Start-to-end simulations of plasma-wakefield acceleration using the MAX IV Linear Accelerator
Plasma-wakefield acceleration (PWFA) relies on the interaction between intense particle bunches and plasma for reaching higher accelerating gradients than what is possible with conventional radio-frequency technology. Using ultra-relativistic beam drivers allows for long acceleration lengths and hav...
Ausführliche Beschreibung
Autor*in: |
Björklund Svensson, J. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022transfer abstract |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: The efficacy of EEG-biofeedback for acute pain management, a randomized sham-controlled study of a tailored protocol - Ide, C.V. ELSEVIER, 2017, a journal on accelerators, instrumentation and techniques applied to research in nuclear and atomic physics, materials science and related fields in physics, Amsterdam |
---|---|
Übergeordnetes Werk: |
volume:1033 ; year:2022 ; day:11 ; month:06 ; pages:0 |
Links: |
---|
DOI / URN: |
10.1016/j.nima.2022.166591 |
---|
Katalog-ID: |
ELV057686513 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV057686513 | ||
003 | DE-627 | ||
005 | 20230626045549.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220808s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.nima.2022.166591 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001787.pica |
035 | |a (DE-627)ELV057686513 | ||
035 | |a (ELSEVIER)S0168-9002(22)00175-9 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 610 |q VZ |
084 | |a 44.90 |2 bkl | ||
100 | 1 | |a Björklund Svensson, J. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Start-to-end simulations of plasma-wakefield acceleration using the MAX IV Linear Accelerator |
264 | 1 | |c 2022transfer abstract | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Plasma-wakefield acceleration (PWFA) relies on the interaction between intense particle bunches and plasma for reaching higher accelerating gradients than what is possible with conventional radio-frequency technology. Using ultra-relativistic beam drivers allows for long acceleration lengths and have potential applications such as energy booster stages for synchrotron light sources or linear colliders and generating ultra-high-brightness beams from the background plasma. In this article, we present start-to-end simulations of the MAX IV Linear Accelerator as part of our investigations into the feasibility of using the linac for a PWFA experiment. We find that PWFA appears to be a viable application for the linac. A part of this conclusion is based on our finding that the general properties of the bunch compressor type employed in the MAX IV linac are well-suited for efficient generation of PWFA-optimized bunch current profiles, both for single- and double-bunch beams. | ||
520 | |a Plasma-wakefield acceleration (PWFA) relies on the interaction between intense particle bunches and plasma for reaching higher accelerating gradients than what is possible with conventional radio-frequency technology. Using ultra-relativistic beam drivers allows for long acceleration lengths and have potential applications such as energy booster stages for synchrotron light sources or linear colliders and generating ultra-high-brightness beams from the background plasma. In this article, we present start-to-end simulations of the MAX IV Linear Accelerator as part of our investigations into the feasibility of using the linac for a PWFA experiment. We find that PWFA appears to be a viable application for the linac. A part of this conclusion is based on our finding that the general properties of the bunch compressor type employed in the MAX IV linac are well-suited for efficient generation of PWFA-optimized bunch current profiles, both for single- and double-bunch beams. | ||
650 | 7 | |a Simulations |2 Elsevier | |
650 | 7 | |a MAX IV |2 Elsevier | |
650 | 7 | |a Linear accelerator |2 Elsevier | |
650 | 7 | |a Plasma-wakefield acceleration |2 Elsevier | |
650 | 7 | |a Electrons |2 Elsevier | |
700 | 1 | |a Andersson, J. |4 oth | |
700 | 1 | |a Ferri, J. |4 oth | |
700 | 1 | |a Charles, T.K. |4 oth | |
700 | 1 | |a Ekerfelt, H. |4 oth | |
700 | 1 | |a Mansten, E. |4 oth | |
700 | 1 | |a Thorin, S. |4 oth | |
700 | 1 | |a Lundh, O. |4 oth | |
773 | 0 | 8 | |i Enthalten in |n North-Holland Publ. Co |a Ide, C.V. ELSEVIER |t The efficacy of EEG-biofeedback for acute pain management, a randomized sham-controlled study of a tailored protocol |d 2017 |d a journal on accelerators, instrumentation and techniques applied to research in nuclear and atomic physics, materials science and related fields in physics |g Amsterdam |w (DE-627)ELV000874671 |
773 | 1 | 8 | |g volume:1033 |g year:2022 |g day:11 |g month:06 |g pages:0 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.nima.2022.166591 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
936 | b | k | |a 44.90 |j Neurologie |q VZ |
951 | |a AR | ||
952 | |d 1033 |j 2022 |b 11 |c 0611 |h 0 |
author_variant |
s j b sj sjb |
---|---|
matchkey_str |
bjrklundsvenssonjanderssonjferrijcharles:2022----:trtediuainopamwkfedceeainsntea |
hierarchy_sort_str |
2022transfer abstract |
bklnumber |
44.90 |
publishDate |
2022 |
allfields |
10.1016/j.nima.2022.166591 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001787.pica (DE-627)ELV057686513 (ELSEVIER)S0168-9002(22)00175-9 DE-627 ger DE-627 rakwb eng 610 VZ 44.90 bkl Björklund Svensson, J. verfasserin aut Start-to-end simulations of plasma-wakefield acceleration using the MAX IV Linear Accelerator 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Plasma-wakefield acceleration (PWFA) relies on the interaction between intense particle bunches and plasma for reaching higher accelerating gradients than what is possible with conventional radio-frequency technology. Using ultra-relativistic beam drivers allows for long acceleration lengths and have potential applications such as energy booster stages for synchrotron light sources or linear colliders and generating ultra-high-brightness beams from the background plasma. In this article, we present start-to-end simulations of the MAX IV Linear Accelerator as part of our investigations into the feasibility of using the linac for a PWFA experiment. We find that PWFA appears to be a viable application for the linac. A part of this conclusion is based on our finding that the general properties of the bunch compressor type employed in the MAX IV linac are well-suited for efficient generation of PWFA-optimized bunch current profiles, both for single- and double-bunch beams. Plasma-wakefield acceleration (PWFA) relies on the interaction between intense particle bunches and plasma for reaching higher accelerating gradients than what is possible with conventional radio-frequency technology. Using ultra-relativistic beam drivers allows for long acceleration lengths and have potential applications such as energy booster stages for synchrotron light sources or linear colliders and generating ultra-high-brightness beams from the background plasma. In this article, we present start-to-end simulations of the MAX IV Linear Accelerator as part of our investigations into the feasibility of using the linac for a PWFA experiment. We find that PWFA appears to be a viable application for the linac. A part of this conclusion is based on our finding that the general properties of the bunch compressor type employed in the MAX IV linac are well-suited for efficient generation of PWFA-optimized bunch current profiles, both for single- and double-bunch beams. Simulations Elsevier MAX IV Elsevier Linear accelerator Elsevier Plasma-wakefield acceleration Elsevier Electrons Elsevier Andersson, J. oth Ferri, J. oth Charles, T.K. oth Ekerfelt, H. oth Mansten, E. oth Thorin, S. oth Lundh, O. oth Enthalten in North-Holland Publ. Co Ide, C.V. ELSEVIER The efficacy of EEG-biofeedback for acute pain management, a randomized sham-controlled study of a tailored protocol 2017 a journal on accelerators, instrumentation and techniques applied to research in nuclear and atomic physics, materials science and related fields in physics Amsterdam (DE-627)ELV000874671 volume:1033 year:2022 day:11 month:06 pages:0 https://doi.org/10.1016/j.nima.2022.166591 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.90 Neurologie VZ AR 1033 2022 11 0611 0 |
spelling |
10.1016/j.nima.2022.166591 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001787.pica (DE-627)ELV057686513 (ELSEVIER)S0168-9002(22)00175-9 DE-627 ger DE-627 rakwb eng 610 VZ 44.90 bkl Björklund Svensson, J. verfasserin aut Start-to-end simulations of plasma-wakefield acceleration using the MAX IV Linear Accelerator 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Plasma-wakefield acceleration (PWFA) relies on the interaction between intense particle bunches and plasma for reaching higher accelerating gradients than what is possible with conventional radio-frequency technology. Using ultra-relativistic beam drivers allows for long acceleration lengths and have potential applications such as energy booster stages for synchrotron light sources or linear colliders and generating ultra-high-brightness beams from the background plasma. In this article, we present start-to-end simulations of the MAX IV Linear Accelerator as part of our investigations into the feasibility of using the linac for a PWFA experiment. We find that PWFA appears to be a viable application for the linac. A part of this conclusion is based on our finding that the general properties of the bunch compressor type employed in the MAX IV linac are well-suited for efficient generation of PWFA-optimized bunch current profiles, both for single- and double-bunch beams. Plasma-wakefield acceleration (PWFA) relies on the interaction between intense particle bunches and plasma for reaching higher accelerating gradients than what is possible with conventional radio-frequency technology. Using ultra-relativistic beam drivers allows for long acceleration lengths and have potential applications such as energy booster stages for synchrotron light sources or linear colliders and generating ultra-high-brightness beams from the background plasma. In this article, we present start-to-end simulations of the MAX IV Linear Accelerator as part of our investigations into the feasibility of using the linac for a PWFA experiment. We find that PWFA appears to be a viable application for the linac. A part of this conclusion is based on our finding that the general properties of the bunch compressor type employed in the MAX IV linac are well-suited for efficient generation of PWFA-optimized bunch current profiles, both for single- and double-bunch beams. Simulations Elsevier MAX IV Elsevier Linear accelerator Elsevier Plasma-wakefield acceleration Elsevier Electrons Elsevier Andersson, J. oth Ferri, J. oth Charles, T.K. oth Ekerfelt, H. oth Mansten, E. oth Thorin, S. oth Lundh, O. oth Enthalten in North-Holland Publ. Co Ide, C.V. ELSEVIER The efficacy of EEG-biofeedback for acute pain management, a randomized sham-controlled study of a tailored protocol 2017 a journal on accelerators, instrumentation and techniques applied to research in nuclear and atomic physics, materials science and related fields in physics Amsterdam (DE-627)ELV000874671 volume:1033 year:2022 day:11 month:06 pages:0 https://doi.org/10.1016/j.nima.2022.166591 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.90 Neurologie VZ AR 1033 2022 11 0611 0 |
allfields_unstemmed |
10.1016/j.nima.2022.166591 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001787.pica (DE-627)ELV057686513 (ELSEVIER)S0168-9002(22)00175-9 DE-627 ger DE-627 rakwb eng 610 VZ 44.90 bkl Björklund Svensson, J. verfasserin aut Start-to-end simulations of plasma-wakefield acceleration using the MAX IV Linear Accelerator 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Plasma-wakefield acceleration (PWFA) relies on the interaction between intense particle bunches and plasma for reaching higher accelerating gradients than what is possible with conventional radio-frequency technology. Using ultra-relativistic beam drivers allows for long acceleration lengths and have potential applications such as energy booster stages for synchrotron light sources or linear colliders and generating ultra-high-brightness beams from the background plasma. In this article, we present start-to-end simulations of the MAX IV Linear Accelerator as part of our investigations into the feasibility of using the linac for a PWFA experiment. We find that PWFA appears to be a viable application for the linac. A part of this conclusion is based on our finding that the general properties of the bunch compressor type employed in the MAX IV linac are well-suited for efficient generation of PWFA-optimized bunch current profiles, both for single- and double-bunch beams. Plasma-wakefield acceleration (PWFA) relies on the interaction between intense particle bunches and plasma for reaching higher accelerating gradients than what is possible with conventional radio-frequency technology. Using ultra-relativistic beam drivers allows for long acceleration lengths and have potential applications such as energy booster stages for synchrotron light sources or linear colliders and generating ultra-high-brightness beams from the background plasma. In this article, we present start-to-end simulations of the MAX IV Linear Accelerator as part of our investigations into the feasibility of using the linac for a PWFA experiment. We find that PWFA appears to be a viable application for the linac. A part of this conclusion is based on our finding that the general properties of the bunch compressor type employed in the MAX IV linac are well-suited for efficient generation of PWFA-optimized bunch current profiles, both for single- and double-bunch beams. Simulations Elsevier MAX IV Elsevier Linear accelerator Elsevier Plasma-wakefield acceleration Elsevier Electrons Elsevier Andersson, J. oth Ferri, J. oth Charles, T.K. oth Ekerfelt, H. oth Mansten, E. oth Thorin, S. oth Lundh, O. oth Enthalten in North-Holland Publ. Co Ide, C.V. ELSEVIER The efficacy of EEG-biofeedback for acute pain management, a randomized sham-controlled study of a tailored protocol 2017 a journal on accelerators, instrumentation and techniques applied to research in nuclear and atomic physics, materials science and related fields in physics Amsterdam (DE-627)ELV000874671 volume:1033 year:2022 day:11 month:06 pages:0 https://doi.org/10.1016/j.nima.2022.166591 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.90 Neurologie VZ AR 1033 2022 11 0611 0 |
allfieldsGer |
10.1016/j.nima.2022.166591 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001787.pica (DE-627)ELV057686513 (ELSEVIER)S0168-9002(22)00175-9 DE-627 ger DE-627 rakwb eng 610 VZ 44.90 bkl Björklund Svensson, J. verfasserin aut Start-to-end simulations of plasma-wakefield acceleration using the MAX IV Linear Accelerator 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Plasma-wakefield acceleration (PWFA) relies on the interaction between intense particle bunches and plasma for reaching higher accelerating gradients than what is possible with conventional radio-frequency technology. Using ultra-relativistic beam drivers allows for long acceleration lengths and have potential applications such as energy booster stages for synchrotron light sources or linear colliders and generating ultra-high-brightness beams from the background plasma. In this article, we present start-to-end simulations of the MAX IV Linear Accelerator as part of our investigations into the feasibility of using the linac for a PWFA experiment. We find that PWFA appears to be a viable application for the linac. A part of this conclusion is based on our finding that the general properties of the bunch compressor type employed in the MAX IV linac are well-suited for efficient generation of PWFA-optimized bunch current profiles, both for single- and double-bunch beams. Plasma-wakefield acceleration (PWFA) relies on the interaction between intense particle bunches and plasma for reaching higher accelerating gradients than what is possible with conventional radio-frequency technology. Using ultra-relativistic beam drivers allows for long acceleration lengths and have potential applications such as energy booster stages for synchrotron light sources or linear colliders and generating ultra-high-brightness beams from the background plasma. In this article, we present start-to-end simulations of the MAX IV Linear Accelerator as part of our investigations into the feasibility of using the linac for a PWFA experiment. We find that PWFA appears to be a viable application for the linac. A part of this conclusion is based on our finding that the general properties of the bunch compressor type employed in the MAX IV linac are well-suited for efficient generation of PWFA-optimized bunch current profiles, both for single- and double-bunch beams. Simulations Elsevier MAX IV Elsevier Linear accelerator Elsevier Plasma-wakefield acceleration Elsevier Electrons Elsevier Andersson, J. oth Ferri, J. oth Charles, T.K. oth Ekerfelt, H. oth Mansten, E. oth Thorin, S. oth Lundh, O. oth Enthalten in North-Holland Publ. Co Ide, C.V. ELSEVIER The efficacy of EEG-biofeedback for acute pain management, a randomized sham-controlled study of a tailored protocol 2017 a journal on accelerators, instrumentation and techniques applied to research in nuclear and atomic physics, materials science and related fields in physics Amsterdam (DE-627)ELV000874671 volume:1033 year:2022 day:11 month:06 pages:0 https://doi.org/10.1016/j.nima.2022.166591 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.90 Neurologie VZ AR 1033 2022 11 0611 0 |
allfieldsSound |
10.1016/j.nima.2022.166591 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001787.pica (DE-627)ELV057686513 (ELSEVIER)S0168-9002(22)00175-9 DE-627 ger DE-627 rakwb eng 610 VZ 44.90 bkl Björklund Svensson, J. verfasserin aut Start-to-end simulations of plasma-wakefield acceleration using the MAX IV Linear Accelerator 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Plasma-wakefield acceleration (PWFA) relies on the interaction between intense particle bunches and plasma for reaching higher accelerating gradients than what is possible with conventional radio-frequency technology. Using ultra-relativistic beam drivers allows for long acceleration lengths and have potential applications such as energy booster stages for synchrotron light sources or linear colliders and generating ultra-high-brightness beams from the background plasma. In this article, we present start-to-end simulations of the MAX IV Linear Accelerator as part of our investigations into the feasibility of using the linac for a PWFA experiment. We find that PWFA appears to be a viable application for the linac. A part of this conclusion is based on our finding that the general properties of the bunch compressor type employed in the MAX IV linac are well-suited for efficient generation of PWFA-optimized bunch current profiles, both for single- and double-bunch beams. Plasma-wakefield acceleration (PWFA) relies on the interaction between intense particle bunches and plasma for reaching higher accelerating gradients than what is possible with conventional radio-frequency technology. Using ultra-relativistic beam drivers allows for long acceleration lengths and have potential applications such as energy booster stages for synchrotron light sources or linear colliders and generating ultra-high-brightness beams from the background plasma. In this article, we present start-to-end simulations of the MAX IV Linear Accelerator as part of our investigations into the feasibility of using the linac for a PWFA experiment. We find that PWFA appears to be a viable application for the linac. A part of this conclusion is based on our finding that the general properties of the bunch compressor type employed in the MAX IV linac are well-suited for efficient generation of PWFA-optimized bunch current profiles, both for single- and double-bunch beams. Simulations Elsevier MAX IV Elsevier Linear accelerator Elsevier Plasma-wakefield acceleration Elsevier Electrons Elsevier Andersson, J. oth Ferri, J. oth Charles, T.K. oth Ekerfelt, H. oth Mansten, E. oth Thorin, S. oth Lundh, O. oth Enthalten in North-Holland Publ. Co Ide, C.V. ELSEVIER The efficacy of EEG-biofeedback for acute pain management, a randomized sham-controlled study of a tailored protocol 2017 a journal on accelerators, instrumentation and techniques applied to research in nuclear and atomic physics, materials science and related fields in physics Amsterdam (DE-627)ELV000874671 volume:1033 year:2022 day:11 month:06 pages:0 https://doi.org/10.1016/j.nima.2022.166591 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.90 Neurologie VZ AR 1033 2022 11 0611 0 |
language |
English |
source |
Enthalten in The efficacy of EEG-biofeedback for acute pain management, a randomized sham-controlled study of a tailored protocol Amsterdam volume:1033 year:2022 day:11 month:06 pages:0 |
sourceStr |
Enthalten in The efficacy of EEG-biofeedback for acute pain management, a randomized sham-controlled study of a tailored protocol Amsterdam volume:1033 year:2022 day:11 month:06 pages:0 |
format_phy_str_mv |
Article |
bklname |
Neurologie |
institution |
findex.gbv.de |
topic_facet |
Simulations MAX IV Linear accelerator Plasma-wakefield acceleration Electrons |
dewey-raw |
610 |
isfreeaccess_bool |
false |
container_title |
The efficacy of EEG-biofeedback for acute pain management, a randomized sham-controlled study of a tailored protocol |
authorswithroles_txt_mv |
Björklund Svensson, J. @@aut@@ Andersson, J. @@oth@@ Ferri, J. @@oth@@ Charles, T.K. @@oth@@ Ekerfelt, H. @@oth@@ Mansten, E. @@oth@@ Thorin, S. @@oth@@ Lundh, O. @@oth@@ |
publishDateDaySort_date |
2022-01-11T00:00:00Z |
hierarchy_top_id |
ELV000874671 |
dewey-sort |
3610 |
id |
ELV057686513 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV057686513</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626045549.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220808s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.nima.2022.166591</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001787.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV057686513</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0168-9002(22)00175-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.90</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Björklund Svensson, J.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Start-to-end simulations of plasma-wakefield acceleration using the MAX IV Linear Accelerator</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Plasma-wakefield acceleration (PWFA) relies on the interaction between intense particle bunches and plasma for reaching higher accelerating gradients than what is possible with conventional radio-frequency technology. Using ultra-relativistic beam drivers allows for long acceleration lengths and have potential applications such as energy booster stages for synchrotron light sources or linear colliders and generating ultra-high-brightness beams from the background plasma. In this article, we present start-to-end simulations of the MAX IV Linear Accelerator as part of our investigations into the feasibility of using the linac for a PWFA experiment. We find that PWFA appears to be a viable application for the linac. A part of this conclusion is based on our finding that the general properties of the bunch compressor type employed in the MAX IV linac are well-suited for efficient generation of PWFA-optimized bunch current profiles, both for single- and double-bunch beams.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Plasma-wakefield acceleration (PWFA) relies on the interaction between intense particle bunches and plasma for reaching higher accelerating gradients than what is possible with conventional radio-frequency technology. Using ultra-relativistic beam drivers allows for long acceleration lengths and have potential applications such as energy booster stages for synchrotron light sources or linear colliders and generating ultra-high-brightness beams from the background plasma. In this article, we present start-to-end simulations of the MAX IV Linear Accelerator as part of our investigations into the feasibility of using the linac for a PWFA experiment. We find that PWFA appears to be a viable application for the linac. A part of this conclusion is based on our finding that the general properties of the bunch compressor type employed in the MAX IV linac are well-suited for efficient generation of PWFA-optimized bunch current profiles, both for single- and double-bunch beams.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Simulations</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MAX IV</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Linear accelerator</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Plasma-wakefield acceleration</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Electrons</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Andersson, J.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ferri, J.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Charles, T.K.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ekerfelt, H.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mansten, E.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Thorin, S.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lundh, O.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">North-Holland Publ. Co</subfield><subfield code="a">Ide, C.V. ELSEVIER</subfield><subfield code="t">The efficacy of EEG-biofeedback for acute pain management, a randomized sham-controlled study of a tailored protocol</subfield><subfield code="d">2017</subfield><subfield code="d">a journal on accelerators, instrumentation and techniques applied to research in nuclear and atomic physics, materials science and related fields in physics</subfield><subfield code="g">Amsterdam</subfield><subfield code="w">(DE-627)ELV000874671</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:1033</subfield><subfield code="g">year:2022</subfield><subfield code="g">day:11</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.nima.2022.166591</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.90</subfield><subfield code="j">Neurologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">1033</subfield><subfield code="j">2022</subfield><subfield code="b">11</subfield><subfield code="c">0611</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
author |
Björklund Svensson, J. |
spellingShingle |
Björklund Svensson, J. ddc 610 bkl 44.90 Elsevier Simulations Elsevier MAX IV Elsevier Linear accelerator Elsevier Plasma-wakefield acceleration Elsevier Electrons Start-to-end simulations of plasma-wakefield acceleration using the MAX IV Linear Accelerator |
authorStr |
Björklund Svensson, J. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV000874671 |
format |
electronic Article |
dewey-ones |
610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
610 VZ 44.90 bkl Start-to-end simulations of plasma-wakefield acceleration using the MAX IV Linear Accelerator Simulations Elsevier MAX IV Elsevier Linear accelerator Elsevier Plasma-wakefield acceleration Elsevier Electrons Elsevier |
topic |
ddc 610 bkl 44.90 Elsevier Simulations Elsevier MAX IV Elsevier Linear accelerator Elsevier Plasma-wakefield acceleration Elsevier Electrons |
topic_unstemmed |
ddc 610 bkl 44.90 Elsevier Simulations Elsevier MAX IV Elsevier Linear accelerator Elsevier Plasma-wakefield acceleration Elsevier Electrons |
topic_browse |
ddc 610 bkl 44.90 Elsevier Simulations Elsevier MAX IV Elsevier Linear accelerator Elsevier Plasma-wakefield acceleration Elsevier Electrons |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
j a ja j f jf t c tc h e he e m em s t st o l ol |
hierarchy_parent_title |
The efficacy of EEG-biofeedback for acute pain management, a randomized sham-controlled study of a tailored protocol |
hierarchy_parent_id |
ELV000874671 |
dewey-tens |
610 - Medicine & health |
hierarchy_top_title |
The efficacy of EEG-biofeedback for acute pain management, a randomized sham-controlled study of a tailored protocol |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV000874671 |
title |
Start-to-end simulations of plasma-wakefield acceleration using the MAX IV Linear Accelerator |
ctrlnum |
(DE-627)ELV057686513 (ELSEVIER)S0168-9002(22)00175-9 |
title_full |
Start-to-end simulations of plasma-wakefield acceleration using the MAX IV Linear Accelerator |
author_sort |
Björklund Svensson, J. |
journal |
The efficacy of EEG-biofeedback for acute pain management, a randomized sham-controlled study of a tailored protocol |
journalStr |
The efficacy of EEG-biofeedback for acute pain management, a randomized sham-controlled study of a tailored protocol |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
zzz |
container_start_page |
0 |
author_browse |
Björklund Svensson, J. |
container_volume |
1033 |
class |
610 VZ 44.90 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Björklund Svensson, J. |
doi_str_mv |
10.1016/j.nima.2022.166591 |
dewey-full |
610 |
title_sort |
start-to-end simulations of plasma-wakefield acceleration using the max iv linear accelerator |
title_auth |
Start-to-end simulations of plasma-wakefield acceleration using the MAX IV Linear Accelerator |
abstract |
Plasma-wakefield acceleration (PWFA) relies on the interaction between intense particle bunches and plasma for reaching higher accelerating gradients than what is possible with conventional radio-frequency technology. Using ultra-relativistic beam drivers allows for long acceleration lengths and have potential applications such as energy booster stages for synchrotron light sources or linear colliders and generating ultra-high-brightness beams from the background plasma. In this article, we present start-to-end simulations of the MAX IV Linear Accelerator as part of our investigations into the feasibility of using the linac for a PWFA experiment. We find that PWFA appears to be a viable application for the linac. A part of this conclusion is based on our finding that the general properties of the bunch compressor type employed in the MAX IV linac are well-suited for efficient generation of PWFA-optimized bunch current profiles, both for single- and double-bunch beams. |
abstractGer |
Plasma-wakefield acceleration (PWFA) relies on the interaction between intense particle bunches and plasma for reaching higher accelerating gradients than what is possible with conventional radio-frequency technology. Using ultra-relativistic beam drivers allows for long acceleration lengths and have potential applications such as energy booster stages for synchrotron light sources or linear colliders and generating ultra-high-brightness beams from the background plasma. In this article, we present start-to-end simulations of the MAX IV Linear Accelerator as part of our investigations into the feasibility of using the linac for a PWFA experiment. We find that PWFA appears to be a viable application for the linac. A part of this conclusion is based on our finding that the general properties of the bunch compressor type employed in the MAX IV linac are well-suited for efficient generation of PWFA-optimized bunch current profiles, both for single- and double-bunch beams. |
abstract_unstemmed |
Plasma-wakefield acceleration (PWFA) relies on the interaction between intense particle bunches and plasma for reaching higher accelerating gradients than what is possible with conventional radio-frequency technology. Using ultra-relativistic beam drivers allows for long acceleration lengths and have potential applications such as energy booster stages for synchrotron light sources or linear colliders and generating ultra-high-brightness beams from the background plasma. In this article, we present start-to-end simulations of the MAX IV Linear Accelerator as part of our investigations into the feasibility of using the linac for a PWFA experiment. We find that PWFA appears to be a viable application for the linac. A part of this conclusion is based on our finding that the general properties of the bunch compressor type employed in the MAX IV linac are well-suited for efficient generation of PWFA-optimized bunch current profiles, both for single- and double-bunch beams. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA |
title_short |
Start-to-end simulations of plasma-wakefield acceleration using the MAX IV Linear Accelerator |
url |
https://doi.org/10.1016/j.nima.2022.166591 |
remote_bool |
true |
author2 |
Andersson, J. Ferri, J. Charles, T.K. Ekerfelt, H. Mansten, E. Thorin, S. Lundh, O. |
author2Str |
Andersson, J. Ferri, J. Charles, T.K. Ekerfelt, H. Mansten, E. Thorin, S. Lundh, O. |
ppnlink |
ELV000874671 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth oth |
doi_str |
10.1016/j.nima.2022.166591 |
up_date |
2024-07-06T16:52:11.279Z |
_version_ |
1803849282389803008 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV057686513</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626045549.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220808s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.nima.2022.166591</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001787.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV057686513</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0168-9002(22)00175-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.90</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Björklund Svensson, J.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Start-to-end simulations of plasma-wakefield acceleration using the MAX IV Linear Accelerator</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Plasma-wakefield acceleration (PWFA) relies on the interaction between intense particle bunches and plasma for reaching higher accelerating gradients than what is possible with conventional radio-frequency technology. Using ultra-relativistic beam drivers allows for long acceleration lengths and have potential applications such as energy booster stages for synchrotron light sources or linear colliders and generating ultra-high-brightness beams from the background plasma. In this article, we present start-to-end simulations of the MAX IV Linear Accelerator as part of our investigations into the feasibility of using the linac for a PWFA experiment. We find that PWFA appears to be a viable application for the linac. A part of this conclusion is based on our finding that the general properties of the bunch compressor type employed in the MAX IV linac are well-suited for efficient generation of PWFA-optimized bunch current profiles, both for single- and double-bunch beams.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Plasma-wakefield acceleration (PWFA) relies on the interaction between intense particle bunches and plasma for reaching higher accelerating gradients than what is possible with conventional radio-frequency technology. Using ultra-relativistic beam drivers allows for long acceleration lengths and have potential applications such as energy booster stages for synchrotron light sources or linear colliders and generating ultra-high-brightness beams from the background plasma. In this article, we present start-to-end simulations of the MAX IV Linear Accelerator as part of our investigations into the feasibility of using the linac for a PWFA experiment. We find that PWFA appears to be a viable application for the linac. A part of this conclusion is based on our finding that the general properties of the bunch compressor type employed in the MAX IV linac are well-suited for efficient generation of PWFA-optimized bunch current profiles, both for single- and double-bunch beams.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Simulations</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MAX IV</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Linear accelerator</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Plasma-wakefield acceleration</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Electrons</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Andersson, J.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ferri, J.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Charles, T.K.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ekerfelt, H.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mansten, E.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Thorin, S.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lundh, O.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">North-Holland Publ. Co</subfield><subfield code="a">Ide, C.V. ELSEVIER</subfield><subfield code="t">The efficacy of EEG-biofeedback for acute pain management, a randomized sham-controlled study of a tailored protocol</subfield><subfield code="d">2017</subfield><subfield code="d">a journal on accelerators, instrumentation and techniques applied to research in nuclear and atomic physics, materials science and related fields in physics</subfield><subfield code="g">Amsterdam</subfield><subfield code="w">(DE-627)ELV000874671</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:1033</subfield><subfield code="g">year:2022</subfield><subfield code="g">day:11</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.nima.2022.166591</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.90</subfield><subfield code="j">Neurologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">1033</subfield><subfield code="j">2022</subfield><subfield code="b">11</subfield><subfield code="c">0611</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
score |
7.40059 |