Prediction of crushed numbers and sizes of ballast particles after breakage using machine learning techniques
Display Omitted
Autor*in: |
Aela, Peyman [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Experimental sand burial and precipitation enhancement alter plant and soil carbon allocation in a semi-arid steppe in north China - Ye, Xuehua ELSEVIER, 2018, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:337 ; year:2022 ; day:27 ; month:06 ; pages:0 |
Links: |
---|
DOI / URN: |
10.1016/j.conbuildmat.2022.127469 |
---|
Katalog-ID: |
ELV05762559X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV05762559X | ||
003 | DE-627 | ||
005 | 20230625002558.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220808s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.conbuildmat.2022.127469 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001770.pica |
035 | |a (DE-627)ELV05762559X | ||
035 | |a (ELSEVIER)S0950-0618(22)01146-1 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 333.7 |a 610 |q VZ |
084 | |a 43.12 |2 bkl | ||
084 | |a 43.13 |2 bkl | ||
084 | |a 44.13 |2 bkl | ||
100 | 1 | |a Aela, Peyman |e verfasserin |4 aut | |
245 | 1 | 0 | |a Prediction of crushed numbers and sizes of ballast particles after breakage using machine learning techniques |
264 | 1 | |c 2022 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Display Omitted | ||
650 | 7 | |a Single-particle crushing test |2 Elsevier | |
650 | 7 | |a Ballast |2 Elsevier | |
650 | 7 | |a Machine learning |2 Elsevier | |
650 | 7 | |a Number of crushed particles |2 Elsevier | |
650 | 7 | |a Breakage model |2 Elsevier | |
650 | 7 | |a DEM |2 Elsevier | |
700 | 1 | |a Wang, Junyi |4 oth | |
700 | 1 | |a Yousefian, Kaveh |4 oth | |
700 | 1 | |a Fu, Hao |4 oth | |
700 | 1 | |a Yin, Zhen-Yu |4 oth | |
700 | 1 | |a Jing, Guoqing |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Ye, Xuehua ELSEVIER |t Experimental sand burial and precipitation enhancement alter plant and soil carbon allocation in a semi-arid steppe in north China |d 2018 |g Amsterdam [u.a.] |w (DE-627)ELV001081918 |
773 | 1 | 8 | |g volume:337 |g year:2022 |g day:27 |g month:06 |g pages:0 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.conbuildmat.2022.127469 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OPC-GGO | ||
936 | b | k | |a 43.12 |j Umweltchemie |q VZ |
936 | b | k | |a 43.13 |j Umwelttoxikologie |q VZ |
936 | b | k | |a 44.13 |j Medizinische Ökologie |q VZ |
951 | |a AR | ||
952 | |d 337 |j 2022 |b 27 |c 0627 |h 0 |
author_variant |
p a pa |
---|---|
matchkey_str |
aelapeymanwangjunyiyousefiankavehfuhaoyi:2022----:rdcinfrsenmesnszsfalsprilsfebekgui |
hierarchy_sort_str |
2022 |
bklnumber |
43.12 43.13 44.13 |
publishDate |
2022 |
allfields |
10.1016/j.conbuildmat.2022.127469 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001770.pica (DE-627)ELV05762559X (ELSEVIER)S0950-0618(22)01146-1 DE-627 ger DE-627 rakwb eng 333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl Aela, Peyman verfasserin aut Prediction of crushed numbers and sizes of ballast particles after breakage using machine learning techniques 2022 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Display Omitted Single-particle crushing test Elsevier Ballast Elsevier Machine learning Elsevier Number of crushed particles Elsevier Breakage model Elsevier DEM Elsevier Wang, Junyi oth Yousefian, Kaveh oth Fu, Hao oth Yin, Zhen-Yu oth Jing, Guoqing oth Enthalten in Elsevier Science Ye, Xuehua ELSEVIER Experimental sand burial and precipitation enhancement alter plant and soil carbon allocation in a semi-arid steppe in north China 2018 Amsterdam [u.a.] (DE-627)ELV001081918 volume:337 year:2022 day:27 month:06 pages:0 https://doi.org/10.1016/j.conbuildmat.2022.127469 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO 43.12 Umweltchemie VZ 43.13 Umwelttoxikologie VZ 44.13 Medizinische Ökologie VZ AR 337 2022 27 0627 0 |
spelling |
10.1016/j.conbuildmat.2022.127469 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001770.pica (DE-627)ELV05762559X (ELSEVIER)S0950-0618(22)01146-1 DE-627 ger DE-627 rakwb eng 333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl Aela, Peyman verfasserin aut Prediction of crushed numbers and sizes of ballast particles after breakage using machine learning techniques 2022 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Display Omitted Single-particle crushing test Elsevier Ballast Elsevier Machine learning Elsevier Number of crushed particles Elsevier Breakage model Elsevier DEM Elsevier Wang, Junyi oth Yousefian, Kaveh oth Fu, Hao oth Yin, Zhen-Yu oth Jing, Guoqing oth Enthalten in Elsevier Science Ye, Xuehua ELSEVIER Experimental sand burial and precipitation enhancement alter plant and soil carbon allocation in a semi-arid steppe in north China 2018 Amsterdam [u.a.] (DE-627)ELV001081918 volume:337 year:2022 day:27 month:06 pages:0 https://doi.org/10.1016/j.conbuildmat.2022.127469 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO 43.12 Umweltchemie VZ 43.13 Umwelttoxikologie VZ 44.13 Medizinische Ökologie VZ AR 337 2022 27 0627 0 |
allfields_unstemmed |
10.1016/j.conbuildmat.2022.127469 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001770.pica (DE-627)ELV05762559X (ELSEVIER)S0950-0618(22)01146-1 DE-627 ger DE-627 rakwb eng 333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl Aela, Peyman verfasserin aut Prediction of crushed numbers and sizes of ballast particles after breakage using machine learning techniques 2022 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Display Omitted Single-particle crushing test Elsevier Ballast Elsevier Machine learning Elsevier Number of crushed particles Elsevier Breakage model Elsevier DEM Elsevier Wang, Junyi oth Yousefian, Kaveh oth Fu, Hao oth Yin, Zhen-Yu oth Jing, Guoqing oth Enthalten in Elsevier Science Ye, Xuehua ELSEVIER Experimental sand burial and precipitation enhancement alter plant and soil carbon allocation in a semi-arid steppe in north China 2018 Amsterdam [u.a.] (DE-627)ELV001081918 volume:337 year:2022 day:27 month:06 pages:0 https://doi.org/10.1016/j.conbuildmat.2022.127469 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO 43.12 Umweltchemie VZ 43.13 Umwelttoxikologie VZ 44.13 Medizinische Ökologie VZ AR 337 2022 27 0627 0 |
allfieldsGer |
10.1016/j.conbuildmat.2022.127469 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001770.pica (DE-627)ELV05762559X (ELSEVIER)S0950-0618(22)01146-1 DE-627 ger DE-627 rakwb eng 333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl Aela, Peyman verfasserin aut Prediction of crushed numbers and sizes of ballast particles after breakage using machine learning techniques 2022 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Display Omitted Single-particle crushing test Elsevier Ballast Elsevier Machine learning Elsevier Number of crushed particles Elsevier Breakage model Elsevier DEM Elsevier Wang, Junyi oth Yousefian, Kaveh oth Fu, Hao oth Yin, Zhen-Yu oth Jing, Guoqing oth Enthalten in Elsevier Science Ye, Xuehua ELSEVIER Experimental sand burial and precipitation enhancement alter plant and soil carbon allocation in a semi-arid steppe in north China 2018 Amsterdam [u.a.] (DE-627)ELV001081918 volume:337 year:2022 day:27 month:06 pages:0 https://doi.org/10.1016/j.conbuildmat.2022.127469 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO 43.12 Umweltchemie VZ 43.13 Umwelttoxikologie VZ 44.13 Medizinische Ökologie VZ AR 337 2022 27 0627 0 |
allfieldsSound |
10.1016/j.conbuildmat.2022.127469 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001770.pica (DE-627)ELV05762559X (ELSEVIER)S0950-0618(22)01146-1 DE-627 ger DE-627 rakwb eng 333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl Aela, Peyman verfasserin aut Prediction of crushed numbers and sizes of ballast particles after breakage using machine learning techniques 2022 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Display Omitted Single-particle crushing test Elsevier Ballast Elsevier Machine learning Elsevier Number of crushed particles Elsevier Breakage model Elsevier DEM Elsevier Wang, Junyi oth Yousefian, Kaveh oth Fu, Hao oth Yin, Zhen-Yu oth Jing, Guoqing oth Enthalten in Elsevier Science Ye, Xuehua ELSEVIER Experimental sand burial and precipitation enhancement alter plant and soil carbon allocation in a semi-arid steppe in north China 2018 Amsterdam [u.a.] (DE-627)ELV001081918 volume:337 year:2022 day:27 month:06 pages:0 https://doi.org/10.1016/j.conbuildmat.2022.127469 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO 43.12 Umweltchemie VZ 43.13 Umwelttoxikologie VZ 44.13 Medizinische Ökologie VZ AR 337 2022 27 0627 0 |
language |
English |
source |
Enthalten in Experimental sand burial and precipitation enhancement alter plant and soil carbon allocation in a semi-arid steppe in north China Amsterdam [u.a.] volume:337 year:2022 day:27 month:06 pages:0 |
sourceStr |
Enthalten in Experimental sand burial and precipitation enhancement alter plant and soil carbon allocation in a semi-arid steppe in north China Amsterdam [u.a.] volume:337 year:2022 day:27 month:06 pages:0 |
format_phy_str_mv |
Article |
bklname |
Umweltchemie Umwelttoxikologie Medizinische Ökologie |
institution |
findex.gbv.de |
topic_facet |
Single-particle crushing test Ballast Machine learning Number of crushed particles Breakage model DEM |
dewey-raw |
333.7 |
isfreeaccess_bool |
false |
container_title |
Experimental sand burial and precipitation enhancement alter plant and soil carbon allocation in a semi-arid steppe in north China |
authorswithroles_txt_mv |
Aela, Peyman @@aut@@ Wang, Junyi @@oth@@ Yousefian, Kaveh @@oth@@ Fu, Hao @@oth@@ Yin, Zhen-Yu @@oth@@ Jing, Guoqing @@oth@@ |
publishDateDaySort_date |
2022-01-27T00:00:00Z |
hierarchy_top_id |
ELV001081918 |
dewey-sort |
3333.7 |
id |
ELV05762559X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV05762559X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625002558.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220808s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.conbuildmat.2022.127469</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001770.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV05762559X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0950-0618(22)01146-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">333.7</subfield><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.12</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.13</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.13</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Aela, Peyman</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Prediction of crushed numbers and sizes of ballast particles after breakage using machine learning techniques</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Display Omitted</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Single-particle crushing test</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Ballast</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Machine learning</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Number of crushed particles</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Breakage model</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">DEM</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Junyi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yousefian, Kaveh</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fu, Hao</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yin, Zhen-Yu</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jing, Guoqing</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Ye, Xuehua ELSEVIER</subfield><subfield code="t">Experimental sand burial and precipitation enhancement alter plant and soil carbon allocation in a semi-arid steppe in north China</subfield><subfield code="d">2018</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV001081918</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:337</subfield><subfield code="g">year:2022</subfield><subfield code="g">day:27</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.conbuildmat.2022.127469</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.12</subfield><subfield code="j">Umweltchemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.13</subfield><subfield code="j">Umwelttoxikologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.13</subfield><subfield code="j">Medizinische Ökologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">337</subfield><subfield code="j">2022</subfield><subfield code="b">27</subfield><subfield code="c">0627</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
author |
Aela, Peyman |
spellingShingle |
Aela, Peyman ddc 333.7 bkl 43.12 bkl 43.13 bkl 44.13 Elsevier Single-particle crushing test Elsevier Ballast Elsevier Machine learning Elsevier Number of crushed particles Elsevier Breakage model Elsevier DEM Prediction of crushed numbers and sizes of ballast particles after breakage using machine learning techniques |
authorStr |
Aela, Peyman |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV001081918 |
format |
electronic Article |
dewey-ones |
333 - Economics of land & energy 610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl Prediction of crushed numbers and sizes of ballast particles after breakage using machine learning techniques Single-particle crushing test Elsevier Ballast Elsevier Machine learning Elsevier Number of crushed particles Elsevier Breakage model Elsevier DEM Elsevier |
topic |
ddc 333.7 bkl 43.12 bkl 43.13 bkl 44.13 Elsevier Single-particle crushing test Elsevier Ballast Elsevier Machine learning Elsevier Number of crushed particles Elsevier Breakage model Elsevier DEM |
topic_unstemmed |
ddc 333.7 bkl 43.12 bkl 43.13 bkl 44.13 Elsevier Single-particle crushing test Elsevier Ballast Elsevier Machine learning Elsevier Number of crushed particles Elsevier Breakage model Elsevier DEM |
topic_browse |
ddc 333.7 bkl 43.12 bkl 43.13 bkl 44.13 Elsevier Single-particle crushing test Elsevier Ballast Elsevier Machine learning Elsevier Number of crushed particles Elsevier Breakage model Elsevier DEM |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
j w jw k y ky h f hf z y y zyy g j gj |
hierarchy_parent_title |
Experimental sand burial and precipitation enhancement alter plant and soil carbon allocation in a semi-arid steppe in north China |
hierarchy_parent_id |
ELV001081918 |
dewey-tens |
330 - Economics 610 - Medicine & health |
hierarchy_top_title |
Experimental sand burial and precipitation enhancement alter plant and soil carbon allocation in a semi-arid steppe in north China |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV001081918 |
title |
Prediction of crushed numbers and sizes of ballast particles after breakage using machine learning techniques |
ctrlnum |
(DE-627)ELV05762559X (ELSEVIER)S0950-0618(22)01146-1 |
title_full |
Prediction of crushed numbers and sizes of ballast particles after breakage using machine learning techniques |
author_sort |
Aela, Peyman |
journal |
Experimental sand burial and precipitation enhancement alter plant and soil carbon allocation in a semi-arid steppe in north China |
journalStr |
Experimental sand burial and precipitation enhancement alter plant and soil carbon allocation in a semi-arid steppe in north China |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
300 - Social sciences 600 - Technology |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
zzz |
container_start_page |
0 |
author_browse |
Aela, Peyman |
container_volume |
337 |
class |
333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Aela, Peyman |
doi_str_mv |
10.1016/j.conbuildmat.2022.127469 |
dewey-full |
333.7 610 |
title_sort |
prediction of crushed numbers and sizes of ballast particles after breakage using machine learning techniques |
title_auth |
Prediction of crushed numbers and sizes of ballast particles after breakage using machine learning techniques |
abstract |
Display Omitted |
abstractGer |
Display Omitted |
abstract_unstemmed |
Display Omitted |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO |
title_short |
Prediction of crushed numbers and sizes of ballast particles after breakage using machine learning techniques |
url |
https://doi.org/10.1016/j.conbuildmat.2022.127469 |
remote_bool |
true |
author2 |
Wang, Junyi Yousefian, Kaveh Fu, Hao Yin, Zhen-Yu Jing, Guoqing |
author2Str |
Wang, Junyi Yousefian, Kaveh Fu, Hao Yin, Zhen-Yu Jing, Guoqing |
ppnlink |
ELV001081918 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth |
doi_str |
10.1016/j.conbuildmat.2022.127469 |
up_date |
2024-07-06T16:41:16.201Z |
_version_ |
1803848595491782656 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV05762559X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625002558.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220808s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.conbuildmat.2022.127469</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001770.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV05762559X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0950-0618(22)01146-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">333.7</subfield><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.12</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.13</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.13</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Aela, Peyman</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Prediction of crushed numbers and sizes of ballast particles after breakage using machine learning techniques</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Display Omitted</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Single-particle crushing test</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Ballast</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Machine learning</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Number of crushed particles</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Breakage model</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">DEM</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Junyi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yousefian, Kaveh</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fu, Hao</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yin, Zhen-Yu</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jing, Guoqing</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Ye, Xuehua ELSEVIER</subfield><subfield code="t">Experimental sand burial and precipitation enhancement alter plant and soil carbon allocation in a semi-arid steppe in north China</subfield><subfield code="d">2018</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV001081918</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:337</subfield><subfield code="g">year:2022</subfield><subfield code="g">day:27</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.conbuildmat.2022.127469</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.12</subfield><subfield code="j">Umweltchemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.13</subfield><subfield code="j">Umwelttoxikologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.13</subfield><subfield code="j">Medizinische Ökologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">337</subfield><subfield code="j">2022</subfield><subfield code="b">27</subfield><subfield code="c">0627</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
score |
7.4021244 |