoted to research, design development and application of biosensors and bioelectronics Amsterdam [u.a.] (DE-627)ELV001931067 volume:206 year:2022 day:15 month:06 pages:0 https://doi.org/10.1016/j.bios.2022.114117 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 49.00 Hauswirtschaft: Allgemeines VZ AR 206 2022 15 0615 0 |
language |
English |
source |
Enthalten in Vertical differentiation via multi-tier geographical indications and the consumer perception of quality: The case of Chianti wines Amsterdam [u.a.] volume:206 year:2022 day:15 month:06 pages:0 |
sourceStr |
Enthalten in Vertical differentiation via multi-tier geographical indications and the consumer perception of quality: The case of Chianti wines Amsterdam [u.a.] volume:206 year:2022 day:15 month:06 pages:0 |
format_phy_str_mv |
Article |
bklname |
Hauswirtschaft: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Non-invasive Respiratory disorder Exhaled breath condensate Inflammatory biomarker Electrochemical impedance spectroscopy |
dewey-raw |
630 |
isfreeaccess_bool |
false |
container_title |
Vertical differentiation via multi-tier geographical indications and the consumer perception of quality: The case of Chianti wines |
authorswithroles_txt_mv |
Bhide, Ashlesha @@aut@@ Pali, Madhavi @@oth@@ Muthukumar, Sriram @@oth@@ Prasad, Shalini @@oth@@ |
publishDateDaySort_date |
2022-01-15T00:00:00Z |
hierarchy_top_id |
ELV001931067 |
dewey-sort |
3630 |
id |
ELV057363684 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV057363684</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626044951.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220808s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.bios.2022.114117</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001731.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV057363684</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0956-5663(22)00157-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">630</subfield><subfield code="a">640</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">49.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bhide, Ashlesha</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">EBC-SURE (exhaled breath condensate- scanning using rapid electro analytics): A non-faradaic and non-invasive electrochemical assay to screen for pro-inflammatory biomarkers in human breath condensate</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The innovation of this work lies in the trace detection of inflammatory biomarkers (IL-6, hs-CRP) in human exhaled breath condensate on the developed EBC-SURE platform as a point-of-care aid for respiratory disorder diagnosis. The unique design of the EBC-SURE leverages non-faradaic electrochemical impedance spectroscopy to capture target-specific biomolecular interactions for highly sensitive biomarker detection. For sensor calibration, EBC-SURE's performance is assessed to measure the response of the sensor to a known concentration by spike and recovery analysis with a recovery error of <20% and an extended dynamic range over 3-log orders. The lowest detection limits for IL-6 and hs-CRP detection in EBC were found to be 3.2 pg/mL and 4 pg/mL respectively. The intra-assay and inter-assay efficacy of EBC-SURE for its usage as a diagnostic device was established through repeatability and reproducibility (over 48 h s) performance testing. The percentage variations (<20%) met the Clinical and Laboratory Standards Institute standards (CLSI) indicating a highly stable performance for robust biomarker detection. EBC-SURE generated highly selective IL-6 and hs-CRP responses in the presence of other non-specific cytokines. Statistical validation methods- Correlation and Bland Altman analysis established the one-to-one agreement between EBC-SURE and the reference method. Correlation analysis generated a Pearson's R value of 0.99 for IL-6 and hs-CRP. Bland-Altman analysis indicated a good agreement between both the methods with all data points confined within the ±2SD limits. We have demonstrated EBC-SURE's ability in detecting inflammatory biomarkers in human breath condensate towards developing a non-invasive technology that can quantify biomarker levels associated with healthy and acute inflammatory conditions.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The innovation of this work lies in the trace detection of inflammatory biomarkers (IL-6, hs-CRP) in human exhaled breath condensate on the developed EBC-SURE platform as a point-of-care aid for respiratory disorder diagnosis. The unique design of the EBC-SURE leverages non-faradaic electrochemical impedance spectroscopy to capture target-specific biomolecular interactions for highly sensitive biomarker detection. For sensor calibration, EBC-SURE's performance is assessed to measure the response of the sensor to a known concentration by spike and recovery analysis with a recovery error of <20% and an extended dynamic range over 3-log orders. The lowest detection limits for IL-6 and hs-CRP detection in EBC were found to be 3.2 pg/mL and 4 pg/mL respectively. The intra-assay and inter-assay efficacy of EBC-SURE for its usage as a diagnostic device was established through repeatability and reproducibility (over 48 h s) performance testing. The percentage variations (<20%) met the Clinical and Laboratory Standards Institute standards (CLSI) indicating a highly stable performance for robust biomarker detection. EBC-SURE generated highly selective IL-6 and hs-CRP responses in the presence of other non-specific cytokines. Statistical validation methods- Correlation and Bland Altman analysis established the one-to-one agreement between EBC-SURE and the reference method. Correlation analysis generated a Pearson's R value of 0.99 for IL-6 and hs-CRP. Bland-Altman analysis indicated a good agreement between both the methods with all data points confined within the ±2SD limits. We have demonstrated EBC-SURE's ability in detecting inflammatory biomarkers in human breath condensate towards developing a non-invasive technology that can quantify biomarker levels associated with healthy and acute inflammatory conditions.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Non-invasive</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Respiratory disorder</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Exhaled breath condensate</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Inflammatory biomarker</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Electrochemical impedance spectroscopy</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pali, Madhavi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Muthukumar, Sriram</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Prasad, Shalini</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Costanigro, Marco ELSEVIER</subfield><subfield code="t">Vertical differentiation via multi-tier geographical indications and the consumer perception of quality: The case of Chianti wines</subfield><subfield code="d">2019</subfield><subfield code="d">the principal international journal devoted to research, design development and application of biosensors and bioelectronics</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV001931067</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:206</subfield><subfield code="g">year:2022</subfield><subfield code="g">day:15</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.bios.2022.114117</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">49.00</subfield><subfield code="j">Hauswirtschaft: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">206</subfield><subfield code="j">2022</subfield><subfield code="b">15</subfield><subfield code="c">0615</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
author |
Bhide, Ashlesha |
spellingShingle |
Bhide, Ashlesha ddc 630 bkl 49.00 Elsevier Non-invasive Elsevier Respiratory disorder Elsevier Exhaled breath condensate Elsevier Inflammatory biomarker Elsevier Electrochemical impedance spectroscopy EBC-SURE (exhaled breath condensate- scanning using rapid electro analytics): A non-faradaic and non-invasive electrochemical assay to screen for pro-inflammatory biomarkers in human breath condensate |
authorStr |
Bhide, Ashlesha |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV001931067 |
format |
electronic Article |
dewey-ones |
630 - Agriculture & related technologies 640 - Home & family management |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
630 640 VZ 49.00 bkl EBC-SURE (exhaled breath condensate- scanning using rapid electro analytics): A non-faradaic and non-invasive electrochemical assay to screen for pro-inflammatory biomarkers in human breath condensate Non-invasive Elsevier Respiratory disorder Elsevier Exhaled breath condensate Elsevier Inflammatory biomarker Elsevier Electrochemical impedance spectroscopy Elsevier |
topic |
ddc 630 bkl 49.00 Elsevier Non-invasive Elsevier Respiratory disorder Elsevier Exhaled breath condensate Elsevier Inflammatory biomarker Elsevier Electrochemical impedance spectroscopy |
topic_unstemmed |
ddc 630 bkl 49.00 Elsevier Non-invasive Elsevier Respiratory disorder Elsevier Exhaled breath condensate Elsevier Inflammatory biomarker Elsevier Electrochemical impedance spectroscopy |
topic_browse |
ddc 630 bkl 49.00 Elsevier Non-invasive Elsevier Respiratory disorder Elsevier Exhaled breath condensate Elsevier Inflammatory biomarker Elsevier Electrochemical impedance spectroscopy |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
m p mp s m sm s p sp |
hierarchy_parent_title |
Vertical differentiation via multi-tier geographical indications and the consumer perception of quality: The case of Chianti wines |
hierarchy_parent_id |
ELV001931067 |
dewey-tens |
630 - Agriculture 640 - Home & family management |
hierarchy_top_title |
Vertical differentiation via multi-tier geographical indications and the consumer perception of quality: The case of Chianti wines |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV001931067 |
title |
EBC-SURE (exhaled breath condensate- scanning using rapid electro analytics): A non-faradaic and non-invasive electrochemical assay to screen for pro-inflammatory biomarkers in human breath condensate |
ctrlnum |
(DE-627)ELV057363684 (ELSEVIER)S0956-5663(22)00157-9 |
title_full |
EBC-SURE (exhaled breath condensate- scanning using rapid electro analytics): A non-faradaic and non-invasive electrochemical assay to screen for pro-inflammatory biomarkers in human breath condensate |
author_sort |
Bhide, Ashlesha |
journal |
Vertical differentiation via multi-tier geographical indications and the consumer perception of quality: The case of Chianti wines |
journalStr |
Vertical differentiation via multi-tier geographical indications and the consumer perception of quality: The case of Chianti wines |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
zzz |
container_start_page |
0 |
author_browse |
Bhide, Ashlesha |
container_volume |
206 |
class |
630 640 VZ 49.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Bhide, Ashlesha |
doi_str_mv |
10.1016/j.bios.2022.114117 |
dewey-full |
630 640 |
title_sort |
ebc-sure (exhaled breath condensate- scanning using rapid electro analytics): a non-faradaic and non-invasive electrochemical assay to screen for pro-inflammatory biomarkers in human breath condensate |
title_auth |
EBC-SURE (exhaled breath condensate- scanning using rapid electro analytics): A non-faradaic and non-invasive electrochemical assay to screen for pro-inflammatory biomarkers in human breath condensate |
abstract |
The innovation of this work lies in the trace detection of inflammatory biomarkers (IL-6, hs-CRP) in human exhaled breath condensate on the developed EBC-SURE platform as a point-of-care aid for respiratory disorder diagnosis. The unique design of the EBC-SURE leverages non-faradaic electrochemical impedance spectroscopy to capture target-specific biomolecular interactions for highly sensitive biomarker detection. For sensor calibration, EBC-SURE's performance is assessed to measure the response of the sensor to a known concentration by spike and recovery analysis with a recovery error of <20% and an extended dynamic range over 3-log orders. The lowest detection limits for IL-6 and hs-CRP detection in EBC were found to be 3.2 pg/mL and 4 pg/mL respectively. The intra-assay and inter-assay efficacy of EBC-SURE for its usage as a diagnostic device was established through repeatability and reproducibility (over 48 h s) performance testing. The percentage variations (<20%) met the Clinical and Laboratory Standards Institute standards (CLSI) indicating a highly stable performance for robust biomarker detection. EBC-SURE generated highly selective IL-6 and hs-CRP responses in the presence of other non-specific cytokines. Statistical validation methods- Correlation and Bland Altman analysis established the one-to-one agreement between EBC-SURE and the reference method. Correlation analysis generated a Pearson's R value of 0.99 for IL-6 and hs-CRP. Bland-Altman analysis indicated a good agreement between both the methods with all data points confined within the ±2SD limits. We have demonstrated EBC-SURE's ability in detecting inflammatory biomarkers in human breath condensate towards developing a non-invasive technology that can quantify biomarker levels associated with healthy and acute inflammatory conditions. |
abstractGer |
The innovation of this work lies in the trace detection of inflammatory biomarkers (IL-6, hs-CRP) in human exhaled breath condensate on the developed EBC-SURE platform as a point-of-care aid for respiratory disorder diagnosis. The unique design of the EBC-SURE leverages non-faradaic electrochemical impedance spectroscopy to capture target-specific biomolecular interactions for highly sensitive biomarker detection. For sensor calibration, EBC-SURE's performance is assessed to measure the response of the sensor to a known concentration by spike and recovery analysis with a recovery error of <20% and an extended dynamic range over 3-log orders. The lowest detection limits for IL-6 and hs-CRP detection in EBC were found to be 3.2 pg/mL and 4 pg/mL respectively. The intra-assay and inter-assay efficacy of EBC-SURE for its usage as a diagnostic device was established through repeatability and reproducibility (over 48 h s) performance testing. The percentage variations (<20%) met the Clinical and Laboratory Standards Institute standards (CLSI) indicating a highly stable performance for robust biomarker detection. EBC-SURE generated highly selective IL-6 and hs-CRP responses in the presence of other non-specific cytokines. Statistical validation methods- Correlation and Bland Altman analysis established the one-to-one agreement between EBC-SURE and the reference method. Correlation analysis generated a Pearson's R value of 0.99 for IL-6 and hs-CRP. Bland-Altman analysis indicated a good agreement between both the methods with all data points confined within the ±2SD limits. We have demonstrated EBC-SURE's ability in detecting inflammatory biomarkers in human breath condensate towards developing a non-invasive technology that can quantify biomarker levels associated with healthy and acute inflammatory conditions. |
abstract_unstemmed |
The innovation of this work lies in the trace detection of inflammatory biomarkers (IL-6, hs-CRP) in human exhaled breath condensate on the developed EBC-SURE platform as a point-of-care aid for respiratory disorder diagnosis. The unique design of the EBC-SURE leverages non-faradaic electrochemical impedance spectroscopy to capture target-specific biomolecular interactions for highly sensitive biomarker detection. For sensor calibration, EBC-SURE's performance is assessed to measure the response of the sensor to a known concentration by spike and recovery analysis with a recovery error of <20% and an extended dynamic range over 3-log orders. The lowest detection limits for IL-6 and hs-CRP detection in EBC were found to be 3.2 pg/mL and 4 pg/mL respectively. The intra-assay and inter-assay efficacy of EBC-SURE for its usage as a diagnostic device was established through repeatability and reproducibility (over 48 h s) performance testing. The percentage variations (<20%) met the Clinical and Laboratory Standards Institute standards (CLSI) indicating a highly stable performance for robust biomarker detection. EBC-SURE generated highly selective IL-6 and hs-CRP responses in the presence of other non-specific cytokines. Statistical validation methods- Correlation and Bland Altman analysis established the one-to-one agreement between EBC-SURE and the reference method. Correlation analysis generated a Pearson's R value of 0.99 for IL-6 and hs-CRP. Bland-Altman analysis indicated a good agreement between both the methods with all data points confined within the ±2SD limits. We have demonstrated EBC-SURE's ability in detecting inflammatory biomarkers in human breath condensate towards developing a non-invasive technology that can quantify biomarker levels associated with healthy and acute inflammatory conditions. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U |
title_short |
EBC-SURE (exhaled breath condensate- scanning using rapid electro analytics): A non-faradaic and non-invasive electrochemical assay to screen for pro-inflammatory biomarkers in human breath condensate |
url |
https://doi.org/10.1016/j.bios.2022.114117 |
remote_bool |
true |
author2 |
Pali, Madhavi Muthukumar, Sriram Prasad, Shalini |
author2Str |
Pali, Madhavi Muthukumar, Sriram Prasad, Shalini |
ppnlink |
ELV001931067 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth |
doi_str |
10.1016/j.bios.2022.114117 |
up_date |
2024-07-06T23:01:10.907Z |
_version_ |
1803872497470275584 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV057363684</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626044951.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220808s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.bios.2022.114117</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001731.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV057363684</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0956-5663(22)00157-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">630</subfield><subfield code="a">640</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">49.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bhide, Ashlesha</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">EBC-SURE (exhaled breath condensate- scanning using rapid electro analytics): A non-faradaic and non-invasive electrochemical assay to screen for pro-inflammatory biomarkers in human breath condensate</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The innovation of this work lies in the trace detection of inflammatory biomarkers (IL-6, hs-CRP) in human exhaled breath condensate on the developed EBC-SURE platform as a point-of-care aid for respiratory disorder diagnosis. The unique design of the EBC-SURE leverages non-faradaic electrochemical impedance spectroscopy to capture target-specific biomolecular interactions for highly sensitive biomarker detection. For sensor calibration, EBC-SURE's performance is assessed to measure the response of the sensor to a known concentration by spike and recovery analysis with a recovery error of <20% and an extended dynamic range over 3-log orders. The lowest detection limits for IL-6 and hs-CRP detection in EBC were found to be 3.2 pg/mL and 4 pg/mL respectively. The intra-assay and inter-assay efficacy of EBC-SURE for its usage as a diagnostic device was established through repeatability and reproducibility (over 48 h s) performance testing. The percentage variations (<20%) met the Clinical and Laboratory Standards Institute standards (CLSI) indicating a highly stable performance for robust biomarker detection. EBC-SURE generated highly selective IL-6 and hs-CRP responses in the presence of other non-specific cytokines. Statistical validation methods- Correlation and Bland Altman analysis established the one-to-one agreement between EBC-SURE and the reference method. Correlation analysis generated a Pearson's R value of 0.99 for IL-6 and hs-CRP. Bland-Altman analysis indicated a good agreement between both the methods with all data points confined within the ±2SD limits. We have demonstrated EBC-SURE's ability in detecting inflammatory biomarkers in human breath condensate towards developing a non-invasive technology that can quantify biomarker levels associated with healthy and acute inflammatory conditions.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The innovation of this work lies in the trace detection of inflammatory biomarkers (IL-6, hs-CRP) in human exhaled breath condensate on the developed EBC-SURE platform as a point-of-care aid for respiratory disorder diagnosis. The unique design of the EBC-SURE leverages non-faradaic electrochemical impedance spectroscopy to capture target-specific biomolecular interactions for highly sensitive biomarker detection. For sensor calibration, EBC-SURE's performance is assessed to measure the response of the sensor to a known concentration by spike and recovery analysis with a recovery error of <20% and an extended dynamic range over 3-log orders. The lowest detection limits for IL-6 and hs-CRP detection in EBC were found to be 3.2 pg/mL and 4 pg/mL respectively. The intra-assay and inter-assay efficacy of EBC-SURE for its usage as a diagnostic device was established through repeatability and reproducibility (over 48 h s) performance testing. The percentage variations (<20%) met the Clinical and Laboratory Standards Institute standards (CLSI) indicating a highly stable performance for robust biomarker detection. EBC-SURE generated highly selective IL-6 and hs-CRP responses in the presence of other non-specific cytokines. Statistical validation methods- Correlation and Bland Altman analysis established the one-to-one agreement between EBC-SURE and the reference method. Correlation analysis generated a Pearson's R value of 0.99 for IL-6 and hs-CRP. Bland-Altman analysis indicated a good agreement between both the methods with all data points confined within the ±2SD limits. We have demonstrated EBC-SURE's ability in detecting inflammatory biomarkers in human breath condensate towards developing a non-invasive technology that can quantify biomarker levels associated with healthy and acute inflammatory conditions.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Non-invasive</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Respiratory disorder</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Exhaled breath condensate</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Inflammatory biomarker</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Electrochemical impedance spectroscopy</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pali, Madhavi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Muthukumar, Sriram</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Prasad, Shalini</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Costanigro, Marco ELSEVIER</subfield><subfield code="t">Vertical differentiation via multi-tier geographical indications and the consumer perception of quality: The case of Chianti wines</subfield><subfield code="d">2019</subfield><subfield code="d">the principal international journal devoted to research, design development and application of biosensors and bioelectronics</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV001931067</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:206</subfield><subfield code="g">year:2022</subfield><subfield code="g">day:15</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.bios.2022.114117</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">49.00</subfield><subfield code="j">Hauswirtschaft: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">206</subfield><subfield code="j">2022</subfield><subfield code="b">15</subfield><subfield code="c">0615</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
score |
7.40096 |