Soft pneumatic actuators adapted in multiple environments: A novel fuzzy cascade strategy for the dynamics control with hysteresis compensation
Soft pneumatic actuators (SPAs) have been widely used in the design of various soft robots due to their compliance, adaptability, and high force density characteristics. However, it is a challenge to accurately model and control such soft pneumatic robotic systems due to inherent hysteresis nonlinea...
Ausführliche Beschreibung
Autor*in: |
Liu, Zhaobing [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022transfer abstract |
---|
Übergeordnetes Werk: |
Enthalten in: Potential use of dietary fibre from Hibiscus sabdariffa and Agave tequilana in obesity management - Moyano, Gabriel ELSEVIER, 2016, the science of intelligent machines : an international journal, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:84 ; year:2022 ; pages:0 |
Links: |
---|
DOI / URN: |
10.1016/j.mechatronics.2022.102797 |
---|
Katalog-ID: |
ELV057663114 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV057663114 | ||
003 | DE-627 | ||
005 | 20230626045522.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220808s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.mechatronics.2022.102797 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001768.pica |
035 | |a (DE-627)ELV057663114 | ||
035 | |a (ELSEVIER)S0957-4158(22)00042-3 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 630 |q VZ |
082 | 0 | 4 | |a 640 |q VZ |
082 | 0 | 4 | |a 610 |q VZ |
082 | 0 | 4 | |a 610 |q VZ |
084 | |a 44.96 |2 bkl | ||
100 | 1 | |a Liu, Zhaobing |e verfasserin |4 aut | |
245 | 1 | 0 | |a Soft pneumatic actuators adapted in multiple environments: A novel fuzzy cascade strategy for the dynamics control with hysteresis compensation |
264 | 1 | |c 2022transfer abstract | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Soft pneumatic actuators (SPAs) have been widely used in the design of various soft robots due to their compliance, adaptability, and high force density characteristics. However, it is a challenge to accurately model and control such soft pneumatic robotic systems due to inherent hysteresis nonlinearity, uncertainties, and disturbances from external environments. In this paper, we propose a novel fuzzy cascade strategy to control the dynamics of bellow-type soft pneumatic actuators when working in multiple environments (air, water, and their transition process). First, the components of the soft pneumatic system including the actuator and solenoid valve are mathematically modeled using second-order transfer functions, which are derived with a system identification method. Then, the Prandtl-Ishlinskii (P-I) model is proposed to accommodate and characterize the complex hysteresis effect. In the P-I model, the parameters are identified and derived using a particle swarm optimization (PSO) method. Subsequently, an inverse P-I model is constructed and placed in the feed-forward path to compensate for the hysteresis effect. In addition to the hysteresis nonlinearity, the uncertainties and disturbances from multiple environments will also degrade the tracking performance of soft pneumatic actuators. To enhance the adaptability, especially during the trans-environment process (e.g., from air into water or the reverse), a single-input FUZZY P+ID controller is proposed and integrated into the cascade strategy aiming to improve the robustness and precisely control the system dynamics. Extensive simulations and real-world tracking experiments of soft pneumatic actuators fabricated with the fused deposition modeling (FDM) method are performed to evaluate the performance of the proposed strategy and three designed controllers (PID, fuzzy PID, and FUZZY P+ID). It is noted that the comparison of tracking results has proved that the proposed FUZZY P+ID controller with only single input has better overall performance than traditional PID and fuzzy PID controllers in terms of adaptability and robustness. | ||
520 | |a Soft pneumatic actuators (SPAs) have been widely used in the design of various soft robots due to their compliance, adaptability, and high force density characteristics. However, it is a challenge to accurately model and control such soft pneumatic robotic systems due to inherent hysteresis nonlinearity, uncertainties, and disturbances from external environments. In this paper, we propose a novel fuzzy cascade strategy to control the dynamics of bellow-type soft pneumatic actuators when working in multiple environments (air, water, and their transition process). First, the components of the soft pneumatic system including the actuator and solenoid valve are mathematically modeled using second-order transfer functions, which are derived with a system identification method. Then, the Prandtl-Ishlinskii (P-I) model is proposed to accommodate and characterize the complex hysteresis effect. In the P-I model, the parameters are identified and derived using a particle swarm optimization (PSO) method. Subsequently, an inverse P-I model is constructed and placed in the feed-forward path to compensate for the hysteresis effect. In addition to the hysteresis nonlinearity, the uncertainties and disturbances from multiple environments will also degrade the tracking performance of soft pneumatic actuators. To enhance the adaptability, especially during the trans-environment process (e.g., from air into water or the reverse), a single-input FUZZY P+ID controller is proposed and integrated into the cascade strategy aiming to improve the robustness and precisely control the system dynamics. Extensive simulations and real-world tracking experiments of soft pneumatic actuators fabricated with the fused deposition modeling (FDM) method are performed to evaluate the performance of the proposed strategy and three designed controllers (PID, fuzzy PID, and FUZZY P+ID). It is noted that the comparison of tracking results has proved that the proposed FUZZY P+ID controller with only single input has better overall performance than traditional PID and fuzzy PID controllers in terms of adaptability and robustness. | ||
700 | 1 | |a Yin, Xinzhang |4 oth | |
700 | 1 | |a Peng, Kerui |4 oth | |
700 | 1 | |a Wang, Xiongzhuang |4 oth | |
700 | 1 | |a Chen, Qi |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Moyano, Gabriel ELSEVIER |t Potential use of dietary fibre from Hibiscus sabdariffa and Agave tequilana in obesity management |d 2016 |d the science of intelligent machines : an international journal |g Amsterdam [u.a.] |w (DE-627)ELV024383309 |
773 | 1 | 8 | |g volume:84 |g year:2022 |g pages:0 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.mechatronics.2022.102797 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_50 | ||
912 | |a GBV_ILN_72 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_130 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2007 | ||
936 | b | k | |a 44.96 |j Zahnmedizin |q VZ |
951 | |a AR | ||
952 | |d 84 |j 2022 |h 0 |
author_variant |
z l zl |
---|---|
matchkey_str |
liuzhaobingyinxinzhangpengkeruiwangxiong:2022----:otnuaiataosdpeimlilevrnetaoefzyacdsrtgfrhdnmcc |
hierarchy_sort_str |
2022transfer abstract |
bklnumber |
44.96 |
publishDate |
2022 |
allfields |
10.1016/j.mechatronics.2022.102797 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001768.pica (DE-627)ELV057663114 (ELSEVIER)S0957-4158(22)00042-3 DE-627 ger DE-627 rakwb eng 630 VZ 640 VZ 610 VZ 610 VZ 44.96 bkl Liu, Zhaobing verfasserin aut Soft pneumatic actuators adapted in multiple environments: A novel fuzzy cascade strategy for the dynamics control with hysteresis compensation 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Soft pneumatic actuators (SPAs) have been widely used in the design of various soft robots due to their compliance, adaptability, and high force density characteristics. However, it is a challenge to accurately model and control such soft pneumatic robotic systems due to inherent hysteresis nonlinearity, uncertainties, and disturbances from external environments. In this paper, we propose a novel fuzzy cascade strategy to control the dynamics of bellow-type soft pneumatic actuators when working in multiple environments (air, water, and their transition process). First, the components of the soft pneumatic system including the actuator and solenoid valve are mathematically modeled using second-order transfer functions, which are derived with a system identification method. Then, the Prandtl-Ishlinskii (P-I) model is proposed to accommodate and characterize the complex hysteresis effect. In the P-I model, the parameters are identified and derived using a particle swarm optimization (PSO) method. Subsequently, an inverse P-I model is constructed and placed in the feed-forward path to compensate for the hysteresis effect. In addition to the hysteresis nonlinearity, the uncertainties and disturbances from multiple environments will also degrade the tracking performance of soft pneumatic actuators. To enhance the adaptability, especially during the trans-environment process (e.g., from air into water or the reverse), a single-input FUZZY P+ID controller is proposed and integrated into the cascade strategy aiming to improve the robustness and precisely control the system dynamics. Extensive simulations and real-world tracking experiments of soft pneumatic actuators fabricated with the fused deposition modeling (FDM) method are performed to evaluate the performance of the proposed strategy and three designed controllers (PID, fuzzy PID, and FUZZY P+ID). It is noted that the comparison of tracking results has proved that the proposed FUZZY P+ID controller with only single input has better overall performance than traditional PID and fuzzy PID controllers in terms of adaptability and robustness. Soft pneumatic actuators (SPAs) have been widely used in the design of various soft robots due to their compliance, adaptability, and high force density characteristics. However, it is a challenge to accurately model and control such soft pneumatic robotic systems due to inherent hysteresis nonlinearity, uncertainties, and disturbances from external environments. In this paper, we propose a novel fuzzy cascade strategy to control the dynamics of bellow-type soft pneumatic actuators when working in multiple environments (air, water, and their transition process). First, the components of the soft pneumatic system including the actuator and solenoid valve are mathematically modeled using second-order transfer functions, which are derived with a system identification method. Then, the Prandtl-Ishlinskii (P-I) model is proposed to accommodate and characterize the complex hysteresis effect. In the P-I model, the parameters are identified and derived using a particle swarm optimization (PSO) method. Subsequently, an inverse P-I model is constructed and placed in the feed-forward path to compensate for the hysteresis effect. In addition to the hysteresis nonlinearity, the uncertainties and disturbances from multiple environments will also degrade the tracking performance of soft pneumatic actuators. To enhance the adaptability, especially during the trans-environment process (e.g., from air into water or the reverse), a single-input FUZZY P+ID controller is proposed and integrated into the cascade strategy aiming to improve the robustness and precisely control the system dynamics. Extensive simulations and real-world tracking experiments of soft pneumatic actuators fabricated with the fused deposition modeling (FDM) method are performed to evaluate the performance of the proposed strategy and three designed controllers (PID, fuzzy PID, and FUZZY P+ID). It is noted that the comparison of tracking results has proved that the proposed FUZZY P+ID controller with only single input has better overall performance than traditional PID and fuzzy PID controllers in terms of adaptability and robustness. Yin, Xinzhang oth Peng, Kerui oth Wang, Xiongzhuang oth Chen, Qi oth Enthalten in Elsevier Science Moyano, Gabriel ELSEVIER Potential use of dietary fibre from Hibiscus sabdariffa and Agave tequilana in obesity management 2016 the science of intelligent machines : an international journal Amsterdam [u.a.] (DE-627)ELV024383309 volume:84 year:2022 pages:0 https://doi.org/10.1016/j.mechatronics.2022.102797 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_11 GBV_ILN_22 GBV_ILN_24 GBV_ILN_40 GBV_ILN_50 GBV_ILN_72 GBV_ILN_120 GBV_ILN_130 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2007 44.96 Zahnmedizin VZ AR 84 2022 0 |
spelling |
10.1016/j.mechatronics.2022.102797 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001768.pica (DE-627)ELV057663114 (ELSEVIER)S0957-4158(22)00042-3 DE-627 ger DE-627 rakwb eng 630 VZ 640 VZ 610 VZ 610 VZ 44.96 bkl Liu, Zhaobing verfasserin aut Soft pneumatic actuators adapted in multiple environments: A novel fuzzy cascade strategy for the dynamics control with hysteresis compensation 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Soft pneumatic actuators (SPAs) have been widely used in the design of various soft robots due to their compliance, adaptability, and high force density characteristics. However, it is a challenge to accurately model and control such soft pneumatic robotic systems due to inherent hysteresis nonlinearity, uncertainties, and disturbances from external environments. In this paper, we propose a novel fuzzy cascade strategy to control the dynamics of bellow-type soft pneumatic actuators when working in multiple environments (air, water, and their transition process). First, the components of the soft pneumatic system including the actuator and solenoid valve are mathematically modeled using second-order transfer functions, which are derived with a system identification method. Then, the Prandtl-Ishlinskii (P-I) model is proposed to accommodate and characterize the complex hysteresis effect. In the P-I model, the parameters are identified and derived using a particle swarm optimization (PSO) method. Subsequently, an inverse P-I model is constructed and placed in the feed-forward path to compensate for the hysteresis effect. In addition to the hysteresis nonlinearity, the uncertainties and disturbances from multiple environments will also degrade the tracking performance of soft pneumatic actuators. To enhance the adaptability, especially during the trans-environment process (e.g., from air into water or the reverse), a single-input FUZZY P+ID controller is proposed and integrated into the cascade strategy aiming to improve the robustness and precisely control the system dynamics. Extensive simulations and real-world tracking experiments of soft pneumatic actuators fabricated with the fused deposition modeling (FDM) method are performed to evaluate the performance of the proposed strategy and three designed controllers (PID, fuzzy PID, and FUZZY P+ID). It is noted that the comparison of tracking results has proved that the proposed FUZZY P+ID controller with only single input has better overall performance than traditional PID and fuzzy PID controllers in terms of adaptability and robustness. Soft pneumatic actuators (SPAs) have been widely used in the design of various soft robots due to their compliance, adaptability, and high force density characteristics. However, it is a challenge to accurately model and control such soft pneumatic robotic systems due to inherent hysteresis nonlinearity, uncertainties, and disturbances from external environments. In this paper, we propose a novel fuzzy cascade strategy to control the dynamics of bellow-type soft pneumatic actuators when working in multiple environments (air, water, and their transition process). First, the components of the soft pneumatic system including the actuator and solenoid valve are mathematically modeled using second-order transfer functions, which are derived with a system identification method. Then, the Prandtl-Ishlinskii (P-I) model is proposed to accommodate and characterize the complex hysteresis effect. In the P-I model, the parameters are identified and derived using a particle swarm optimization (PSO) method. Subsequently, an inverse P-I model is constructed and placed in the feed-forward path to compensate for the hysteresis effect. In addition to the hysteresis nonlinearity, the uncertainties and disturbances from multiple environments will also degrade the tracking performance of soft pneumatic actuators. To enhance the adaptability, especially during the trans-environment process (e.g., from air into water or the reverse), a single-input FUZZY P+ID controller is proposed and integrated into the cascade strategy aiming to improve the robustness and precisely control the system dynamics. Extensive simulations and real-world tracking experiments of soft pneumatic actuators fabricated with the fused deposition modeling (FDM) method are performed to evaluate the performance of the proposed strategy and three designed controllers (PID, fuzzy PID, and FUZZY P+ID). It is noted that the comparison of tracking results has proved that the proposed FUZZY P+ID controller with only single input has better overall performance than traditional PID and fuzzy PID controllers in terms of adaptability and robustness. Yin, Xinzhang oth Peng, Kerui oth Wang, Xiongzhuang oth Chen, Qi oth Enthalten in Elsevier Science Moyano, Gabriel ELSEVIER Potential use of dietary fibre from Hibiscus sabdariffa and Agave tequilana in obesity management 2016 the science of intelligent machines : an international journal Amsterdam [u.a.] (DE-627)ELV024383309 volume:84 year:2022 pages:0 https://doi.org/10.1016/j.mechatronics.2022.102797 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_11 GBV_ILN_22 GBV_ILN_24 GBV_ILN_40 GBV_ILN_50 GBV_ILN_72 GBV_ILN_120 GBV_ILN_130 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2007 44.96 Zahnmedizin VZ AR 84 2022 0 |
allfields_unstemmed |
10.1016/j.mechatronics.2022.102797 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001768.pica (DE-627)ELV057663114 (ELSEVIER)S0957-4158(22)00042-3 DE-627 ger DE-627 rakwb eng 630 VZ 640 VZ 610 VZ 610 VZ 44.96 bkl Liu, Zhaobing verfasserin aut Soft pneumatic actuators adapted in multiple environments: A novel fuzzy cascade strategy for the dynamics control with hysteresis compensation 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Soft pneumatic actuators (SPAs) have been widely used in the design of various soft robots due to their compliance, adaptability, and high force density characteristics. However, it is a challenge to accurately model and control such soft pneumatic robotic systems due to inherent hysteresis nonlinearity, uncertainties, and disturbances from external environments. In this paper, we propose a novel fuzzy cascade strategy to control the dynamics of bellow-type soft pneumatic actuators when working in multiple environments (air, water, and their transition process). First, the components of the soft pneumatic system including the actuator and solenoid valve are mathematically modeled using second-order transfer functions, which are derived with a system identification method. Then, the Prandtl-Ishlinskii (P-I) model is proposed to accommodate and characterize the complex hysteresis effect. In the P-I model, the parameters are identified and derived using a particle swarm optimization (PSO) method. Subsequently, an inverse P-I model is constructed and placed in the feed-forward path to compensate for the hysteresis effect. In addition to the hysteresis nonlinearity, the uncertainties and disturbances from multiple environments will also degrade the tracking performance of soft pneumatic actuators. To enhance the adaptability, especially during the trans-environment process (e.g., from air into water or the reverse), a single-input FUZZY P+ID controller is proposed and integrated into the cascade strategy aiming to improve the robustness and precisely control the system dynamics. Extensive simulations and real-world tracking experiments of soft pneumatic actuators fabricated with the fused deposition modeling (FDM) method are performed to evaluate the performance of the proposed strategy and three designed controllers (PID, fuzzy PID, and FUZZY P+ID). It is noted that the comparison of tracking results has proved that the proposed FUZZY P+ID controller with only single input has better overall performance than traditional PID and fuzzy PID controllers in terms of adaptability and robustness. Soft pneumatic actuators (SPAs) have been widely used in the design of various soft robots due to their compliance, adaptability, and high force density characteristics. However, it is a challenge to accurately model and control such soft pneumatic robotic systems due to inherent hysteresis nonlinearity, uncertainties, and disturbances from external environments. In this paper, we propose a novel fuzzy cascade strategy to control the dynamics of bellow-type soft pneumatic actuators when working in multiple environments (air, water, and their transition process). First, the components of the soft pneumatic system including the actuator and solenoid valve are mathematically modeled using second-order transfer functions, which are derived with a system identification method. Then, the Prandtl-Ishlinskii (P-I) model is proposed to accommodate and characterize the complex hysteresis effect. In the P-I model, the parameters are identified and derived using a particle swarm optimization (PSO) method. Subsequently, an inverse P-I model is constructed and placed in the feed-forward path to compensate for the hysteresis effect. In addition to the hysteresis nonlinearity, the uncertainties and disturbances from multiple environments will also degrade the tracking performance of soft pneumatic actuators. To enhance the adaptability, especially during the trans-environment process (e.g., from air into water or the reverse), a single-input FUZZY P+ID controller is proposed and integrated into the cascade strategy aiming to improve the robustness and precisely control the system dynamics. Extensive simulations and real-world tracking experiments of soft pneumatic actuators fabricated with the fused deposition modeling (FDM) method are performed to evaluate the performance of the proposed strategy and three designed controllers (PID, fuzzy PID, and FUZZY P+ID). It is noted that the comparison of tracking results has proved that the proposed FUZZY P+ID controller with only single input has better overall performance than traditional PID and fuzzy PID controllers in terms of adaptability and robustness. Yin, Xinzhang oth Peng, Kerui oth Wang, Xiongzhuang oth Chen, Qi oth Enthalten in Elsevier Science Moyano, Gabriel ELSEVIER Potential use of dietary fibre from Hibiscus sabdariffa and Agave tequilana in obesity management 2016 the science of intelligent machines : an international journal Amsterdam [u.a.] (DE-627)ELV024383309 volume:84 year:2022 pages:0 https://doi.org/10.1016/j.mechatronics.2022.102797 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_11 GBV_ILN_22 GBV_ILN_24 GBV_ILN_40 GBV_ILN_50 GBV_ILN_72 GBV_ILN_120 GBV_ILN_130 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2007 44.96 Zahnmedizin VZ AR 84 2022 0 |
allfieldsGer |
10.1016/j.mechatronics.2022.102797 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001768.pica (DE-627)ELV057663114 (ELSEVIER)S0957-4158(22)00042-3 DE-627 ger DE-627 rakwb eng 630 VZ 640 VZ 610 VZ 610 VZ 44.96 bkl Liu, Zhaobing verfasserin aut Soft pneumatic actuators adapted in multiple environments: A novel fuzzy cascade strategy for the dynamics control with hysteresis compensation 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Soft pneumatic actuators (SPAs) have been widely used in the design of various soft robots due to their compliance, adaptability, and high force density characteristics. However, it is a challenge to accurately model and control such soft pneumatic robotic systems due to inherent hysteresis nonlinearity, uncertainties, and disturbances from external environments. In this paper, we propose a novel fuzzy cascade strategy to control the dynamics of bellow-type soft pneumatic actuators when working in multiple environments (air, water, and their transition process). First, the components of the soft pneumatic system including the actuator and solenoid valve are mathematically modeled using second-order transfer functions, which are derived with a system identification method. Then, the Prandtl-Ishlinskii (P-I) model is proposed to accommodate and characterize the complex hysteresis effect. In the P-I model, the parameters are identified and derived using a particle swarm optimization (PSO) method. Subsequently, an inverse P-I model is constructed and placed in the feed-forward path to compensate for the hysteresis effect. In addition to the hysteresis nonlinearity, the uncertainties and disturbances from multiple environments will also degrade the tracking performance of soft pneumatic actuators. To enhance the adaptability, especially during the trans-environment process (e.g., from air into water or the reverse), a single-input FUZZY P+ID controller is proposed and integrated into the cascade strategy aiming to improve the robustness and precisely control the system dynamics. Extensive simulations and real-world tracking experiments of soft pneumatic actuators fabricated with the fused deposition modeling (FDM) method are performed to evaluate the performance of the proposed strategy and three designed controllers (PID, fuzzy PID, and FUZZY P+ID). It is noted that the comparison of tracking results has proved that the proposed FUZZY P+ID controller with only single input has better overall performance than traditional PID and fuzzy PID controllers in terms of adaptability and robustness. Soft pneumatic actuators (SPAs) have been widely used in the design of various soft robots due to their compliance, adaptability, and high force density characteristics. However, it is a challenge to accurately model and control such soft pneumatic robotic systems due to inherent hysteresis nonlinearity, uncertainties, and disturbances from external environments. In this paper, we propose a novel fuzzy cascade strategy to control the dynamics of bellow-type soft pneumatic actuators when working in multiple environments (air, water, and their transition process). First, the components of the soft pneumatic system including the actuator and solenoid valve are mathematically modeled using second-order transfer functions, which are derived with a system identification method. Then, the Prandtl-Ishlinskii (P-I) model is proposed to accommodate and characterize the complex hysteresis effect. In the P-I model, the parameters are identified and derived using a particle swarm optimization (PSO) method. Subsequently, an inverse P-I model is constructed and placed in the feed-forward path to compensate for the hysteresis effect. In addition to the hysteresis nonlinearity, the uncertainties and disturbances from multiple environments will also degrade the tracking performance of soft pneumatic actuators. To enhance the adaptability, especially during the trans-environment process (e.g., from air into water or the reverse), a single-input FUZZY P+ID controller is proposed and integrated into the cascade strategy aiming to improve the robustness and precisely control the system dynamics. Extensive simulations and real-world tracking experiments of soft pneumatic actuators fabricated with the fused deposition modeling (FDM) method are performed to evaluate the performance of the proposed strategy and three designed controllers (PID, fuzzy PID, and FUZZY P+ID). It is noted that the comparison of tracking results has proved that the proposed FUZZY P+ID controller with only single input has better overall performance than traditional PID and fuzzy PID controllers in terms of adaptability and robustness. Yin, Xinzhang oth Peng, Kerui oth Wang, Xiongzhuang oth Chen, Qi oth Enthalten in Elsevier Science Moyano, Gabriel ELSEVIER Potential use of dietary fibre from Hibiscus sabdariffa and Agave tequilana in obesity management 2016 the science of intelligent machines : an international journal Amsterdam [u.a.] (DE-627)ELV024383309 volume:84 year:2022 pages:0 https://doi.org/10.1016/j.mechatronics.2022.102797 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_11 GBV_ILN_22 GBV_ILN_24 GBV_ILN_40 GBV_ILN_50 GBV_ILN_72 GBV_ILN_120 GBV_ILN_130 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2007 44.96 Zahnmedizin VZ AR 84 2022 0 |
allfieldsSound |
10.1016/j.mechatronics.2022.102797 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001768.pica (DE-627)ELV057663114 (ELSEVIER)S0957-4158(22)00042-3 DE-627 ger DE-627 rakwb eng 630 VZ 640 VZ 610 VZ 610 VZ 44.96 bkl Liu, Zhaobing verfasserin aut Soft pneumatic actuators adapted in multiple environments: A novel fuzzy cascade strategy for the dynamics control with hysteresis compensation 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Soft pneumatic actuators (SPAs) have been widely used in the design of various soft robots due to their compliance, adaptability, and high force density characteristics. However, it is a challenge to accurately model and control such soft pneumatic robotic systems due to inherent hysteresis nonlinearity, uncertainties, and disturbances from external environments. In this paper, we propose a novel fuzzy cascade strategy to control the dynamics of bellow-type soft pneumatic actuators when working in multiple environments (air, water, and their transition process). First, the components of the soft pneumatic system including the actuator and solenoid valve are mathematically modeled using second-order transfer functions, which are derived with a system identification method. Then, the Prandtl-Ishlinskii (P-I) model is proposed to accommodate and characterize the complex hysteresis effect. In the P-I model, the parameters are identified and derived using a particle swarm optimization (PSO) method. Subsequently, an inverse P-I model is constructed and placed in the feed-forward path to compensate for the hysteresis effect. In addition to the hysteresis nonlinearity, the uncertainties and disturbances from multiple environments will also degrade the tracking performance of soft pneumatic actuators. To enhance the adaptability, especially during the trans-environment process (e.g., from air into water or the reverse), a single-input FUZZY P+ID controller is proposed and integrated into the cascade strategy aiming to improve the robustness and precisely control the system dynamics. Extensive simulations and real-world tracking experiments of soft pneumatic actuators fabricated with the fused deposition modeling (FDM) method are performed to evaluate the performance of the proposed strategy and three designed controllers (PID, fuzzy PID, and FUZZY P+ID). It is noted that the comparison of tracking results has proved that the proposed FUZZY P+ID controller with only single input has better overall performance than traditional PID and fuzzy PID controllers in terms of adaptability and robustness. Soft pneumatic actuators (SPAs) have been widely used in the design of various soft robots due to their compliance, adaptability, and high force density characteristics. However, it is a challenge to accurately model and control such soft pneumatic robotic systems due to inherent hysteresis nonlinearity, uncertainties, and disturbances from external environments. In this paper, we propose a novel fuzzy cascade strategy to control the dynamics of bellow-type soft pneumatic actuators when working in multiple environments (air, water, and their transition process). First, the components of the soft pneumatic system including the actuator and solenoid valve are mathematically modeled using second-order transfer functions, which are derived with a system identification method. Then, the Prandtl-Ishlinskii (P-I) model is proposed to accommodate and characterize the complex hysteresis effect. In the P-I model, the parameters are identified and derived using a particle swarm optimization (PSO) method. Subsequently, an inverse P-I model is constructed and placed in the feed-forward path to compensate for the hysteresis effect. In addition to the hysteresis nonlinearity, the uncertainties and disturbances from multiple environments will also degrade the tracking performance of soft pneumatic actuators. To enhance the adaptability, especially during the trans-environment process (e.g., from air into water or the reverse), a single-input FUZZY P+ID controller is proposed and integrated into the cascade strategy aiming to improve the robustness and precisely control the system dynamics. Extensive simulations and real-world tracking experiments of soft pneumatic actuators fabricated with the fused deposition modeling (FDM) method are performed to evaluate the performance of the proposed strategy and three designed controllers (PID, fuzzy PID, and FUZZY P+ID). It is noted that the comparison of tracking results has proved that the proposed FUZZY P+ID controller with only single input has better overall performance than traditional PID and fuzzy PID controllers in terms of adaptability and robustness. Yin, Xinzhang oth Peng, Kerui oth Wang, Xiongzhuang oth Chen, Qi oth Enthalten in Elsevier Science Moyano, Gabriel ELSEVIER Potential use of dietary fibre from Hibiscus sabdariffa and Agave tequilana in obesity management 2016 the science of intelligent machines : an international journal Amsterdam [u.a.] (DE-627)ELV024383309 volume:84 year:2022 pages:0 https://doi.org/10.1016/j.mechatronics.2022.102797 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_11 GBV_ILN_22 GBV_ILN_24 GBV_ILN_40 GBV_ILN_50 GBV_ILN_72 GBV_ILN_120 GBV_ILN_130 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2007 44.96 Zahnmedizin VZ AR 84 2022 0 |
language |
English |
source |
Enthalten in Potential use of dietary fibre from Hibiscus sabdariffa and Agave tequilana in obesity management Amsterdam [u.a.] volume:84 year:2022 pages:0 |
sourceStr |
Enthalten in Potential use of dietary fibre from Hibiscus sabdariffa and Agave tequilana in obesity management Amsterdam [u.a.] volume:84 year:2022 pages:0 |
format_phy_str_mv |
Article |
bklname |
Zahnmedizin |
institution |
findex.gbv.de |
dewey-raw |
630 |
isfreeaccess_bool |
false |
container_title |
Potential use of dietary fibre from Hibiscus sabdariffa and Agave tequilana in obesity management |
authorswithroles_txt_mv |
Liu, Zhaobing @@aut@@ Yin, Xinzhang @@oth@@ Peng, Kerui @@oth@@ Wang, Xiongzhuang @@oth@@ Chen, Qi @@oth@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
ELV024383309 |
dewey-sort |
3630 |
id |
ELV057663114 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV057663114</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626045522.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220808s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.mechatronics.2022.102797</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001768.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV057663114</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0957-4158(22)00042-3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">630</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">640</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.96</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liu, Zhaobing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Soft pneumatic actuators adapted in multiple environments: A novel fuzzy cascade strategy for the dynamics control with hysteresis compensation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Soft pneumatic actuators (SPAs) have been widely used in the design of various soft robots due to their compliance, adaptability, and high force density characteristics. However, it is a challenge to accurately model and control such soft pneumatic robotic systems due to inherent hysteresis nonlinearity, uncertainties, and disturbances from external environments. In this paper, we propose a novel fuzzy cascade strategy to control the dynamics of bellow-type soft pneumatic actuators when working in multiple environments (air, water, and their transition process). First, the components of the soft pneumatic system including the actuator and solenoid valve are mathematically modeled using second-order transfer functions, which are derived with a system identification method. Then, the Prandtl-Ishlinskii (P-I) model is proposed to accommodate and characterize the complex hysteresis effect. In the P-I model, the parameters are identified and derived using a particle swarm optimization (PSO) method. Subsequently, an inverse P-I model is constructed and placed in the feed-forward path to compensate for the hysteresis effect. In addition to the hysteresis nonlinearity, the uncertainties and disturbances from multiple environments will also degrade the tracking performance of soft pneumatic actuators. To enhance the adaptability, especially during the trans-environment process (e.g., from air into water or the reverse), a single-input FUZZY P+ID controller is proposed and integrated into the cascade strategy aiming to improve the robustness and precisely control the system dynamics. Extensive simulations and real-world tracking experiments of soft pneumatic actuators fabricated with the fused deposition modeling (FDM) method are performed to evaluate the performance of the proposed strategy and three designed controllers (PID, fuzzy PID, and FUZZY P+ID). It is noted that the comparison of tracking results has proved that the proposed FUZZY P+ID controller with only single input has better overall performance than traditional PID and fuzzy PID controllers in terms of adaptability and robustness.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Soft pneumatic actuators (SPAs) have been widely used in the design of various soft robots due to their compliance, adaptability, and high force density characteristics. However, it is a challenge to accurately model and control such soft pneumatic robotic systems due to inherent hysteresis nonlinearity, uncertainties, and disturbances from external environments. In this paper, we propose a novel fuzzy cascade strategy to control the dynamics of bellow-type soft pneumatic actuators when working in multiple environments (air, water, and their transition process). First, the components of the soft pneumatic system including the actuator and solenoid valve are mathematically modeled using second-order transfer functions, which are derived with a system identification method. Then, the Prandtl-Ishlinskii (P-I) model is proposed to accommodate and characterize the complex hysteresis effect. In the P-I model, the parameters are identified and derived using a particle swarm optimization (PSO) method. Subsequently, an inverse P-I model is constructed and placed in the feed-forward path to compensate for the hysteresis effect. In addition to the hysteresis nonlinearity, the uncertainties and disturbances from multiple environments will also degrade the tracking performance of soft pneumatic actuators. To enhance the adaptability, especially during the trans-environment process (e.g., from air into water or the reverse), a single-input FUZZY P+ID controller is proposed and integrated into the cascade strategy aiming to improve the robustness and precisely control the system dynamics. Extensive simulations and real-world tracking experiments of soft pneumatic actuators fabricated with the fused deposition modeling (FDM) method are performed to evaluate the performance of the proposed strategy and three designed controllers (PID, fuzzy PID, and FUZZY P+ID). It is noted that the comparison of tracking results has proved that the proposed FUZZY P+ID controller with only single input has better overall performance than traditional PID and fuzzy PID controllers in terms of adaptability and robustness.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yin, Xinzhang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Peng, Kerui</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Xiongzhuang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Qi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Moyano, Gabriel ELSEVIER</subfield><subfield code="t">Potential use of dietary fibre from Hibiscus sabdariffa and Agave tequilana in obesity management</subfield><subfield code="d">2016</subfield><subfield code="d">the science of intelligent machines : an international journal</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV024383309</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:84</subfield><subfield code="g">year:2022</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.mechatronics.2022.102797</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_50</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_72</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.96</subfield><subfield code="j">Zahnmedizin</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">84</subfield><subfield code="j">2022</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
author |
Liu, Zhaobing |
spellingShingle |
Liu, Zhaobing ddc 630 ddc 640 ddc 610 bkl 44.96 Soft pneumatic actuators adapted in multiple environments: A novel fuzzy cascade strategy for the dynamics control with hysteresis compensation |
authorStr |
Liu, Zhaobing |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV024383309 |
format |
electronic Article |
dewey-ones |
630 - Agriculture & related technologies 640 - Home & family management 610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
630 VZ 640 VZ 610 VZ 44.96 bkl Soft pneumatic actuators adapted in multiple environments: A novel fuzzy cascade strategy for the dynamics control with hysteresis compensation |
topic |
ddc 630 ddc 640 ddc 610 bkl 44.96 |
topic_unstemmed |
ddc 630 ddc 640 ddc 610 bkl 44.96 |
topic_browse |
ddc 630 ddc 640 ddc 610 bkl 44.96 |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
x y xy k p kp x w xw q c qc |
hierarchy_parent_title |
Potential use of dietary fibre from Hibiscus sabdariffa and Agave tequilana in obesity management |
hierarchy_parent_id |
ELV024383309 |
dewey-tens |
630 - Agriculture 640 - Home & family management 610 - Medicine & health |
hierarchy_top_title |
Potential use of dietary fibre from Hibiscus sabdariffa and Agave tequilana in obesity management |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV024383309 |
title |
Soft pneumatic actuators adapted in multiple environments: A novel fuzzy cascade strategy for the dynamics control with hysteresis compensation |
ctrlnum |
(DE-627)ELV057663114 (ELSEVIER)S0957-4158(22)00042-3 |
title_full |
Soft pneumatic actuators adapted in multiple environments: A novel fuzzy cascade strategy for the dynamics control with hysteresis compensation |
author_sort |
Liu, Zhaobing |
journal |
Potential use of dietary fibre from Hibiscus sabdariffa and Agave tequilana in obesity management |
journalStr |
Potential use of dietary fibre from Hibiscus sabdariffa and Agave tequilana in obesity management |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
zzz |
container_start_page |
0 |
author_browse |
Liu, Zhaobing |
container_volume |
84 |
class |
630 VZ 640 VZ 610 VZ 44.96 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Liu, Zhaobing |
doi_str_mv |
10.1016/j.mechatronics.2022.102797 |
dewey-full |
630 640 610 |
title_sort |
soft pneumatic actuators adapted in multiple environments: a novel fuzzy cascade strategy for the dynamics control with hysteresis compensation |
title_auth |
Soft pneumatic actuators adapted in multiple environments: A novel fuzzy cascade strategy for the dynamics control with hysteresis compensation |
abstract |
Soft pneumatic actuators (SPAs) have been widely used in the design of various soft robots due to their compliance, adaptability, and high force density characteristics. However, it is a challenge to accurately model and control such soft pneumatic robotic systems due to inherent hysteresis nonlinearity, uncertainties, and disturbances from external environments. In this paper, we propose a novel fuzzy cascade strategy to control the dynamics of bellow-type soft pneumatic actuators when working in multiple environments (air, water, and their transition process). First, the components of the soft pneumatic system including the actuator and solenoid valve are mathematically modeled using second-order transfer functions, which are derived with a system identification method. Then, the Prandtl-Ishlinskii (P-I) model is proposed to accommodate and characterize the complex hysteresis effect. In the P-I model, the parameters are identified and derived using a particle swarm optimization (PSO) method. Subsequently, an inverse P-I model is constructed and placed in the feed-forward path to compensate for the hysteresis effect. In addition to the hysteresis nonlinearity, the uncertainties and disturbances from multiple environments will also degrade the tracking performance of soft pneumatic actuators. To enhance the adaptability, especially during the trans-environment process (e.g., from air into water or the reverse), a single-input FUZZY P+ID controller is proposed and integrated into the cascade strategy aiming to improve the robustness and precisely control the system dynamics. Extensive simulations and real-world tracking experiments of soft pneumatic actuators fabricated with the fused deposition modeling (FDM) method are performed to evaluate the performance of the proposed strategy and three designed controllers (PID, fuzzy PID, and FUZZY P+ID). It is noted that the comparison of tracking results has proved that the proposed FUZZY P+ID controller with only single input has better overall performance than traditional PID and fuzzy PID controllers in terms of adaptability and robustness. |
abstractGer |
Soft pneumatic actuators (SPAs) have been widely used in the design of various soft robots due to their compliance, adaptability, and high force density characteristics. However, it is a challenge to accurately model and control such soft pneumatic robotic systems due to inherent hysteresis nonlinearity, uncertainties, and disturbances from external environments. In this paper, we propose a novel fuzzy cascade strategy to control the dynamics of bellow-type soft pneumatic actuators when working in multiple environments (air, water, and their transition process). First, the components of the soft pneumatic system including the actuator and solenoid valve are mathematically modeled using second-order transfer functions, which are derived with a system identification method. Then, the Prandtl-Ishlinskii (P-I) model is proposed to accommodate and characterize the complex hysteresis effect. In the P-I model, the parameters are identified and derived using a particle swarm optimization (PSO) method. Subsequently, an inverse P-I model is constructed and placed in the feed-forward path to compensate for the hysteresis effect. In addition to the hysteresis nonlinearity, the uncertainties and disturbances from multiple environments will also degrade the tracking performance of soft pneumatic actuators. To enhance the adaptability, especially during the trans-environment process (e.g., from air into water or the reverse), a single-input FUZZY P+ID controller is proposed and integrated into the cascade strategy aiming to improve the robustness and precisely control the system dynamics. Extensive simulations and real-world tracking experiments of soft pneumatic actuators fabricated with the fused deposition modeling (FDM) method are performed to evaluate the performance of the proposed strategy and three designed controllers (PID, fuzzy PID, and FUZZY P+ID). It is noted that the comparison of tracking results has proved that the proposed FUZZY P+ID controller with only single input has better overall performance than traditional PID and fuzzy PID controllers in terms of adaptability and robustness. |
abstract_unstemmed |
Soft pneumatic actuators (SPAs) have been widely used in the design of various soft robots due to their compliance, adaptability, and high force density characteristics. However, it is a challenge to accurately model and control such soft pneumatic robotic systems due to inherent hysteresis nonlinearity, uncertainties, and disturbances from external environments. In this paper, we propose a novel fuzzy cascade strategy to control the dynamics of bellow-type soft pneumatic actuators when working in multiple environments (air, water, and their transition process). First, the components of the soft pneumatic system including the actuator and solenoid valve are mathematically modeled using second-order transfer functions, which are derived with a system identification method. Then, the Prandtl-Ishlinskii (P-I) model is proposed to accommodate and characterize the complex hysteresis effect. In the P-I model, the parameters are identified and derived using a particle swarm optimization (PSO) method. Subsequently, an inverse P-I model is constructed and placed in the feed-forward path to compensate for the hysteresis effect. In addition to the hysteresis nonlinearity, the uncertainties and disturbances from multiple environments will also degrade the tracking performance of soft pneumatic actuators. To enhance the adaptability, especially during the trans-environment process (e.g., from air into water or the reverse), a single-input FUZZY P+ID controller is proposed and integrated into the cascade strategy aiming to improve the robustness and precisely control the system dynamics. Extensive simulations and real-world tracking experiments of soft pneumatic actuators fabricated with the fused deposition modeling (FDM) method are performed to evaluate the performance of the proposed strategy and three designed controllers (PID, fuzzy PID, and FUZZY P+ID). It is noted that the comparison of tracking results has proved that the proposed FUZZY P+ID controller with only single input has better overall performance than traditional PID and fuzzy PID controllers in terms of adaptability and robustness. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_11 GBV_ILN_22 GBV_ILN_24 GBV_ILN_40 GBV_ILN_50 GBV_ILN_72 GBV_ILN_120 GBV_ILN_130 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2007 |
title_short |
Soft pneumatic actuators adapted in multiple environments: A novel fuzzy cascade strategy for the dynamics control with hysteresis compensation |
url |
https://doi.org/10.1016/j.mechatronics.2022.102797 |
remote_bool |
true |
author2 |
Yin, Xinzhang Peng, Kerui Wang, Xiongzhuang Chen, Qi |
author2Str |
Yin, Xinzhang Peng, Kerui Wang, Xiongzhuang Chen, Qi |
ppnlink |
ELV024383309 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth |
doi_str |
10.1016/j.mechatronics.2022.102797 |
up_date |
2024-07-06T16:48:02.373Z |
_version_ |
1803849021389799424 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV057663114</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626045522.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220808s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.mechatronics.2022.102797</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001768.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV057663114</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0957-4158(22)00042-3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">630</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">640</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.96</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liu, Zhaobing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Soft pneumatic actuators adapted in multiple environments: A novel fuzzy cascade strategy for the dynamics control with hysteresis compensation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Soft pneumatic actuators (SPAs) have been widely used in the design of various soft robots due to their compliance, adaptability, and high force density characteristics. However, it is a challenge to accurately model and control such soft pneumatic robotic systems due to inherent hysteresis nonlinearity, uncertainties, and disturbances from external environments. In this paper, we propose a novel fuzzy cascade strategy to control the dynamics of bellow-type soft pneumatic actuators when working in multiple environments (air, water, and their transition process). First, the components of the soft pneumatic system including the actuator and solenoid valve are mathematically modeled using second-order transfer functions, which are derived with a system identification method. Then, the Prandtl-Ishlinskii (P-I) model is proposed to accommodate and characterize the complex hysteresis effect. In the P-I model, the parameters are identified and derived using a particle swarm optimization (PSO) method. Subsequently, an inverse P-I model is constructed and placed in the feed-forward path to compensate for the hysteresis effect. In addition to the hysteresis nonlinearity, the uncertainties and disturbances from multiple environments will also degrade the tracking performance of soft pneumatic actuators. To enhance the adaptability, especially during the trans-environment process (e.g., from air into water or the reverse), a single-input FUZZY P+ID controller is proposed and integrated into the cascade strategy aiming to improve the robustness and precisely control the system dynamics. Extensive simulations and real-world tracking experiments of soft pneumatic actuators fabricated with the fused deposition modeling (FDM) method are performed to evaluate the performance of the proposed strategy and three designed controllers (PID, fuzzy PID, and FUZZY P+ID). It is noted that the comparison of tracking results has proved that the proposed FUZZY P+ID controller with only single input has better overall performance than traditional PID and fuzzy PID controllers in terms of adaptability and robustness.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Soft pneumatic actuators (SPAs) have been widely used in the design of various soft robots due to their compliance, adaptability, and high force density characteristics. However, it is a challenge to accurately model and control such soft pneumatic robotic systems due to inherent hysteresis nonlinearity, uncertainties, and disturbances from external environments. In this paper, we propose a novel fuzzy cascade strategy to control the dynamics of bellow-type soft pneumatic actuators when working in multiple environments (air, water, and their transition process). First, the components of the soft pneumatic system including the actuator and solenoid valve are mathematically modeled using second-order transfer functions, which are derived with a system identification method. Then, the Prandtl-Ishlinskii (P-I) model is proposed to accommodate and characterize the complex hysteresis effect. In the P-I model, the parameters are identified and derived using a particle swarm optimization (PSO) method. Subsequently, an inverse P-I model is constructed and placed in the feed-forward path to compensate for the hysteresis effect. In addition to the hysteresis nonlinearity, the uncertainties and disturbances from multiple environments will also degrade the tracking performance of soft pneumatic actuators. To enhance the adaptability, especially during the trans-environment process (e.g., from air into water or the reverse), a single-input FUZZY P+ID controller is proposed and integrated into the cascade strategy aiming to improve the robustness and precisely control the system dynamics. Extensive simulations and real-world tracking experiments of soft pneumatic actuators fabricated with the fused deposition modeling (FDM) method are performed to evaluate the performance of the proposed strategy and three designed controllers (PID, fuzzy PID, and FUZZY P+ID). It is noted that the comparison of tracking results has proved that the proposed FUZZY P+ID controller with only single input has better overall performance than traditional PID and fuzzy PID controllers in terms of adaptability and robustness.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yin, Xinzhang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Peng, Kerui</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Xiongzhuang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Qi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Moyano, Gabriel ELSEVIER</subfield><subfield code="t">Potential use of dietary fibre from Hibiscus sabdariffa and Agave tequilana in obesity management</subfield><subfield code="d">2016</subfield><subfield code="d">the science of intelligent machines : an international journal</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV024383309</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:84</subfield><subfield code="g">year:2022</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.mechatronics.2022.102797</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_50</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_72</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.96</subfield><subfield code="j">Zahnmedizin</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">84</subfield><subfield code="j">2022</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
score |
7.401287 |