Mixed-mode fracture behaviour of refractories with asymmetric wedge splitting test. Part I: Numerical implementation and validation
The suitability of asymmetric wedge splitting test (WST) for mode I/II mixed-loading was validated by FE simulation with a three-dimensional heterogeneous continuum FE model. The unsymmetrical strain and stress patterns were observed for mixed-mode loading. Compared with mode I loading of symmetric...
Ausführliche Beschreibung
Autor*in: |
Dai, Y.J. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
9 |
---|
Übergeordnetes Werk: |
Enthalten in: Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration - Rey, F. ELSEVIER, 2018, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:48 ; year:2022 ; number:14 ; day:15 ; month:07 ; pages:19767-19775 ; extent:9 |
Links: |
---|
DOI / URN: |
10.1016/j.ceramint.2022.03.245 |
---|
Katalog-ID: |
ELV05790765X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV05790765X | ||
003 | DE-627 | ||
005 | 20230626045931.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220808s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ceramint.2022.03.245 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001797.pica |
035 | |a (DE-627)ELV05790765X | ||
035 | |a (ELSEVIER)S0272-8842(22)01055-0 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 333.7 |a 610 |q VZ |
084 | |a 43.12 |2 bkl | ||
084 | |a 43.13 |2 bkl | ||
084 | |a 44.13 |2 bkl | ||
100 | 1 | |a Dai, Y.J. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Mixed-mode fracture behaviour of refractories with asymmetric wedge splitting test. Part I: Numerical implementation and validation |
264 | 1 | |c 2022transfer abstract | |
300 | |a 9 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a The suitability of asymmetric wedge splitting test (WST) for mode I/II mixed-loading was validated by FE simulation with a three-dimensional heterogeneous continuum FE model. The unsymmetrical strain and stress patterns were observed for mixed-mode loading. Compared with mode I loading of symmetric WST, the introduction of in-plane shear accelerates the crack extension and deviation from symmetry plane with a smaller fracture process zone. Additionally, the asymmetric WST with small, medium and large wedge angles were simulated for sensitivity analysis. With the increasing of asymmetric wedge angle, the recorded vertical load-displacement curves turn from “mild” to “steep”, and the ratio of mode I to mode II fracture energy GI/GII decreases accordingly while the symmetric one has the highest GI proportion. The asymmetric WST with large wedge angle deforms the most at same applied vertical loading displacement, while all WSTs show similar damaged elements amount at the same crack mouth opening displacement. | ||
520 | |a The suitability of asymmetric wedge splitting test (WST) for mode I/II mixed-loading was validated by FE simulation with a three-dimensional heterogeneous continuum FE model. The unsymmetrical strain and stress patterns were observed for mixed-mode loading. Compared with mode I loading of symmetric WST, the introduction of in-plane shear accelerates the crack extension and deviation from symmetry plane with a smaller fracture process zone. Additionally, the asymmetric WST with small, medium and large wedge angles were simulated for sensitivity analysis. With the increasing of asymmetric wedge angle, the recorded vertical load-displacement curves turn from “mild” to “steep”, and the ratio of mode I to mode II fracture energy GI/GII decreases accordingly while the symmetric one has the highest GI proportion. The asymmetric WST with large wedge angle deforms the most at same applied vertical loading displacement, while all WSTs show similar damaged elements amount at the same crack mouth opening displacement. | ||
650 | 7 | |a Fracture processes |2 Elsevier | |
650 | 7 | |a FE simulation |2 Elsevier | |
650 | 7 | |a Energy dissipation |2 Elsevier | |
650 | 7 | |a Asymmetric wedge splitting test |2 Elsevier | |
650 | 7 | |a Mixed-mode loading |2 Elsevier | |
700 | 1 | |a Jin, S.L. |4 oth | |
700 | 1 | |a Li, Y.W. |4 oth | |
700 | 1 | |a Wang, Q.H. |4 oth | |
700 | 1 | |a Zhou, W.Y. |4 oth | |
700 | 1 | |a Harmuth, H. |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Rey, F. ELSEVIER |t Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration |d 2018 |g Amsterdam [u.a.] |w (DE-627)ELV000899798 |
773 | 1 | 8 | |g volume:48 |g year:2022 |g number:14 |g day:15 |g month:07 |g pages:19767-19775 |g extent:9 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.ceramint.2022.03.245 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OPC-GGO | ||
936 | b | k | |a 43.12 |j Umweltchemie |q VZ |
936 | b | k | |a 43.13 |j Umwelttoxikologie |q VZ |
936 | b | k | |a 44.13 |j Medizinische Ökologie |q VZ |
951 | |a AR | ||
952 | |d 48 |j 2022 |e 14 |b 15 |c 0715 |h 19767-19775 |g 9 |
author_variant |
y d yd |
---|---|
matchkey_str |
daiyjjinslliywwangqhzhouwyharmuthh:2022----:iemdfatrbhvorfercoisihsmercegsltigetatnmrc |
hierarchy_sort_str |
2022transfer abstract |
bklnumber |
43.12 43.13 44.13 |
publishDate |
2022 |
allfields |
10.1016/j.ceramint.2022.03.245 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001797.pica (DE-627)ELV05790765X (ELSEVIER)S0272-8842(22)01055-0 DE-627 ger DE-627 rakwb eng 333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl Dai, Y.J. verfasserin aut Mixed-mode fracture behaviour of refractories with asymmetric wedge splitting test. Part I: Numerical implementation and validation 2022transfer abstract 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The suitability of asymmetric wedge splitting test (WST) for mode I/II mixed-loading was validated by FE simulation with a three-dimensional heterogeneous continuum FE model. The unsymmetrical strain and stress patterns were observed for mixed-mode loading. Compared with mode I loading of symmetric WST, the introduction of in-plane shear accelerates the crack extension and deviation from symmetry plane with a smaller fracture process zone. Additionally, the asymmetric WST with small, medium and large wedge angles were simulated for sensitivity analysis. With the increasing of asymmetric wedge angle, the recorded vertical load-displacement curves turn from “mild” to “steep”, and the ratio of mode I to mode II fracture energy GI/GII decreases accordingly while the symmetric one has the highest GI proportion. The asymmetric WST with large wedge angle deforms the most at same applied vertical loading displacement, while all WSTs show similar damaged elements amount at the same crack mouth opening displacement. The suitability of asymmetric wedge splitting test (WST) for mode I/II mixed-loading was validated by FE simulation with a three-dimensional heterogeneous continuum FE model. The unsymmetrical strain and stress patterns were observed for mixed-mode loading. Compared with mode I loading of symmetric WST, the introduction of in-plane shear accelerates the crack extension and deviation from symmetry plane with a smaller fracture process zone. Additionally, the asymmetric WST with small, medium and large wedge angles were simulated for sensitivity analysis. With the increasing of asymmetric wedge angle, the recorded vertical load-displacement curves turn from “mild” to “steep”, and the ratio of mode I to mode II fracture energy GI/GII decreases accordingly while the symmetric one has the highest GI proportion. The asymmetric WST with large wedge angle deforms the most at same applied vertical loading displacement, while all WSTs show similar damaged elements amount at the same crack mouth opening displacement. Fracture processes Elsevier FE simulation Elsevier Energy dissipation Elsevier Asymmetric wedge splitting test Elsevier Mixed-mode loading Elsevier Jin, S.L. oth Li, Y.W. oth Wang, Q.H. oth Zhou, W.Y. oth Harmuth, H. oth Enthalten in Elsevier Science Rey, F. ELSEVIER Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration 2018 Amsterdam [u.a.] (DE-627)ELV000899798 volume:48 year:2022 number:14 day:15 month:07 pages:19767-19775 extent:9 https://doi.org/10.1016/j.ceramint.2022.03.245 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO 43.12 Umweltchemie VZ 43.13 Umwelttoxikologie VZ 44.13 Medizinische Ökologie VZ AR 48 2022 14 15 0715 19767-19775 9 |
spelling |
10.1016/j.ceramint.2022.03.245 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001797.pica (DE-627)ELV05790765X (ELSEVIER)S0272-8842(22)01055-0 DE-627 ger DE-627 rakwb eng 333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl Dai, Y.J. verfasserin aut Mixed-mode fracture behaviour of refractories with asymmetric wedge splitting test. Part I: Numerical implementation and validation 2022transfer abstract 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The suitability of asymmetric wedge splitting test (WST) for mode I/II mixed-loading was validated by FE simulation with a three-dimensional heterogeneous continuum FE model. The unsymmetrical strain and stress patterns were observed for mixed-mode loading. Compared with mode I loading of symmetric WST, the introduction of in-plane shear accelerates the crack extension and deviation from symmetry plane with a smaller fracture process zone. Additionally, the asymmetric WST with small, medium and large wedge angles were simulated for sensitivity analysis. With the increasing of asymmetric wedge angle, the recorded vertical load-displacement curves turn from “mild” to “steep”, and the ratio of mode I to mode II fracture energy GI/GII decreases accordingly while the symmetric one has the highest GI proportion. The asymmetric WST with large wedge angle deforms the most at same applied vertical loading displacement, while all WSTs show similar damaged elements amount at the same crack mouth opening displacement. The suitability of asymmetric wedge splitting test (WST) for mode I/II mixed-loading was validated by FE simulation with a three-dimensional heterogeneous continuum FE model. The unsymmetrical strain and stress patterns were observed for mixed-mode loading. Compared with mode I loading of symmetric WST, the introduction of in-plane shear accelerates the crack extension and deviation from symmetry plane with a smaller fracture process zone. Additionally, the asymmetric WST with small, medium and large wedge angles were simulated for sensitivity analysis. With the increasing of asymmetric wedge angle, the recorded vertical load-displacement curves turn from “mild” to “steep”, and the ratio of mode I to mode II fracture energy GI/GII decreases accordingly while the symmetric one has the highest GI proportion. The asymmetric WST with large wedge angle deforms the most at same applied vertical loading displacement, while all WSTs show similar damaged elements amount at the same crack mouth opening displacement. Fracture processes Elsevier FE simulation Elsevier Energy dissipation Elsevier Asymmetric wedge splitting test Elsevier Mixed-mode loading Elsevier Jin, S.L. oth Li, Y.W. oth Wang, Q.H. oth Zhou, W.Y. oth Harmuth, H. oth Enthalten in Elsevier Science Rey, F. ELSEVIER Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration 2018 Amsterdam [u.a.] (DE-627)ELV000899798 volume:48 year:2022 number:14 day:15 month:07 pages:19767-19775 extent:9 https://doi.org/10.1016/j.ceramint.2022.03.245 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO 43.12 Umweltchemie VZ 43.13 Umwelttoxikologie VZ 44.13 Medizinische Ökologie VZ AR 48 2022 14 15 0715 19767-19775 9 |
allfields_unstemmed |
10.1016/j.ceramint.2022.03.245 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001797.pica (DE-627)ELV05790765X (ELSEVIER)S0272-8842(22)01055-0 DE-627 ger DE-627 rakwb eng 333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl Dai, Y.J. verfasserin aut Mixed-mode fracture behaviour of refractories with asymmetric wedge splitting test. Part I: Numerical implementation and validation 2022transfer abstract 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The suitability of asymmetric wedge splitting test (WST) for mode I/II mixed-loading was validated by FE simulation with a three-dimensional heterogeneous continuum FE model. The unsymmetrical strain and stress patterns were observed for mixed-mode loading. Compared with mode I loading of symmetric WST, the introduction of in-plane shear accelerates the crack extension and deviation from symmetry plane with a smaller fracture process zone. Additionally, the asymmetric WST with small, medium and large wedge angles were simulated for sensitivity analysis. With the increasing of asymmetric wedge angle, the recorded vertical load-displacement curves turn from “mild” to “steep”, and the ratio of mode I to mode II fracture energy GI/GII decreases accordingly while the symmetric one has the highest GI proportion. The asymmetric WST with large wedge angle deforms the most at same applied vertical loading displacement, while all WSTs show similar damaged elements amount at the same crack mouth opening displacement. The suitability of asymmetric wedge splitting test (WST) for mode I/II mixed-loading was validated by FE simulation with a three-dimensional heterogeneous continuum FE model. The unsymmetrical strain and stress patterns were observed for mixed-mode loading. Compared with mode I loading of symmetric WST, the introduction of in-plane shear accelerates the crack extension and deviation from symmetry plane with a smaller fracture process zone. Additionally, the asymmetric WST with small, medium and large wedge angles were simulated for sensitivity analysis. With the increasing of asymmetric wedge angle, the recorded vertical load-displacement curves turn from “mild” to “steep”, and the ratio of mode I to mode II fracture energy GI/GII decreases accordingly while the symmetric one has the highest GI proportion. The asymmetric WST with large wedge angle deforms the most at same applied vertical loading displacement, while all WSTs show similar damaged elements amount at the same crack mouth opening displacement. Fracture processes Elsevier FE simulation Elsevier Energy dissipation Elsevier Asymmetric wedge splitting test Elsevier Mixed-mode loading Elsevier Jin, S.L. oth Li, Y.W. oth Wang, Q.H. oth Zhou, W.Y. oth Harmuth, H. oth Enthalten in Elsevier Science Rey, F. ELSEVIER Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration 2018 Amsterdam [u.a.] (DE-627)ELV000899798 volume:48 year:2022 number:14 day:15 month:07 pages:19767-19775 extent:9 https://doi.org/10.1016/j.ceramint.2022.03.245 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO 43.12 Umweltchemie VZ 43.13 Umwelttoxikologie VZ 44.13 Medizinische Ökologie VZ AR 48 2022 14 15 0715 19767-19775 9 |
allfieldsGer |
10.1016/j.ceramint.2022.03.245 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001797.pica (DE-627)ELV05790765X (ELSEVIER)S0272-8842(22)01055-0 DE-627 ger DE-627 rakwb eng 333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl Dai, Y.J. verfasserin aut Mixed-mode fracture behaviour of refractories with asymmetric wedge splitting test. Part I: Numerical implementation and validation 2022transfer abstract 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The suitability of asymmetric wedge splitting test (WST) for mode I/II mixed-loading was validated by FE simulation with a three-dimensional heterogeneous continuum FE model. The unsymmetrical strain and stress patterns were observed for mixed-mode loading. Compared with mode I loading of symmetric WST, the introduction of in-plane shear accelerates the crack extension and deviation from symmetry plane with a smaller fracture process zone. Additionally, the asymmetric WST with small, medium and large wedge angles were simulated for sensitivity analysis. With the increasing of asymmetric wedge angle, the recorded vertical load-displacement curves turn from “mild” to “steep”, and the ratio of mode I to mode II fracture energy GI/GII decreases accordingly while the symmetric one has the highest GI proportion. The asymmetric WST with large wedge angle deforms the most at same applied vertical loading displacement, while all WSTs show similar damaged elements amount at the same crack mouth opening displacement. The suitability of asymmetric wedge splitting test (WST) for mode I/II mixed-loading was validated by FE simulation with a three-dimensional heterogeneous continuum FE model. The unsymmetrical strain and stress patterns were observed for mixed-mode loading. Compared with mode I loading of symmetric WST, the introduction of in-plane shear accelerates the crack extension and deviation from symmetry plane with a smaller fracture process zone. Additionally, the asymmetric WST with small, medium and large wedge angles were simulated for sensitivity analysis. With the increasing of asymmetric wedge angle, the recorded vertical load-displacement curves turn from “mild” to “steep”, and the ratio of mode I to mode II fracture energy GI/GII decreases accordingly while the symmetric one has the highest GI proportion. The asymmetric WST with large wedge angle deforms the most at same applied vertical loading displacement, while all WSTs show similar damaged elements amount at the same crack mouth opening displacement. Fracture processes Elsevier FE simulation Elsevier Energy dissipation Elsevier Asymmetric wedge splitting test Elsevier Mixed-mode loading Elsevier Jin, S.L. oth Li, Y.W. oth Wang, Q.H. oth Zhou, W.Y. oth Harmuth, H. oth Enthalten in Elsevier Science Rey, F. ELSEVIER Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration 2018 Amsterdam [u.a.] (DE-627)ELV000899798 volume:48 year:2022 number:14 day:15 month:07 pages:19767-19775 extent:9 https://doi.org/10.1016/j.ceramint.2022.03.245 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO 43.12 Umweltchemie VZ 43.13 Umwelttoxikologie VZ 44.13 Medizinische Ökologie VZ AR 48 2022 14 15 0715 19767-19775 9 |
allfieldsSound |
10.1016/j.ceramint.2022.03.245 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001797.pica (DE-627)ELV05790765X (ELSEVIER)S0272-8842(22)01055-0 DE-627 ger DE-627 rakwb eng 333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl Dai, Y.J. verfasserin aut Mixed-mode fracture behaviour of refractories with asymmetric wedge splitting test. Part I: Numerical implementation and validation 2022transfer abstract 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The suitability of asymmetric wedge splitting test (WST) for mode I/II mixed-loading was validated by FE simulation with a three-dimensional heterogeneous continuum FE model. The unsymmetrical strain and stress patterns were observed for mixed-mode loading. Compared with mode I loading of symmetric WST, the introduction of in-plane shear accelerates the crack extension and deviation from symmetry plane with a smaller fracture process zone. Additionally, the asymmetric WST with small, medium and large wedge angles were simulated for sensitivity analysis. With the increasing of asymmetric wedge angle, the recorded vertical load-displacement curves turn from “mild” to “steep”, and the ratio of mode I to mode II fracture energy GI/GII decreases accordingly while the symmetric one has the highest GI proportion. The asymmetric WST with large wedge angle deforms the most at same applied vertical loading displacement, while all WSTs show similar damaged elements amount at the same crack mouth opening displacement. The suitability of asymmetric wedge splitting test (WST) for mode I/II mixed-loading was validated by FE simulation with a three-dimensional heterogeneous continuum FE model. The unsymmetrical strain and stress patterns were observed for mixed-mode loading. Compared with mode I loading of symmetric WST, the introduction of in-plane shear accelerates the crack extension and deviation from symmetry plane with a smaller fracture process zone. Additionally, the asymmetric WST with small, medium and large wedge angles were simulated for sensitivity analysis. With the increasing of asymmetric wedge angle, the recorded vertical load-displacement curves turn from “mild” to “steep”, and the ratio of mode I to mode II fracture energy GI/GII decreases accordingly while the symmetric one has the highest GI proportion. The asymmetric WST with large wedge angle deforms the most at same applied vertical loading displacement, while all WSTs show similar damaged elements amount at the same crack mouth opening displacement. Fracture processes Elsevier FE simulation Elsevier Energy dissipation Elsevier Asymmetric wedge splitting test Elsevier Mixed-mode loading Elsevier Jin, S.L. oth Li, Y.W. oth Wang, Q.H. oth Zhou, W.Y. oth Harmuth, H. oth Enthalten in Elsevier Science Rey, F. ELSEVIER Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration 2018 Amsterdam [u.a.] (DE-627)ELV000899798 volume:48 year:2022 number:14 day:15 month:07 pages:19767-19775 extent:9 https://doi.org/10.1016/j.ceramint.2022.03.245 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO 43.12 Umweltchemie VZ 43.13 Umwelttoxikologie VZ 44.13 Medizinische Ökologie VZ AR 48 2022 14 15 0715 19767-19775 9 |
language |
English |
source |
Enthalten in Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration Amsterdam [u.a.] volume:48 year:2022 number:14 day:15 month:07 pages:19767-19775 extent:9 |
sourceStr |
Enthalten in Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration Amsterdam [u.a.] volume:48 year:2022 number:14 day:15 month:07 pages:19767-19775 extent:9 |
format_phy_str_mv |
Article |
bklname |
Umweltchemie Umwelttoxikologie Medizinische Ökologie |
institution |
findex.gbv.de |
topic_facet |
Fracture processes FE simulation Energy dissipation Asymmetric wedge splitting test Mixed-mode loading |
dewey-raw |
333.7 |
isfreeaccess_bool |
false |
container_title |
Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration |
authorswithroles_txt_mv |
Dai, Y.J. @@aut@@ Jin, S.L. @@oth@@ Li, Y.W. @@oth@@ Wang, Q.H. @@oth@@ Zhou, W.Y. @@oth@@ Harmuth, H. @@oth@@ |
publishDateDaySort_date |
2022-01-15T00:00:00Z |
hierarchy_top_id |
ELV000899798 |
dewey-sort |
3333.7 |
id |
ELV05790765X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV05790765X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626045931.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220808s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ceramint.2022.03.245</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001797.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV05790765X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0272-8842(22)01055-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">333.7</subfield><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.12</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.13</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.13</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dai, Y.J.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mixed-mode fracture behaviour of refractories with asymmetric wedge splitting test. Part I: Numerical implementation and validation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">9</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The suitability of asymmetric wedge splitting test (WST) for mode I/II mixed-loading was validated by FE simulation with a three-dimensional heterogeneous continuum FE model. The unsymmetrical strain and stress patterns were observed for mixed-mode loading. Compared with mode I loading of symmetric WST, the introduction of in-plane shear accelerates the crack extension and deviation from symmetry plane with a smaller fracture process zone. Additionally, the asymmetric WST with small, medium and large wedge angles were simulated for sensitivity analysis. With the increasing of asymmetric wedge angle, the recorded vertical load-displacement curves turn from “mild” to “steep”, and the ratio of mode I to mode II fracture energy GI/GII decreases accordingly while the symmetric one has the highest GI proportion. The asymmetric WST with large wedge angle deforms the most at same applied vertical loading displacement, while all WSTs show similar damaged elements amount at the same crack mouth opening displacement.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The suitability of asymmetric wedge splitting test (WST) for mode I/II mixed-loading was validated by FE simulation with a three-dimensional heterogeneous continuum FE model. The unsymmetrical strain and stress patterns were observed for mixed-mode loading. Compared with mode I loading of symmetric WST, the introduction of in-plane shear accelerates the crack extension and deviation from symmetry plane with a smaller fracture process zone. Additionally, the asymmetric WST with small, medium and large wedge angles were simulated for sensitivity analysis. With the increasing of asymmetric wedge angle, the recorded vertical load-displacement curves turn from “mild” to “steep”, and the ratio of mode I to mode II fracture energy GI/GII decreases accordingly while the symmetric one has the highest GI proportion. The asymmetric WST with large wedge angle deforms the most at same applied vertical loading displacement, while all WSTs show similar damaged elements amount at the same crack mouth opening displacement.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fracture processes</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">FE simulation</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Energy dissipation</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Asymmetric wedge splitting test</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mixed-mode loading</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jin, S.L.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Y.W.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Q.H.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhou, W.Y.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Harmuth, H.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Rey, F. ELSEVIER</subfield><subfield code="t">Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration</subfield><subfield code="d">2018</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV000899798</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:48</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:14</subfield><subfield code="g">day:15</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:19767-19775</subfield><subfield code="g">extent:9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ceramint.2022.03.245</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.12</subfield><subfield code="j">Umweltchemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.13</subfield><subfield code="j">Umwelttoxikologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.13</subfield><subfield code="j">Medizinische Ökologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">48</subfield><subfield code="j">2022</subfield><subfield code="e">14</subfield><subfield code="b">15</subfield><subfield code="c">0715</subfield><subfield code="h">19767-19775</subfield><subfield code="g">9</subfield></datafield></record></collection>
|
author |
Dai, Y.J. |
spellingShingle |
Dai, Y.J. ddc 333.7 bkl 43.12 bkl 43.13 bkl 44.13 Elsevier Fracture processes Elsevier FE simulation Elsevier Energy dissipation Elsevier Asymmetric wedge splitting test Elsevier Mixed-mode loading Mixed-mode fracture behaviour of refractories with asymmetric wedge splitting test. Part I: Numerical implementation and validation |
authorStr |
Dai, Y.J. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV000899798 |
format |
electronic Article |
dewey-ones |
333 - Economics of land & energy 610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl Mixed-mode fracture behaviour of refractories with asymmetric wedge splitting test. Part I: Numerical implementation and validation Fracture processes Elsevier FE simulation Elsevier Energy dissipation Elsevier Asymmetric wedge splitting test Elsevier Mixed-mode loading Elsevier |
topic |
ddc 333.7 bkl 43.12 bkl 43.13 bkl 44.13 Elsevier Fracture processes Elsevier FE simulation Elsevier Energy dissipation Elsevier Asymmetric wedge splitting test Elsevier Mixed-mode loading |
topic_unstemmed |
ddc 333.7 bkl 43.12 bkl 43.13 bkl 44.13 Elsevier Fracture processes Elsevier FE simulation Elsevier Energy dissipation Elsevier Asymmetric wedge splitting test Elsevier Mixed-mode loading |
topic_browse |
ddc 333.7 bkl 43.12 bkl 43.13 bkl 44.13 Elsevier Fracture processes Elsevier FE simulation Elsevier Energy dissipation Elsevier Asymmetric wedge splitting test Elsevier Mixed-mode loading |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
s j sj y l yl q w qw w z wz h h hh |
hierarchy_parent_title |
Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration |
hierarchy_parent_id |
ELV000899798 |
dewey-tens |
330 - Economics 610 - Medicine & health |
hierarchy_top_title |
Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV000899798 |
title |
Mixed-mode fracture behaviour of refractories with asymmetric wedge splitting test. Part I: Numerical implementation and validation |
ctrlnum |
(DE-627)ELV05790765X (ELSEVIER)S0272-8842(22)01055-0 |
title_full |
Mixed-mode fracture behaviour of refractories with asymmetric wedge splitting test. Part I: Numerical implementation and validation |
author_sort |
Dai, Y.J. |
journal |
Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration |
journalStr |
Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
300 - Social sciences 600 - Technology |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
zzz |
container_start_page |
19767 |
author_browse |
Dai, Y.J. |
container_volume |
48 |
physical |
9 |
class |
333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Dai, Y.J. |
doi_str_mv |
10.1016/j.ceramint.2022.03.245 |
dewey-full |
333.7 610 |
title_sort |
mixed-mode fracture behaviour of refractories with asymmetric wedge splitting test. part i: numerical implementation and validation |
title_auth |
Mixed-mode fracture behaviour of refractories with asymmetric wedge splitting test. Part I: Numerical implementation and validation |
abstract |
The suitability of asymmetric wedge splitting test (WST) for mode I/II mixed-loading was validated by FE simulation with a three-dimensional heterogeneous continuum FE model. The unsymmetrical strain and stress patterns were observed for mixed-mode loading. Compared with mode I loading of symmetric WST, the introduction of in-plane shear accelerates the crack extension and deviation from symmetry plane with a smaller fracture process zone. Additionally, the asymmetric WST with small, medium and large wedge angles were simulated for sensitivity analysis. With the increasing of asymmetric wedge angle, the recorded vertical load-displacement curves turn from “mild” to “steep”, and the ratio of mode I to mode II fracture energy GI/GII decreases accordingly while the symmetric one has the highest GI proportion. The asymmetric WST with large wedge angle deforms the most at same applied vertical loading displacement, while all WSTs show similar damaged elements amount at the same crack mouth opening displacement. |
abstractGer |
The suitability of asymmetric wedge splitting test (WST) for mode I/II mixed-loading was validated by FE simulation with a three-dimensional heterogeneous continuum FE model. The unsymmetrical strain and stress patterns were observed for mixed-mode loading. Compared with mode I loading of symmetric WST, the introduction of in-plane shear accelerates the crack extension and deviation from symmetry plane with a smaller fracture process zone. Additionally, the asymmetric WST with small, medium and large wedge angles were simulated for sensitivity analysis. With the increasing of asymmetric wedge angle, the recorded vertical load-displacement curves turn from “mild” to “steep”, and the ratio of mode I to mode II fracture energy GI/GII decreases accordingly while the symmetric one has the highest GI proportion. The asymmetric WST with large wedge angle deforms the most at same applied vertical loading displacement, while all WSTs show similar damaged elements amount at the same crack mouth opening displacement. |
abstract_unstemmed |
The suitability of asymmetric wedge splitting test (WST) for mode I/II mixed-loading was validated by FE simulation with a three-dimensional heterogeneous continuum FE model. The unsymmetrical strain and stress patterns were observed for mixed-mode loading. Compared with mode I loading of symmetric WST, the introduction of in-plane shear accelerates the crack extension and deviation from symmetry plane with a smaller fracture process zone. Additionally, the asymmetric WST with small, medium and large wedge angles were simulated for sensitivity analysis. With the increasing of asymmetric wedge angle, the recorded vertical load-displacement curves turn from “mild” to “steep”, and the ratio of mode I to mode II fracture energy GI/GII decreases accordingly while the symmetric one has the highest GI proportion. The asymmetric WST with large wedge angle deforms the most at same applied vertical loading displacement, while all WSTs show similar damaged elements amount at the same crack mouth opening displacement. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO |
container_issue |
14 |
title_short |
Mixed-mode fracture behaviour of refractories with asymmetric wedge splitting test. Part I: Numerical implementation and validation |
url |
https://doi.org/10.1016/j.ceramint.2022.03.245 |
remote_bool |
true |
author2 |
Jin, S.L. Li, Y.W. Wang, Q.H. Zhou, W.Y. Harmuth, H. |
author2Str |
Jin, S.L. Li, Y.W. Wang, Q.H. Zhou, W.Y. Harmuth, H. |
ppnlink |
ELV000899798 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth |
doi_str |
10.1016/j.ceramint.2022.03.245 |
up_date |
2024-07-06T17:30:29.725Z |
_version_ |
1803851692483018752 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV05790765X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626045931.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220808s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ceramint.2022.03.245</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001797.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV05790765X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0272-8842(22)01055-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">333.7</subfield><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.12</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.13</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.13</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dai, Y.J.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mixed-mode fracture behaviour of refractories with asymmetric wedge splitting test. Part I: Numerical implementation and validation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">9</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The suitability of asymmetric wedge splitting test (WST) for mode I/II mixed-loading was validated by FE simulation with a three-dimensional heterogeneous continuum FE model. The unsymmetrical strain and stress patterns were observed for mixed-mode loading. Compared with mode I loading of symmetric WST, the introduction of in-plane shear accelerates the crack extension and deviation from symmetry plane with a smaller fracture process zone. Additionally, the asymmetric WST with small, medium and large wedge angles were simulated for sensitivity analysis. With the increasing of asymmetric wedge angle, the recorded vertical load-displacement curves turn from “mild” to “steep”, and the ratio of mode I to mode II fracture energy GI/GII decreases accordingly while the symmetric one has the highest GI proportion. The asymmetric WST with large wedge angle deforms the most at same applied vertical loading displacement, while all WSTs show similar damaged elements amount at the same crack mouth opening displacement.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The suitability of asymmetric wedge splitting test (WST) for mode I/II mixed-loading was validated by FE simulation with a three-dimensional heterogeneous continuum FE model. The unsymmetrical strain and stress patterns were observed for mixed-mode loading. Compared with mode I loading of symmetric WST, the introduction of in-plane shear accelerates the crack extension and deviation from symmetry plane with a smaller fracture process zone. Additionally, the asymmetric WST with small, medium and large wedge angles were simulated for sensitivity analysis. With the increasing of asymmetric wedge angle, the recorded vertical load-displacement curves turn from “mild” to “steep”, and the ratio of mode I to mode II fracture energy GI/GII decreases accordingly while the symmetric one has the highest GI proportion. The asymmetric WST with large wedge angle deforms the most at same applied vertical loading displacement, while all WSTs show similar damaged elements amount at the same crack mouth opening displacement.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fracture processes</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">FE simulation</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Energy dissipation</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Asymmetric wedge splitting test</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mixed-mode loading</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jin, S.L.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Y.W.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Q.H.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhou, W.Y.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Harmuth, H.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Rey, F. ELSEVIER</subfield><subfield code="t">Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration</subfield><subfield code="d">2018</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV000899798</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:48</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:14</subfield><subfield code="g">day:15</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:19767-19775</subfield><subfield code="g">extent:9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ceramint.2022.03.245</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.12</subfield><subfield code="j">Umweltchemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.13</subfield><subfield code="j">Umwelttoxikologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.13</subfield><subfield code="j">Medizinische Ökologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">48</subfield><subfield code="j">2022</subfield><subfield code="e">14</subfield><subfield code="b">15</subfield><subfield code="c">0715</subfield><subfield code="h">19767-19775</subfield><subfield code="g">9</subfield></datafield></record></collection>
|
score |
7.399624 |