Thermal vibration analysis of functionally graded conical-cylindrical coupled shell based on spectro-geometric method
In this article, an analytical model is presented for vibration analysis of functionally graded conical–cylindrical coupled shell (FG-CCCS) subjected to thermal environment. In the present model, effective material parameters are temperature-dependent and are varied along the thickness direction. Fi...
Ausführliche Beschreibung
Autor*in: |
Shi, Xianjie [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022transfer abstract |
---|
Schlagwörter: |
Spectro-geometric method (SGM) Functionally graded conical–cylindrical coupled shell (FG-CCCS) |
---|
Übergeordnetes Werk: |
Enthalten in: Transmission of feto-placental metabolic anomalies through paternal lineage - Capobianco, Evangelina ELSEVIER, 2022, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:175 ; year:2022 ; pages:0 |
Links: |
---|
DOI / URN: |
10.1016/j.tws.2022.109138 |
---|
Katalog-ID: |
ELV057589844 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV057589844 | ||
003 | DE-627 | ||
005 | 20230626045358.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220808s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.tws.2022.109138 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001777.pica |
035 | |a (DE-627)ELV057589844 | ||
035 | |a (ELSEVIER)S0263-8231(22)00138-0 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 610 |q VZ |
084 | |a 44.92 |2 bkl | ||
100 | 1 | |a Shi, Xianjie |e verfasserin |4 aut | |
245 | 1 | 0 | |a Thermal vibration analysis of functionally graded conical-cylindrical coupled shell based on spectro-geometric method |
264 | 1 | |c 2022transfer abstract | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a In this article, an analytical model is presented for vibration analysis of functionally graded conical–cylindrical coupled shell (FG-CCCS) subjected to thermal environment. In the present model, effective material parameters are temperature-dependent and are varied along the thickness direction. Firstly, artificial spring techniques are utilized to simulate the boundary and coupling conditions. The energy equations of FG-CCCS under thermal environment are derived within the framework of the first-order shear deformation theory (FSDT). Then, an efficient and accurate spectro-geometric method (SGM) and the form of the sum of the products of the circumferential Fourier harmonic function are employed to standardize the displacement admissible functions. On this basis, the governing differential equation for free vibration and transient vibration of FG-CCCS is derived using the Rayleigh–Ritz method. By comparing the present results with some existing data and finite element method (FEM) results, the accuracy and stability of present model are proved. Finally, some parametric studies are carried out to explore the influence of material properties, geometric properties, boundary conditions and thermal conditions on the free vibration and transient vibration characteristics of FG-CCCS. | ||
520 | |a In this article, an analytical model is presented for vibration analysis of functionally graded conical–cylindrical coupled shell (FG-CCCS) subjected to thermal environment. In the present model, effective material parameters are temperature-dependent and are varied along the thickness direction. Firstly, artificial spring techniques are utilized to simulate the boundary and coupling conditions. The energy equations of FG-CCCS under thermal environment are derived within the framework of the first-order shear deformation theory (FSDT). Then, an efficient and accurate spectro-geometric method (SGM) and the form of the sum of the products of the circumferential Fourier harmonic function are employed to standardize the displacement admissible functions. On this basis, the governing differential equation for free vibration and transient vibration of FG-CCCS is derived using the Rayleigh–Ritz method. By comparing the present results with some existing data and finite element method (FEM) results, the accuracy and stability of present model are proved. Finally, some parametric studies are carried out to explore the influence of material properties, geometric properties, boundary conditions and thermal conditions on the free vibration and transient vibration characteristics of FG-CCCS. | ||
650 | 7 | |a Free vibration |2 Elsevier | |
650 | 7 | |a Spectro-geometric method (SGM) |2 Elsevier | |
650 | 7 | |a Transient vibration |2 Elsevier | |
650 | 7 | |a Thermal environment |2 Elsevier | |
650 | 7 | |a Functionally graded conical–cylindrical coupled shell (FG-CCCS) |2 Elsevier | |
700 | 1 | |a Zuo, Peng |4 oth | |
700 | 1 | |a Zhong, Rui |4 oth | |
700 | 1 | |a Guo, Chenchen |4 oth | |
700 | 1 | |a Wang, Qingshan |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Capobianco, Evangelina ELSEVIER |t Transmission of feto-placental metabolic anomalies through paternal lineage |d 2022 |g Amsterdam [u.a.] |w (DE-627)ELV007893337 |
773 | 1 | 8 | |g volume:175 |g year:2022 |g pages:0 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.tws.2022.109138 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
936 | b | k | |a 44.92 |j Gynäkologie |q VZ |
951 | |a AR | ||
952 | |d 175 |j 2022 |h 0 |
author_variant |
x s xs |
---|---|
matchkey_str |
shixianjiezuopengzhongruiguochenchenwang:2022----:hravbainnlssfucinlyrddoiaclnrclopesel |
hierarchy_sort_str |
2022transfer abstract |
bklnumber |
44.92 |
publishDate |
2022 |
allfields |
10.1016/j.tws.2022.109138 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001777.pica (DE-627)ELV057589844 (ELSEVIER)S0263-8231(22)00138-0 DE-627 ger DE-627 rakwb eng 610 VZ 44.92 bkl Shi, Xianjie verfasserin aut Thermal vibration analysis of functionally graded conical-cylindrical coupled shell based on spectro-geometric method 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this article, an analytical model is presented for vibration analysis of functionally graded conical–cylindrical coupled shell (FG-CCCS) subjected to thermal environment. In the present model, effective material parameters are temperature-dependent and are varied along the thickness direction. Firstly, artificial spring techniques are utilized to simulate the boundary and coupling conditions. The energy equations of FG-CCCS under thermal environment are derived within the framework of the first-order shear deformation theory (FSDT). Then, an efficient and accurate spectro-geometric method (SGM) and the form of the sum of the products of the circumferential Fourier harmonic function are employed to standardize the displacement admissible functions. On this basis, the governing differential equation for free vibration and transient vibration of FG-CCCS is derived using the Rayleigh–Ritz method. By comparing the present results with some existing data and finite element method (FEM) results, the accuracy and stability of present model are proved. Finally, some parametric studies are carried out to explore the influence of material properties, geometric properties, boundary conditions and thermal conditions on the free vibration and transient vibration characteristics of FG-CCCS. In this article, an analytical model is presented for vibration analysis of functionally graded conical–cylindrical coupled shell (FG-CCCS) subjected to thermal environment. In the present model, effective material parameters are temperature-dependent and are varied along the thickness direction. Firstly, artificial spring techniques are utilized to simulate the boundary and coupling conditions. The energy equations of FG-CCCS under thermal environment are derived within the framework of the first-order shear deformation theory (FSDT). Then, an efficient and accurate spectro-geometric method (SGM) and the form of the sum of the products of the circumferential Fourier harmonic function are employed to standardize the displacement admissible functions. On this basis, the governing differential equation for free vibration and transient vibration of FG-CCCS is derived using the Rayleigh–Ritz method. By comparing the present results with some existing data and finite element method (FEM) results, the accuracy and stability of present model are proved. Finally, some parametric studies are carried out to explore the influence of material properties, geometric properties, boundary conditions and thermal conditions on the free vibration and transient vibration characteristics of FG-CCCS. Free vibration Elsevier Spectro-geometric method (SGM) Elsevier Transient vibration Elsevier Thermal environment Elsevier Functionally graded conical–cylindrical coupled shell (FG-CCCS) Elsevier Zuo, Peng oth Zhong, Rui oth Guo, Chenchen oth Wang, Qingshan oth Enthalten in Elsevier Science Capobianco, Evangelina ELSEVIER Transmission of feto-placental metabolic anomalies through paternal lineage 2022 Amsterdam [u.a.] (DE-627)ELV007893337 volume:175 year:2022 pages:0 https://doi.org/10.1016/j.tws.2022.109138 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.92 Gynäkologie VZ AR 175 2022 0 |
spelling |
10.1016/j.tws.2022.109138 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001777.pica (DE-627)ELV057589844 (ELSEVIER)S0263-8231(22)00138-0 DE-627 ger DE-627 rakwb eng 610 VZ 44.92 bkl Shi, Xianjie verfasserin aut Thermal vibration analysis of functionally graded conical-cylindrical coupled shell based on spectro-geometric method 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this article, an analytical model is presented for vibration analysis of functionally graded conical–cylindrical coupled shell (FG-CCCS) subjected to thermal environment. In the present model, effective material parameters are temperature-dependent and are varied along the thickness direction. Firstly, artificial spring techniques are utilized to simulate the boundary and coupling conditions. The energy equations of FG-CCCS under thermal environment are derived within the framework of the first-order shear deformation theory (FSDT). Then, an efficient and accurate spectro-geometric method (SGM) and the form of the sum of the products of the circumferential Fourier harmonic function are employed to standardize the displacement admissible functions. On this basis, the governing differential equation for free vibration and transient vibration of FG-CCCS is derived using the Rayleigh–Ritz method. By comparing the present results with some existing data and finite element method (FEM) results, the accuracy and stability of present model are proved. Finally, some parametric studies are carried out to explore the influence of material properties, geometric properties, boundary conditions and thermal conditions on the free vibration and transient vibration characteristics of FG-CCCS. In this article, an analytical model is presented for vibration analysis of functionally graded conical–cylindrical coupled shell (FG-CCCS) subjected to thermal environment. In the present model, effective material parameters are temperature-dependent and are varied along the thickness direction. Firstly, artificial spring techniques are utilized to simulate the boundary and coupling conditions. The energy equations of FG-CCCS under thermal environment are derived within the framework of the first-order shear deformation theory (FSDT). Then, an efficient and accurate spectro-geometric method (SGM) and the form of the sum of the products of the circumferential Fourier harmonic function are employed to standardize the displacement admissible functions. On this basis, the governing differential equation for free vibration and transient vibration of FG-CCCS is derived using the Rayleigh–Ritz method. By comparing the present results with some existing data and finite element method (FEM) results, the accuracy and stability of present model are proved. Finally, some parametric studies are carried out to explore the influence of material properties, geometric properties, boundary conditions and thermal conditions on the free vibration and transient vibration characteristics of FG-CCCS. Free vibration Elsevier Spectro-geometric method (SGM) Elsevier Transient vibration Elsevier Thermal environment Elsevier Functionally graded conical–cylindrical coupled shell (FG-CCCS) Elsevier Zuo, Peng oth Zhong, Rui oth Guo, Chenchen oth Wang, Qingshan oth Enthalten in Elsevier Science Capobianco, Evangelina ELSEVIER Transmission of feto-placental metabolic anomalies through paternal lineage 2022 Amsterdam [u.a.] (DE-627)ELV007893337 volume:175 year:2022 pages:0 https://doi.org/10.1016/j.tws.2022.109138 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.92 Gynäkologie VZ AR 175 2022 0 |
allfields_unstemmed |
10.1016/j.tws.2022.109138 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001777.pica (DE-627)ELV057589844 (ELSEVIER)S0263-8231(22)00138-0 DE-627 ger DE-627 rakwb eng 610 VZ 44.92 bkl Shi, Xianjie verfasserin aut Thermal vibration analysis of functionally graded conical-cylindrical coupled shell based on spectro-geometric method 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this article, an analytical model is presented for vibration analysis of functionally graded conical–cylindrical coupled shell (FG-CCCS) subjected to thermal environment. In the present model, effective material parameters are temperature-dependent and are varied along the thickness direction. Firstly, artificial spring techniques are utilized to simulate the boundary and coupling conditions. The energy equations of FG-CCCS under thermal environment are derived within the framework of the first-order shear deformation theory (FSDT). Then, an efficient and accurate spectro-geometric method (SGM) and the form of the sum of the products of the circumferential Fourier harmonic function are employed to standardize the displacement admissible functions. On this basis, the governing differential equation for free vibration and transient vibration of FG-CCCS is derived using the Rayleigh–Ritz method. By comparing the present results with some existing data and finite element method (FEM) results, the accuracy and stability of present model are proved. Finally, some parametric studies are carried out to explore the influence of material properties, geometric properties, boundary conditions and thermal conditions on the free vibration and transient vibration characteristics of FG-CCCS. In this article, an analytical model is presented for vibration analysis of functionally graded conical–cylindrical coupled shell (FG-CCCS) subjected to thermal environment. In the present model, effective material parameters are temperature-dependent and are varied along the thickness direction. Firstly, artificial spring techniques are utilized to simulate the boundary and coupling conditions. The energy equations of FG-CCCS under thermal environment are derived within the framework of the first-order shear deformation theory (FSDT). Then, an efficient and accurate spectro-geometric method (SGM) and the form of the sum of the products of the circumferential Fourier harmonic function are employed to standardize the displacement admissible functions. On this basis, the governing differential equation for free vibration and transient vibration of FG-CCCS is derived using the Rayleigh–Ritz method. By comparing the present results with some existing data and finite element method (FEM) results, the accuracy and stability of present model are proved. Finally, some parametric studies are carried out to explore the influence of material properties, geometric properties, boundary conditions and thermal conditions on the free vibration and transient vibration characteristics of FG-CCCS. Free vibration Elsevier Spectro-geometric method (SGM) Elsevier Transient vibration Elsevier Thermal environment Elsevier Functionally graded conical–cylindrical coupled shell (FG-CCCS) Elsevier Zuo, Peng oth Zhong, Rui oth Guo, Chenchen oth Wang, Qingshan oth Enthalten in Elsevier Science Capobianco, Evangelina ELSEVIER Transmission of feto-placental metabolic anomalies through paternal lineage 2022 Amsterdam [u.a.] (DE-627)ELV007893337 volume:175 year:2022 pages:0 https://doi.org/10.1016/j.tws.2022.109138 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.92 Gynäkologie VZ AR 175 2022 0 |
allfieldsGer |
10.1016/j.tws.2022.109138 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001777.pica (DE-627)ELV057589844 (ELSEVIER)S0263-8231(22)00138-0 DE-627 ger DE-627 rakwb eng 610 VZ 44.92 bkl Shi, Xianjie verfasserin aut Thermal vibration analysis of functionally graded conical-cylindrical coupled shell based on spectro-geometric method 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this article, an analytical model is presented for vibration analysis of functionally graded conical–cylindrical coupled shell (FG-CCCS) subjected to thermal environment. In the present model, effective material parameters are temperature-dependent and are varied along the thickness direction. Firstly, artificial spring techniques are utilized to simulate the boundary and coupling conditions. The energy equations of FG-CCCS under thermal environment are derived within the framework of the first-order shear deformation theory (FSDT). Then, an efficient and accurate spectro-geometric method (SGM) and the form of the sum of the products of the circumferential Fourier harmonic function are employed to standardize the displacement admissible functions. On this basis, the governing differential equation for free vibration and transient vibration of FG-CCCS is derived using the Rayleigh–Ritz method. By comparing the present results with some existing data and finite element method (FEM) results, the accuracy and stability of present model are proved. Finally, some parametric studies are carried out to explore the influence of material properties, geometric properties, boundary conditions and thermal conditions on the free vibration and transient vibration characteristics of FG-CCCS. In this article, an analytical model is presented for vibration analysis of functionally graded conical–cylindrical coupled shell (FG-CCCS) subjected to thermal environment. In the present model, effective material parameters are temperature-dependent and are varied along the thickness direction. Firstly, artificial spring techniques are utilized to simulate the boundary and coupling conditions. The energy equations of FG-CCCS under thermal environment are derived within the framework of the first-order shear deformation theory (FSDT). Then, an efficient and accurate spectro-geometric method (SGM) and the form of the sum of the products of the circumferential Fourier harmonic function are employed to standardize the displacement admissible functions. On this basis, the governing differential equation for free vibration and transient vibration of FG-CCCS is derived using the Rayleigh–Ritz method. By comparing the present results with some existing data and finite element method (FEM) results, the accuracy and stability of present model are proved. Finally, some parametric studies are carried out to explore the influence of material properties, geometric properties, boundary conditions and thermal conditions on the free vibration and transient vibration characteristics of FG-CCCS. Free vibration Elsevier Spectro-geometric method (SGM) Elsevier Transient vibration Elsevier Thermal environment Elsevier Functionally graded conical–cylindrical coupled shell (FG-CCCS) Elsevier Zuo, Peng oth Zhong, Rui oth Guo, Chenchen oth Wang, Qingshan oth Enthalten in Elsevier Science Capobianco, Evangelina ELSEVIER Transmission of feto-placental metabolic anomalies through paternal lineage 2022 Amsterdam [u.a.] (DE-627)ELV007893337 volume:175 year:2022 pages:0 https://doi.org/10.1016/j.tws.2022.109138 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.92 Gynäkologie VZ AR 175 2022 0 |
allfieldsSound |
10.1016/j.tws.2022.109138 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001777.pica (DE-627)ELV057589844 (ELSEVIER)S0263-8231(22)00138-0 DE-627 ger DE-627 rakwb eng 610 VZ 44.92 bkl Shi, Xianjie verfasserin aut Thermal vibration analysis of functionally graded conical-cylindrical coupled shell based on spectro-geometric method 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this article, an analytical model is presented for vibration analysis of functionally graded conical–cylindrical coupled shell (FG-CCCS) subjected to thermal environment. In the present model, effective material parameters are temperature-dependent and are varied along the thickness direction. Firstly, artificial spring techniques are utilized to simulate the boundary and coupling conditions. The energy equations of FG-CCCS under thermal environment are derived within the framework of the first-order shear deformation theory (FSDT). Then, an efficient and accurate spectro-geometric method (SGM) and the form of the sum of the products of the circumferential Fourier harmonic function are employed to standardize the displacement admissible functions. On this basis, the governing differential equation for free vibration and transient vibration of FG-CCCS is derived using the Rayleigh–Ritz method. By comparing the present results with some existing data and finite element method (FEM) results, the accuracy and stability of present model are proved. Finally, some parametric studies are carried out to explore the influence of material properties, geometric properties, boundary conditions and thermal conditions on the free vibration and transient vibration characteristics of FG-CCCS. In this article, an analytical model is presented for vibration analysis of functionally graded conical–cylindrical coupled shell (FG-CCCS) subjected to thermal environment. In the present model, effective material parameters are temperature-dependent and are varied along the thickness direction. Firstly, artificial spring techniques are utilized to simulate the boundary and coupling conditions. The energy equations of FG-CCCS under thermal environment are derived within the framework of the first-order shear deformation theory (FSDT). Then, an efficient and accurate spectro-geometric method (SGM) and the form of the sum of the products of the circumferential Fourier harmonic function are employed to standardize the displacement admissible functions. On this basis, the governing differential equation for free vibration and transient vibration of FG-CCCS is derived using the Rayleigh–Ritz method. By comparing the present results with some existing data and finite element method (FEM) results, the accuracy and stability of present model are proved. Finally, some parametric studies are carried out to explore the influence of material properties, geometric properties, boundary conditions and thermal conditions on the free vibration and transient vibration characteristics of FG-CCCS. Free vibration Elsevier Spectro-geometric method (SGM) Elsevier Transient vibration Elsevier Thermal environment Elsevier Functionally graded conical–cylindrical coupled shell (FG-CCCS) Elsevier Zuo, Peng oth Zhong, Rui oth Guo, Chenchen oth Wang, Qingshan oth Enthalten in Elsevier Science Capobianco, Evangelina ELSEVIER Transmission of feto-placental metabolic anomalies through paternal lineage 2022 Amsterdam [u.a.] (DE-627)ELV007893337 volume:175 year:2022 pages:0 https://doi.org/10.1016/j.tws.2022.109138 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.92 Gynäkologie VZ AR 175 2022 0 |
language |
English |
source |
Enthalten in Transmission of feto-placental metabolic anomalies through paternal lineage Amsterdam [u.a.] volume:175 year:2022 pages:0 |
sourceStr |
Enthalten in Transmission of feto-placental metabolic anomalies through paternal lineage Amsterdam [u.a.] volume:175 year:2022 pages:0 |
format_phy_str_mv |
Article |
bklname |
Gynäkologie |
institution |
findex.gbv.de |
topic_facet |
Free vibration Spectro-geometric method (SGM) Transient vibration Thermal environment Functionally graded conical–cylindrical coupled shell (FG-CCCS) |
dewey-raw |
610 |
isfreeaccess_bool |
false |
container_title |
Transmission of feto-placental metabolic anomalies through paternal lineage |
authorswithroles_txt_mv |
Shi, Xianjie @@aut@@ Zuo, Peng @@oth@@ Zhong, Rui @@oth@@ Guo, Chenchen @@oth@@ Wang, Qingshan @@oth@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
ELV007893337 |
dewey-sort |
3610 |
id |
ELV057589844 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV057589844</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626045358.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220808s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.tws.2022.109138</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001777.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV057589844</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0263-8231(22)00138-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.92</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Shi, Xianjie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Thermal vibration analysis of functionally graded conical-cylindrical coupled shell based on spectro-geometric method</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this article, an analytical model is presented for vibration analysis of functionally graded conical–cylindrical coupled shell (FG-CCCS) subjected to thermal environment. In the present model, effective material parameters are temperature-dependent and are varied along the thickness direction. Firstly, artificial spring techniques are utilized to simulate the boundary and coupling conditions. The energy equations of FG-CCCS under thermal environment are derived within the framework of the first-order shear deformation theory (FSDT). Then, an efficient and accurate spectro-geometric method (SGM) and the form of the sum of the products of the circumferential Fourier harmonic function are employed to standardize the displacement admissible functions. On this basis, the governing differential equation for free vibration and transient vibration of FG-CCCS is derived using the Rayleigh–Ritz method. By comparing the present results with some existing data and finite element method (FEM) results, the accuracy and stability of present model are proved. Finally, some parametric studies are carried out to explore the influence of material properties, geometric properties, boundary conditions and thermal conditions on the free vibration and transient vibration characteristics of FG-CCCS.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this article, an analytical model is presented for vibration analysis of functionally graded conical–cylindrical coupled shell (FG-CCCS) subjected to thermal environment. In the present model, effective material parameters are temperature-dependent and are varied along the thickness direction. Firstly, artificial spring techniques are utilized to simulate the boundary and coupling conditions. The energy equations of FG-CCCS under thermal environment are derived within the framework of the first-order shear deformation theory (FSDT). Then, an efficient and accurate spectro-geometric method (SGM) and the form of the sum of the products of the circumferential Fourier harmonic function are employed to standardize the displacement admissible functions. On this basis, the governing differential equation for free vibration and transient vibration of FG-CCCS is derived using the Rayleigh–Ritz method. By comparing the present results with some existing data and finite element method (FEM) results, the accuracy and stability of present model are proved. Finally, some parametric studies are carried out to explore the influence of material properties, geometric properties, boundary conditions and thermal conditions on the free vibration and transient vibration characteristics of FG-CCCS.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Free vibration</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Spectro-geometric method (SGM)</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Transient vibration</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Thermal environment</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Functionally graded conical–cylindrical coupled shell (FG-CCCS)</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zuo, Peng</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhong, Rui</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guo, Chenchen</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Qingshan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Capobianco, Evangelina ELSEVIER</subfield><subfield code="t">Transmission of feto-placental metabolic anomalies through paternal lineage</subfield><subfield code="d">2022</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV007893337</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:175</subfield><subfield code="g">year:2022</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.tws.2022.109138</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.92</subfield><subfield code="j">Gynäkologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">175</subfield><subfield code="j">2022</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
author |
Shi, Xianjie |
spellingShingle |
Shi, Xianjie ddc 610 bkl 44.92 Elsevier Free vibration Elsevier Spectro-geometric method (SGM) Elsevier Transient vibration Elsevier Thermal environment Elsevier Functionally graded conical–cylindrical coupled shell (FG-CCCS) Thermal vibration analysis of functionally graded conical-cylindrical coupled shell based on spectro-geometric method |
authorStr |
Shi, Xianjie |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV007893337 |
format |
electronic Article |
dewey-ones |
610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
610 VZ 44.92 bkl Thermal vibration analysis of functionally graded conical-cylindrical coupled shell based on spectro-geometric method Free vibration Elsevier Spectro-geometric method (SGM) Elsevier Transient vibration Elsevier Thermal environment Elsevier Functionally graded conical–cylindrical coupled shell (FG-CCCS) Elsevier |
topic |
ddc 610 bkl 44.92 Elsevier Free vibration Elsevier Spectro-geometric method (SGM) Elsevier Transient vibration Elsevier Thermal environment Elsevier Functionally graded conical–cylindrical coupled shell (FG-CCCS) |
topic_unstemmed |
ddc 610 bkl 44.92 Elsevier Free vibration Elsevier Spectro-geometric method (SGM) Elsevier Transient vibration Elsevier Thermal environment Elsevier Functionally graded conical–cylindrical coupled shell (FG-CCCS) |
topic_browse |
ddc 610 bkl 44.92 Elsevier Free vibration Elsevier Spectro-geometric method (SGM) Elsevier Transient vibration Elsevier Thermal environment Elsevier Functionally graded conical–cylindrical coupled shell (FG-CCCS) |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
p z pz r z rz c g cg q w qw |
hierarchy_parent_title |
Transmission of feto-placental metabolic anomalies through paternal lineage |
hierarchy_parent_id |
ELV007893337 |
dewey-tens |
610 - Medicine & health |
hierarchy_top_title |
Transmission of feto-placental metabolic anomalies through paternal lineage |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV007893337 |
title |
Thermal vibration analysis of functionally graded conical-cylindrical coupled shell based on spectro-geometric method |
ctrlnum |
(DE-627)ELV057589844 (ELSEVIER)S0263-8231(22)00138-0 |
title_full |
Thermal vibration analysis of functionally graded conical-cylindrical coupled shell based on spectro-geometric method |
author_sort |
Shi, Xianjie |
journal |
Transmission of feto-placental metabolic anomalies through paternal lineage |
journalStr |
Transmission of feto-placental metabolic anomalies through paternal lineage |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
zzz |
container_start_page |
0 |
author_browse |
Shi, Xianjie |
container_volume |
175 |
class |
610 VZ 44.92 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Shi, Xianjie |
doi_str_mv |
10.1016/j.tws.2022.109138 |
dewey-full |
610 |
title_sort |
thermal vibration analysis of functionally graded conical-cylindrical coupled shell based on spectro-geometric method |
title_auth |
Thermal vibration analysis of functionally graded conical-cylindrical coupled shell based on spectro-geometric method |
abstract |
In this article, an analytical model is presented for vibration analysis of functionally graded conical–cylindrical coupled shell (FG-CCCS) subjected to thermal environment. In the present model, effective material parameters are temperature-dependent and are varied along the thickness direction. Firstly, artificial spring techniques are utilized to simulate the boundary and coupling conditions. The energy equations of FG-CCCS under thermal environment are derived within the framework of the first-order shear deformation theory (FSDT). Then, an efficient and accurate spectro-geometric method (SGM) and the form of the sum of the products of the circumferential Fourier harmonic function are employed to standardize the displacement admissible functions. On this basis, the governing differential equation for free vibration and transient vibration of FG-CCCS is derived using the Rayleigh–Ritz method. By comparing the present results with some existing data and finite element method (FEM) results, the accuracy and stability of present model are proved. Finally, some parametric studies are carried out to explore the influence of material properties, geometric properties, boundary conditions and thermal conditions on the free vibration and transient vibration characteristics of FG-CCCS. |
abstractGer |
In this article, an analytical model is presented for vibration analysis of functionally graded conical–cylindrical coupled shell (FG-CCCS) subjected to thermal environment. In the present model, effective material parameters are temperature-dependent and are varied along the thickness direction. Firstly, artificial spring techniques are utilized to simulate the boundary and coupling conditions. The energy equations of FG-CCCS under thermal environment are derived within the framework of the first-order shear deformation theory (FSDT). Then, an efficient and accurate spectro-geometric method (SGM) and the form of the sum of the products of the circumferential Fourier harmonic function are employed to standardize the displacement admissible functions. On this basis, the governing differential equation for free vibration and transient vibration of FG-CCCS is derived using the Rayleigh–Ritz method. By comparing the present results with some existing data and finite element method (FEM) results, the accuracy and stability of present model are proved. Finally, some parametric studies are carried out to explore the influence of material properties, geometric properties, boundary conditions and thermal conditions on the free vibration and transient vibration characteristics of FG-CCCS. |
abstract_unstemmed |
In this article, an analytical model is presented for vibration analysis of functionally graded conical–cylindrical coupled shell (FG-CCCS) subjected to thermal environment. In the present model, effective material parameters are temperature-dependent and are varied along the thickness direction. Firstly, artificial spring techniques are utilized to simulate the boundary and coupling conditions. The energy equations of FG-CCCS under thermal environment are derived within the framework of the first-order shear deformation theory (FSDT). Then, an efficient and accurate spectro-geometric method (SGM) and the form of the sum of the products of the circumferential Fourier harmonic function are employed to standardize the displacement admissible functions. On this basis, the governing differential equation for free vibration and transient vibration of FG-CCCS is derived using the Rayleigh–Ritz method. By comparing the present results with some existing data and finite element method (FEM) results, the accuracy and stability of present model are proved. Finally, some parametric studies are carried out to explore the influence of material properties, geometric properties, boundary conditions and thermal conditions on the free vibration and transient vibration characteristics of FG-CCCS. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA |
title_short |
Thermal vibration analysis of functionally graded conical-cylindrical coupled shell based on spectro-geometric method |
url |
https://doi.org/10.1016/j.tws.2022.109138 |
remote_bool |
true |
author2 |
Zuo, Peng Zhong, Rui Guo, Chenchen Wang, Qingshan |
author2Str |
Zuo, Peng Zhong, Rui Guo, Chenchen Wang, Qingshan |
ppnlink |
ELV007893337 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth |
doi_str |
10.1016/j.tws.2022.109138 |
up_date |
2024-07-06T16:35:04.488Z |
_version_ |
1803848205718257664 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV057589844</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626045358.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220808s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.tws.2022.109138</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001777.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV057589844</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0263-8231(22)00138-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.92</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Shi, Xianjie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Thermal vibration analysis of functionally graded conical-cylindrical coupled shell based on spectro-geometric method</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this article, an analytical model is presented for vibration analysis of functionally graded conical–cylindrical coupled shell (FG-CCCS) subjected to thermal environment. In the present model, effective material parameters are temperature-dependent and are varied along the thickness direction. Firstly, artificial spring techniques are utilized to simulate the boundary and coupling conditions. The energy equations of FG-CCCS under thermal environment are derived within the framework of the first-order shear deformation theory (FSDT). Then, an efficient and accurate spectro-geometric method (SGM) and the form of the sum of the products of the circumferential Fourier harmonic function are employed to standardize the displacement admissible functions. On this basis, the governing differential equation for free vibration and transient vibration of FG-CCCS is derived using the Rayleigh–Ritz method. By comparing the present results with some existing data and finite element method (FEM) results, the accuracy and stability of present model are proved. Finally, some parametric studies are carried out to explore the influence of material properties, geometric properties, boundary conditions and thermal conditions on the free vibration and transient vibration characteristics of FG-CCCS.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this article, an analytical model is presented for vibration analysis of functionally graded conical–cylindrical coupled shell (FG-CCCS) subjected to thermal environment. In the present model, effective material parameters are temperature-dependent and are varied along the thickness direction. Firstly, artificial spring techniques are utilized to simulate the boundary and coupling conditions. The energy equations of FG-CCCS under thermal environment are derived within the framework of the first-order shear deformation theory (FSDT). Then, an efficient and accurate spectro-geometric method (SGM) and the form of the sum of the products of the circumferential Fourier harmonic function are employed to standardize the displacement admissible functions. On this basis, the governing differential equation for free vibration and transient vibration of FG-CCCS is derived using the Rayleigh–Ritz method. By comparing the present results with some existing data and finite element method (FEM) results, the accuracy and stability of present model are proved. Finally, some parametric studies are carried out to explore the influence of material properties, geometric properties, boundary conditions and thermal conditions on the free vibration and transient vibration characteristics of FG-CCCS.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Free vibration</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Spectro-geometric method (SGM)</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Transient vibration</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Thermal environment</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Functionally graded conical–cylindrical coupled shell (FG-CCCS)</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zuo, Peng</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhong, Rui</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guo, Chenchen</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Qingshan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Capobianco, Evangelina ELSEVIER</subfield><subfield code="t">Transmission of feto-placental metabolic anomalies through paternal lineage</subfield><subfield code="d">2022</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV007893337</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:175</subfield><subfield code="g">year:2022</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.tws.2022.109138</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.92</subfield><subfield code="j">Gynäkologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">175</subfield><subfield code="j">2022</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
score |
7.4015427 |