Spatiotemporal denoising wavelet network for infrared thermography-based machine prognostics integrating ensemble uncertainty
• A novel image stream-based model is proposed for prognostics integrating uncertainty. • A 4D wavelet convolutional layer is designed to extract interpretable features. • An image stream denoiser is developed by capturing spatiotemporal correlation. • An ensemble of deep networks is implemented for...
Ausführliche Beschreibung
Autor*in: |
Jiang, Yimin [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Species loss from land use of oil palm plantations in Thailand - Jaroenkietkajorn, Ukrit ELSEVIER, 2021, mssp, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:173 ; year:2022 ; day:1 ; month:07 ; pages:0 |
Links: |
---|
DOI / URN: |
10.1016/j.ymssp.2022.109014 |
---|
Katalog-ID: |
ELV057464634 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV057464634 | ||
003 | DE-627 | ||
005 | 20230625002046.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220808s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ymssp.2022.109014 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001779.pica |
035 | |a (DE-627)ELV057464634 | ||
035 | |a (ELSEVIER)S0888-3270(22)00192-3 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 570 |a 630 |q VZ |
084 | |a BIODIV |q DE-30 |2 fid | ||
100 | 1 | |a Jiang, Yimin |e verfasserin |4 aut | |
245 | 1 | 0 | |a Spatiotemporal denoising wavelet network for infrared thermography-based machine prognostics integrating ensemble uncertainty |
264 | 1 | |c 2022 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a • A novel image stream-based model is proposed for prognostics integrating uncertainty. • A 4D wavelet convolutional layer is designed to extract interpretable features. • An image stream denoiser is developed by capturing spatiotemporal correlation. • An ensemble of deep networks is implemented for the uncertainty quantification. • Adaptive Student-t mixture distributions are constructed to fit the RUL values. | ||
650 | 7 | |a Infrared thermography |2 Elsevier | |
650 | 7 | |a Remaining useful life prediction |2 Elsevier | |
650 | 7 | |a Feature denoising |2 Elsevier | |
650 | 7 | |a 4D wavelet convolution layer |2 Elsevier | |
650 | 7 | |a Predictive uncertainty |2 Elsevier | |
700 | 1 | |a Xia, Tangbin |4 oth | |
700 | 1 | |a Wang, Dong |4 oth | |
700 | 1 | |a Fang, Xiaolei |4 oth | |
700 | 1 | |a Xi, Lifeng |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Jaroenkietkajorn, Ukrit ELSEVIER |t Species loss from land use of oil palm plantations in Thailand |d 2021 |d mssp |g Amsterdam [u.a.] |w (DE-627)ELV007151810 |
773 | 1 | 8 | |g volume:173 |g year:2022 |g day:1 |g month:07 |g pages:0 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.ymssp.2022.109014 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a FID-BIODIV | ||
912 | |a SSG-OLC-PHA | ||
951 | |a AR | ||
952 | |d 173 |j 2022 |b 1 |c 0701 |h 0 |
author_variant |
y j yj |
---|---|
matchkey_str |
jiangyiminxiatangbinwangdongfangxiaoleix:2022----:ptoeprleosnwvltewrfrnrrdhrorpyaemciergotci |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1016/j.ymssp.2022.109014 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001779.pica (DE-627)ELV057464634 (ELSEVIER)S0888-3270(22)00192-3 DE-627 ger DE-627 rakwb eng 570 630 VZ BIODIV DE-30 fid Jiang, Yimin verfasserin aut Spatiotemporal denoising wavelet network for infrared thermography-based machine prognostics integrating ensemble uncertainty 2022 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • A novel image stream-based model is proposed for prognostics integrating uncertainty. • A 4D wavelet convolutional layer is designed to extract interpretable features. • An image stream denoiser is developed by capturing spatiotemporal correlation. • An ensemble of deep networks is implemented for the uncertainty quantification. • Adaptive Student-t mixture distributions are constructed to fit the RUL values. Infrared thermography Elsevier Remaining useful life prediction Elsevier Feature denoising Elsevier 4D wavelet convolution layer Elsevier Predictive uncertainty Elsevier Xia, Tangbin oth Wang, Dong oth Fang, Xiaolei oth Xi, Lifeng oth Enthalten in Elsevier Jaroenkietkajorn, Ukrit ELSEVIER Species loss from land use of oil palm plantations in Thailand 2021 mssp Amsterdam [u.a.] (DE-627)ELV007151810 volume:173 year:2022 day:1 month:07 pages:0 https://doi.org/10.1016/j.ymssp.2022.109014 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA AR 173 2022 1 0701 0 |
spelling |
10.1016/j.ymssp.2022.109014 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001779.pica (DE-627)ELV057464634 (ELSEVIER)S0888-3270(22)00192-3 DE-627 ger DE-627 rakwb eng 570 630 VZ BIODIV DE-30 fid Jiang, Yimin verfasserin aut Spatiotemporal denoising wavelet network for infrared thermography-based machine prognostics integrating ensemble uncertainty 2022 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • A novel image stream-based model is proposed for prognostics integrating uncertainty. • A 4D wavelet convolutional layer is designed to extract interpretable features. • An image stream denoiser is developed by capturing spatiotemporal correlation. • An ensemble of deep networks is implemented for the uncertainty quantification. • Adaptive Student-t mixture distributions are constructed to fit the RUL values. Infrared thermography Elsevier Remaining useful life prediction Elsevier Feature denoising Elsevier 4D wavelet convolution layer Elsevier Predictive uncertainty Elsevier Xia, Tangbin oth Wang, Dong oth Fang, Xiaolei oth Xi, Lifeng oth Enthalten in Elsevier Jaroenkietkajorn, Ukrit ELSEVIER Species loss from land use of oil palm plantations in Thailand 2021 mssp Amsterdam [u.a.] (DE-627)ELV007151810 volume:173 year:2022 day:1 month:07 pages:0 https://doi.org/10.1016/j.ymssp.2022.109014 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA AR 173 2022 1 0701 0 |
allfields_unstemmed |
10.1016/j.ymssp.2022.109014 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001779.pica (DE-627)ELV057464634 (ELSEVIER)S0888-3270(22)00192-3 DE-627 ger DE-627 rakwb eng 570 630 VZ BIODIV DE-30 fid Jiang, Yimin verfasserin aut Spatiotemporal denoising wavelet network for infrared thermography-based machine prognostics integrating ensemble uncertainty 2022 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • A novel image stream-based model is proposed for prognostics integrating uncertainty. • A 4D wavelet convolutional layer is designed to extract interpretable features. • An image stream denoiser is developed by capturing spatiotemporal correlation. • An ensemble of deep networks is implemented for the uncertainty quantification. • Adaptive Student-t mixture distributions are constructed to fit the RUL values. Infrared thermography Elsevier Remaining useful life prediction Elsevier Feature denoising Elsevier 4D wavelet convolution layer Elsevier Predictive uncertainty Elsevier Xia, Tangbin oth Wang, Dong oth Fang, Xiaolei oth Xi, Lifeng oth Enthalten in Elsevier Jaroenkietkajorn, Ukrit ELSEVIER Species loss from land use of oil palm plantations in Thailand 2021 mssp Amsterdam [u.a.] (DE-627)ELV007151810 volume:173 year:2022 day:1 month:07 pages:0 https://doi.org/10.1016/j.ymssp.2022.109014 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA AR 173 2022 1 0701 0 |
allfieldsGer |
10.1016/j.ymssp.2022.109014 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001779.pica (DE-627)ELV057464634 (ELSEVIER)S0888-3270(22)00192-3 DE-627 ger DE-627 rakwb eng 570 630 VZ BIODIV DE-30 fid Jiang, Yimin verfasserin aut Spatiotemporal denoising wavelet network for infrared thermography-based machine prognostics integrating ensemble uncertainty 2022 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • A novel image stream-based model is proposed for prognostics integrating uncertainty. • A 4D wavelet convolutional layer is designed to extract interpretable features. • An image stream denoiser is developed by capturing spatiotemporal correlation. • An ensemble of deep networks is implemented for the uncertainty quantification. • Adaptive Student-t mixture distributions are constructed to fit the RUL values. Infrared thermography Elsevier Remaining useful life prediction Elsevier Feature denoising Elsevier 4D wavelet convolution layer Elsevier Predictive uncertainty Elsevier Xia, Tangbin oth Wang, Dong oth Fang, Xiaolei oth Xi, Lifeng oth Enthalten in Elsevier Jaroenkietkajorn, Ukrit ELSEVIER Species loss from land use of oil palm plantations in Thailand 2021 mssp Amsterdam [u.a.] (DE-627)ELV007151810 volume:173 year:2022 day:1 month:07 pages:0 https://doi.org/10.1016/j.ymssp.2022.109014 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA AR 173 2022 1 0701 0 |
allfieldsSound |
10.1016/j.ymssp.2022.109014 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001779.pica (DE-627)ELV057464634 (ELSEVIER)S0888-3270(22)00192-3 DE-627 ger DE-627 rakwb eng 570 630 VZ BIODIV DE-30 fid Jiang, Yimin verfasserin aut Spatiotemporal denoising wavelet network for infrared thermography-based machine prognostics integrating ensemble uncertainty 2022 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • A novel image stream-based model is proposed for prognostics integrating uncertainty. • A 4D wavelet convolutional layer is designed to extract interpretable features. • An image stream denoiser is developed by capturing spatiotemporal correlation. • An ensemble of deep networks is implemented for the uncertainty quantification. • Adaptive Student-t mixture distributions are constructed to fit the RUL values. Infrared thermography Elsevier Remaining useful life prediction Elsevier Feature denoising Elsevier 4D wavelet convolution layer Elsevier Predictive uncertainty Elsevier Xia, Tangbin oth Wang, Dong oth Fang, Xiaolei oth Xi, Lifeng oth Enthalten in Elsevier Jaroenkietkajorn, Ukrit ELSEVIER Species loss from land use of oil palm plantations in Thailand 2021 mssp Amsterdam [u.a.] (DE-627)ELV007151810 volume:173 year:2022 day:1 month:07 pages:0 https://doi.org/10.1016/j.ymssp.2022.109014 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA AR 173 2022 1 0701 0 |
language |
English |
source |
Enthalten in Species loss from land use of oil palm plantations in Thailand Amsterdam [u.a.] volume:173 year:2022 day:1 month:07 pages:0 |
sourceStr |
Enthalten in Species loss from land use of oil palm plantations in Thailand Amsterdam [u.a.] volume:173 year:2022 day:1 month:07 pages:0 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Infrared thermography Remaining useful life prediction Feature denoising 4D wavelet convolution layer Predictive uncertainty |
dewey-raw |
570 |
isfreeaccess_bool |
false |
container_title |
Species loss from land use of oil palm plantations in Thailand |
authorswithroles_txt_mv |
Jiang, Yimin @@aut@@ Xia, Tangbin @@oth@@ Wang, Dong @@oth@@ Fang, Xiaolei @@oth@@ Xi, Lifeng @@oth@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
ELV007151810 |
dewey-sort |
3570 |
id |
ELV057464634 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV057464634</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625002046.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220808s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ymssp.2022.109014</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001779.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV057464634</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0888-3270(22)00192-3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="a">630</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jiang, Yimin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Spatiotemporal denoising wavelet network for infrared thermography-based machine prognostics integrating ensemble uncertainty</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">• A novel image stream-based model is proposed for prognostics integrating uncertainty. • A 4D wavelet convolutional layer is designed to extract interpretable features. • An image stream denoiser is developed by capturing spatiotemporal correlation. • An ensemble of deep networks is implemented for the uncertainty quantification. • Adaptive Student-t mixture distributions are constructed to fit the RUL values.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Infrared thermography</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Remaining useful life prediction</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Feature denoising</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">4D wavelet convolution layer</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Predictive uncertainty</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xia, Tangbin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Dong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fang, Xiaolei</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xi, Lifeng</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Jaroenkietkajorn, Ukrit ELSEVIER</subfield><subfield code="t">Species loss from land use of oil palm plantations in Thailand</subfield><subfield code="d">2021</subfield><subfield code="d">mssp</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV007151810</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:173</subfield><subfield code="g">year:2022</subfield><subfield code="g">day:1</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ymssp.2022.109014</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">173</subfield><subfield code="j">2022</subfield><subfield code="b">1</subfield><subfield code="c">0701</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
author |
Jiang, Yimin |
spellingShingle |
Jiang, Yimin ddc 570 fid BIODIV Elsevier Infrared thermography Elsevier Remaining useful life prediction Elsevier Feature denoising Elsevier 4D wavelet convolution layer Elsevier Predictive uncertainty Spatiotemporal denoising wavelet network for infrared thermography-based machine prognostics integrating ensemble uncertainty |
authorStr |
Jiang, Yimin |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV007151810 |
format |
electronic Article |
dewey-ones |
570 - Life sciences; biology 630 - Agriculture & related technologies |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
570 630 VZ BIODIV DE-30 fid Spatiotemporal denoising wavelet network for infrared thermography-based machine prognostics integrating ensemble uncertainty Infrared thermography Elsevier Remaining useful life prediction Elsevier Feature denoising Elsevier 4D wavelet convolution layer Elsevier Predictive uncertainty Elsevier |
topic |
ddc 570 fid BIODIV Elsevier Infrared thermography Elsevier Remaining useful life prediction Elsevier Feature denoising Elsevier 4D wavelet convolution layer Elsevier Predictive uncertainty |
topic_unstemmed |
ddc 570 fid BIODIV Elsevier Infrared thermography Elsevier Remaining useful life prediction Elsevier Feature denoising Elsevier 4D wavelet convolution layer Elsevier Predictive uncertainty |
topic_browse |
ddc 570 fid BIODIV Elsevier Infrared thermography Elsevier Remaining useful life prediction Elsevier Feature denoising Elsevier 4D wavelet convolution layer Elsevier Predictive uncertainty |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
t x tx d w dw x f xf l x lx |
hierarchy_parent_title |
Species loss from land use of oil palm plantations in Thailand |
hierarchy_parent_id |
ELV007151810 |
dewey-tens |
570 - Life sciences; biology 630 - Agriculture |
hierarchy_top_title |
Species loss from land use of oil palm plantations in Thailand |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV007151810 |
title |
Spatiotemporal denoising wavelet network for infrared thermography-based machine prognostics integrating ensemble uncertainty |
ctrlnum |
(DE-627)ELV057464634 (ELSEVIER)S0888-3270(22)00192-3 |
title_full |
Spatiotemporal denoising wavelet network for infrared thermography-based machine prognostics integrating ensemble uncertainty |
author_sort |
Jiang, Yimin |
journal |
Species loss from land use of oil palm plantations in Thailand |
journalStr |
Species loss from land use of oil palm plantations in Thailand |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
zzz |
container_start_page |
0 |
author_browse |
Jiang, Yimin |
container_volume |
173 |
class |
570 630 VZ BIODIV DE-30 fid |
format_se |
Elektronische Aufsätze |
author-letter |
Jiang, Yimin |
doi_str_mv |
10.1016/j.ymssp.2022.109014 |
dewey-full |
570 630 |
title_sort |
spatiotemporal denoising wavelet network for infrared thermography-based machine prognostics integrating ensemble uncertainty |
title_auth |
Spatiotemporal denoising wavelet network for infrared thermography-based machine prognostics integrating ensemble uncertainty |
abstract |
• A novel image stream-based model is proposed for prognostics integrating uncertainty. • A 4D wavelet convolutional layer is designed to extract interpretable features. • An image stream denoiser is developed by capturing spatiotemporal correlation. • An ensemble of deep networks is implemented for the uncertainty quantification. • Adaptive Student-t mixture distributions are constructed to fit the RUL values. |
abstractGer |
• A novel image stream-based model is proposed for prognostics integrating uncertainty. • A 4D wavelet convolutional layer is designed to extract interpretable features. • An image stream denoiser is developed by capturing spatiotemporal correlation. • An ensemble of deep networks is implemented for the uncertainty quantification. • Adaptive Student-t mixture distributions are constructed to fit the RUL values. |
abstract_unstemmed |
• A novel image stream-based model is proposed for prognostics integrating uncertainty. • A 4D wavelet convolutional layer is designed to extract interpretable features. • An image stream denoiser is developed by capturing spatiotemporal correlation. • An ensemble of deep networks is implemented for the uncertainty quantification. • Adaptive Student-t mixture distributions are constructed to fit the RUL values. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA |
title_short |
Spatiotemporal denoising wavelet network for infrared thermography-based machine prognostics integrating ensemble uncertainty |
url |
https://doi.org/10.1016/j.ymssp.2022.109014 |
remote_bool |
true |
author2 |
Xia, Tangbin Wang, Dong Fang, Xiaolei Xi, Lifeng |
author2Str |
Xia, Tangbin Wang, Dong Fang, Xiaolei Xi, Lifeng |
ppnlink |
ELV007151810 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth |
doi_str |
10.1016/j.ymssp.2022.109014 |
up_date |
2024-07-06T23:18:39.382Z |
_version_ |
1803873596874948608 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV057464634</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625002046.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220808s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ymssp.2022.109014</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001779.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV057464634</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0888-3270(22)00192-3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="a">630</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jiang, Yimin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Spatiotemporal denoising wavelet network for infrared thermography-based machine prognostics integrating ensemble uncertainty</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">• A novel image stream-based model is proposed for prognostics integrating uncertainty. • A 4D wavelet convolutional layer is designed to extract interpretable features. • An image stream denoiser is developed by capturing spatiotemporal correlation. • An ensemble of deep networks is implemented for the uncertainty quantification. • Adaptive Student-t mixture distributions are constructed to fit the RUL values.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Infrared thermography</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Remaining useful life prediction</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Feature denoising</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">4D wavelet convolution layer</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Predictive uncertainty</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xia, Tangbin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Dong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fang, Xiaolei</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xi, Lifeng</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Jaroenkietkajorn, Ukrit ELSEVIER</subfield><subfield code="t">Species loss from land use of oil palm plantations in Thailand</subfield><subfield code="d">2021</subfield><subfield code="d">mssp</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV007151810</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:173</subfield><subfield code="g">year:2022</subfield><subfield code="g">day:1</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ymssp.2022.109014</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">173</subfield><subfield code="j">2022</subfield><subfield code="b">1</subfield><subfield code="c">0701</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
score |
7.4006042 |