Heat transfer and eccentric effect investigation on heat pipe used annular heat exchangers with densely longitudinal fins
Within the annular heat pipe heat exchangers, heat transfer capacity and assembly eccentricity are two crucial issues for the overall thermal performance (such as heat transfer capacity, flow friction, and temperature distribution). This study aimed to investigate: 1) the heat transfer and fluid flo...
Ausführliche Beschreibung
Autor*in: |
Bai, Wandong [verfasserIn] Chen, Wei [verfasserIn] Zeng, Chang [verfasserIn] Wu, Ge [verfasserIn] Chai, Xiaoming [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: International journal of thermal sciences - Amsterdam [u.a.] : Elsevier Science, 1996, 179 |
---|---|
Übergeordnetes Werk: |
volume:179 |
DOI / URN: |
10.1016/j.ijthermalsci.2022.107658 |
---|
Katalog-ID: |
ELV058049622 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV058049622 | ||
003 | DE-627 | ||
005 | 20230927084926.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220808s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ijthermalsci.2022.107658 |2 doi | |
035 | |a (DE-627)ELV058049622 | ||
035 | |a (ELSEVIER)S1290-0729(22)00195-8 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 620 |q VZ |
084 | |a 50.38 |2 bkl | ||
100 | 1 | |a Bai, Wandong |e verfasserin |4 aut | |
245 | 1 | 0 | |a Heat transfer and eccentric effect investigation on heat pipe used annular heat exchangers with densely longitudinal fins |
264 | 1 | |c 2022 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Within the annular heat pipe heat exchangers, heat transfer capacity and assembly eccentricity are two crucial issues for the overall thermal performance (such as heat transfer capacity, flow friction, and temperature distribution). This study aimed to investigate: 1) the heat transfer and fluid flow characteristics of two annular heat exchangers for the purpose of configuration optimization; and 2) the influence of an assembly clearance and the resulting eccentricity on heat transfer characteristic and temperature distribution. Two types of densely longitudinal fins with different heights were designed to enhance heat transfer. Three eccentricities were compared under uniform heat flux and uniform temperature conditions, and two mediums of air and helium were considered to fill the assembly clearance. The results indicated that due to the larger heat transfer area, the average heat transfer coefficient and friction factor produced by the high fins equipped annular heat exchanger were about 20% and 28% higher than the ones with short fins within Re = 2000–15000. The thermal resistance of the clearance varied with the assembly eccentricity. The larger the eccentricity, the smaller the average thermal resistance. Significant temperature gradients appeared in assembly clearance under uniform heat flux conditions. Under uniform temperature conditions, the temperature gradients are outstanding in the annular heat exchanger. A filling medium with greater thermal conductivity is suggested since it can effectively improve the circumferential temperature nonuniformity. This study provides a design guideline as well as heat transfer performance optimization for the heat pipe heat exchangers. | ||
650 | 4 | |a Heat pipe heat exchanger | |
650 | 4 | |a Annular heat exchanger | |
650 | 4 | |a Eccentric annulus | |
650 | 4 | |a Heat transfer | |
650 | 4 | |a Longitudinal fins | |
700 | 1 | |a Chen, Wei |e verfasserin |4 aut | |
700 | 1 | |a Zeng, Chang |e verfasserin |4 aut | |
700 | 1 | |a Wu, Ge |e verfasserin |4 aut | |
700 | 1 | |a Chai, Xiaoming |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t International journal of thermal sciences |d Amsterdam [u.a.] : Elsevier Science, 1996 |g 179 |h Online-Ressource |w (DE-627)320509982 |w (DE-600)2013298-0 |w (DE-576)259271438 |x 1778-4166 |7 nnns |
773 | 1 | 8 | |g volume:179 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 50.38 |j Technische Thermodynamik |q VZ |
951 | |a AR | ||
952 | |d 179 |
author_variant |
w b wb w c wc c z cz g w gw x c xc |
---|---|
matchkey_str |
article:17784166:2022----::etrnfrnecnrcfetnetgtoohappueanlretxhnes |
hierarchy_sort_str |
2022 |
bklnumber |
50.38 |
publishDate |
2022 |
allfields |
10.1016/j.ijthermalsci.2022.107658 doi (DE-627)ELV058049622 (ELSEVIER)S1290-0729(22)00195-8 DE-627 ger DE-627 rda eng 530 620 VZ 50.38 bkl Bai, Wandong verfasserin aut Heat transfer and eccentric effect investigation on heat pipe used annular heat exchangers with densely longitudinal fins 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Within the annular heat pipe heat exchangers, heat transfer capacity and assembly eccentricity are two crucial issues for the overall thermal performance (such as heat transfer capacity, flow friction, and temperature distribution). This study aimed to investigate: 1) the heat transfer and fluid flow characteristics of two annular heat exchangers for the purpose of configuration optimization; and 2) the influence of an assembly clearance and the resulting eccentricity on heat transfer characteristic and temperature distribution. Two types of densely longitudinal fins with different heights were designed to enhance heat transfer. Three eccentricities were compared under uniform heat flux and uniform temperature conditions, and two mediums of air and helium were considered to fill the assembly clearance. The results indicated that due to the larger heat transfer area, the average heat transfer coefficient and friction factor produced by the high fins equipped annular heat exchanger were about 20% and 28% higher than the ones with short fins within Re = 2000–15000. The thermal resistance of the clearance varied with the assembly eccentricity. The larger the eccentricity, the smaller the average thermal resistance. Significant temperature gradients appeared in assembly clearance under uniform heat flux conditions. Under uniform temperature conditions, the temperature gradients are outstanding in the annular heat exchanger. A filling medium with greater thermal conductivity is suggested since it can effectively improve the circumferential temperature nonuniformity. This study provides a design guideline as well as heat transfer performance optimization for the heat pipe heat exchangers. Heat pipe heat exchanger Annular heat exchanger Eccentric annulus Heat transfer Longitudinal fins Chen, Wei verfasserin aut Zeng, Chang verfasserin aut Wu, Ge verfasserin aut Chai, Xiaoming verfasserin aut Enthalten in International journal of thermal sciences Amsterdam [u.a.] : Elsevier Science, 1996 179 Online-Ressource (DE-627)320509982 (DE-600)2013298-0 (DE-576)259271438 1778-4166 nnns volume:179 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.38 Technische Thermodynamik VZ AR 179 |
spelling |
10.1016/j.ijthermalsci.2022.107658 doi (DE-627)ELV058049622 (ELSEVIER)S1290-0729(22)00195-8 DE-627 ger DE-627 rda eng 530 620 VZ 50.38 bkl Bai, Wandong verfasserin aut Heat transfer and eccentric effect investigation on heat pipe used annular heat exchangers with densely longitudinal fins 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Within the annular heat pipe heat exchangers, heat transfer capacity and assembly eccentricity are two crucial issues for the overall thermal performance (such as heat transfer capacity, flow friction, and temperature distribution). This study aimed to investigate: 1) the heat transfer and fluid flow characteristics of two annular heat exchangers for the purpose of configuration optimization; and 2) the influence of an assembly clearance and the resulting eccentricity on heat transfer characteristic and temperature distribution. Two types of densely longitudinal fins with different heights were designed to enhance heat transfer. Three eccentricities were compared under uniform heat flux and uniform temperature conditions, and two mediums of air and helium were considered to fill the assembly clearance. The results indicated that due to the larger heat transfer area, the average heat transfer coefficient and friction factor produced by the high fins equipped annular heat exchanger were about 20% and 28% higher than the ones with short fins within Re = 2000–15000. The thermal resistance of the clearance varied with the assembly eccentricity. The larger the eccentricity, the smaller the average thermal resistance. Significant temperature gradients appeared in assembly clearance under uniform heat flux conditions. Under uniform temperature conditions, the temperature gradients are outstanding in the annular heat exchanger. A filling medium with greater thermal conductivity is suggested since it can effectively improve the circumferential temperature nonuniformity. This study provides a design guideline as well as heat transfer performance optimization for the heat pipe heat exchangers. Heat pipe heat exchanger Annular heat exchanger Eccentric annulus Heat transfer Longitudinal fins Chen, Wei verfasserin aut Zeng, Chang verfasserin aut Wu, Ge verfasserin aut Chai, Xiaoming verfasserin aut Enthalten in International journal of thermal sciences Amsterdam [u.a.] : Elsevier Science, 1996 179 Online-Ressource (DE-627)320509982 (DE-600)2013298-0 (DE-576)259271438 1778-4166 nnns volume:179 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.38 Technische Thermodynamik VZ AR 179 |
allfields_unstemmed |
10.1016/j.ijthermalsci.2022.107658 doi (DE-627)ELV058049622 (ELSEVIER)S1290-0729(22)00195-8 DE-627 ger DE-627 rda eng 530 620 VZ 50.38 bkl Bai, Wandong verfasserin aut Heat transfer and eccentric effect investigation on heat pipe used annular heat exchangers with densely longitudinal fins 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Within the annular heat pipe heat exchangers, heat transfer capacity and assembly eccentricity are two crucial issues for the overall thermal performance (such as heat transfer capacity, flow friction, and temperature distribution). This study aimed to investigate: 1) the heat transfer and fluid flow characteristics of two annular heat exchangers for the purpose of configuration optimization; and 2) the influence of an assembly clearance and the resulting eccentricity on heat transfer characteristic and temperature distribution. Two types of densely longitudinal fins with different heights were designed to enhance heat transfer. Three eccentricities were compared under uniform heat flux and uniform temperature conditions, and two mediums of air and helium were considered to fill the assembly clearance. The results indicated that due to the larger heat transfer area, the average heat transfer coefficient and friction factor produced by the high fins equipped annular heat exchanger were about 20% and 28% higher than the ones with short fins within Re = 2000–15000. The thermal resistance of the clearance varied with the assembly eccentricity. The larger the eccentricity, the smaller the average thermal resistance. Significant temperature gradients appeared in assembly clearance under uniform heat flux conditions. Under uniform temperature conditions, the temperature gradients are outstanding in the annular heat exchanger. A filling medium with greater thermal conductivity is suggested since it can effectively improve the circumferential temperature nonuniformity. This study provides a design guideline as well as heat transfer performance optimization for the heat pipe heat exchangers. Heat pipe heat exchanger Annular heat exchanger Eccentric annulus Heat transfer Longitudinal fins Chen, Wei verfasserin aut Zeng, Chang verfasserin aut Wu, Ge verfasserin aut Chai, Xiaoming verfasserin aut Enthalten in International journal of thermal sciences Amsterdam [u.a.] : Elsevier Science, 1996 179 Online-Ressource (DE-627)320509982 (DE-600)2013298-0 (DE-576)259271438 1778-4166 nnns volume:179 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.38 Technische Thermodynamik VZ AR 179 |
allfieldsGer |
10.1016/j.ijthermalsci.2022.107658 doi (DE-627)ELV058049622 (ELSEVIER)S1290-0729(22)00195-8 DE-627 ger DE-627 rda eng 530 620 VZ 50.38 bkl Bai, Wandong verfasserin aut Heat transfer and eccentric effect investigation on heat pipe used annular heat exchangers with densely longitudinal fins 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Within the annular heat pipe heat exchangers, heat transfer capacity and assembly eccentricity are two crucial issues for the overall thermal performance (such as heat transfer capacity, flow friction, and temperature distribution). This study aimed to investigate: 1) the heat transfer and fluid flow characteristics of two annular heat exchangers for the purpose of configuration optimization; and 2) the influence of an assembly clearance and the resulting eccentricity on heat transfer characteristic and temperature distribution. Two types of densely longitudinal fins with different heights were designed to enhance heat transfer. Three eccentricities were compared under uniform heat flux and uniform temperature conditions, and two mediums of air and helium were considered to fill the assembly clearance. The results indicated that due to the larger heat transfer area, the average heat transfer coefficient and friction factor produced by the high fins equipped annular heat exchanger were about 20% and 28% higher than the ones with short fins within Re = 2000–15000. The thermal resistance of the clearance varied with the assembly eccentricity. The larger the eccentricity, the smaller the average thermal resistance. Significant temperature gradients appeared in assembly clearance under uniform heat flux conditions. Under uniform temperature conditions, the temperature gradients are outstanding in the annular heat exchanger. A filling medium with greater thermal conductivity is suggested since it can effectively improve the circumferential temperature nonuniformity. This study provides a design guideline as well as heat transfer performance optimization for the heat pipe heat exchangers. Heat pipe heat exchanger Annular heat exchanger Eccentric annulus Heat transfer Longitudinal fins Chen, Wei verfasserin aut Zeng, Chang verfasserin aut Wu, Ge verfasserin aut Chai, Xiaoming verfasserin aut Enthalten in International journal of thermal sciences Amsterdam [u.a.] : Elsevier Science, 1996 179 Online-Ressource (DE-627)320509982 (DE-600)2013298-0 (DE-576)259271438 1778-4166 nnns volume:179 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.38 Technische Thermodynamik VZ AR 179 |
allfieldsSound |
10.1016/j.ijthermalsci.2022.107658 doi (DE-627)ELV058049622 (ELSEVIER)S1290-0729(22)00195-8 DE-627 ger DE-627 rda eng 530 620 VZ 50.38 bkl Bai, Wandong verfasserin aut Heat transfer and eccentric effect investigation on heat pipe used annular heat exchangers with densely longitudinal fins 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Within the annular heat pipe heat exchangers, heat transfer capacity and assembly eccentricity are two crucial issues for the overall thermal performance (such as heat transfer capacity, flow friction, and temperature distribution). This study aimed to investigate: 1) the heat transfer and fluid flow characteristics of two annular heat exchangers for the purpose of configuration optimization; and 2) the influence of an assembly clearance and the resulting eccentricity on heat transfer characteristic and temperature distribution. Two types of densely longitudinal fins with different heights were designed to enhance heat transfer. Three eccentricities were compared under uniform heat flux and uniform temperature conditions, and two mediums of air and helium were considered to fill the assembly clearance. The results indicated that due to the larger heat transfer area, the average heat transfer coefficient and friction factor produced by the high fins equipped annular heat exchanger were about 20% and 28% higher than the ones with short fins within Re = 2000–15000. The thermal resistance of the clearance varied with the assembly eccentricity. The larger the eccentricity, the smaller the average thermal resistance. Significant temperature gradients appeared in assembly clearance under uniform heat flux conditions. Under uniform temperature conditions, the temperature gradients are outstanding in the annular heat exchanger. A filling medium with greater thermal conductivity is suggested since it can effectively improve the circumferential temperature nonuniformity. This study provides a design guideline as well as heat transfer performance optimization for the heat pipe heat exchangers. Heat pipe heat exchanger Annular heat exchanger Eccentric annulus Heat transfer Longitudinal fins Chen, Wei verfasserin aut Zeng, Chang verfasserin aut Wu, Ge verfasserin aut Chai, Xiaoming verfasserin aut Enthalten in International journal of thermal sciences Amsterdam [u.a.] : Elsevier Science, 1996 179 Online-Ressource (DE-627)320509982 (DE-600)2013298-0 (DE-576)259271438 1778-4166 nnns volume:179 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.38 Technische Thermodynamik VZ AR 179 |
language |
English |
source |
Enthalten in International journal of thermal sciences 179 volume:179 |
sourceStr |
Enthalten in International journal of thermal sciences 179 volume:179 |
format_phy_str_mv |
Article |
bklname |
Technische Thermodynamik |
institution |
findex.gbv.de |
topic_facet |
Heat pipe heat exchanger Annular heat exchanger Eccentric annulus Heat transfer Longitudinal fins |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
International journal of thermal sciences |
authorswithroles_txt_mv |
Bai, Wandong @@aut@@ Chen, Wei @@aut@@ Zeng, Chang @@aut@@ Wu, Ge @@aut@@ Chai, Xiaoming @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
320509982 |
dewey-sort |
3530 |
id |
ELV058049622 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV058049622</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230927084926.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220808s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijthermalsci.2022.107658</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV058049622</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1290-0729(22)00195-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bai, Wandong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Heat transfer and eccentric effect investigation on heat pipe used annular heat exchangers with densely longitudinal fins</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Within the annular heat pipe heat exchangers, heat transfer capacity and assembly eccentricity are two crucial issues for the overall thermal performance (such as heat transfer capacity, flow friction, and temperature distribution). This study aimed to investigate: 1) the heat transfer and fluid flow characteristics of two annular heat exchangers for the purpose of configuration optimization; and 2) the influence of an assembly clearance and the resulting eccentricity on heat transfer characteristic and temperature distribution. Two types of densely longitudinal fins with different heights were designed to enhance heat transfer. Three eccentricities were compared under uniform heat flux and uniform temperature conditions, and two mediums of air and helium were considered to fill the assembly clearance. The results indicated that due to the larger heat transfer area, the average heat transfer coefficient and friction factor produced by the high fins equipped annular heat exchanger were about 20% and 28% higher than the ones with short fins within Re = 2000–15000. The thermal resistance of the clearance varied with the assembly eccentricity. The larger the eccentricity, the smaller the average thermal resistance. Significant temperature gradients appeared in assembly clearance under uniform heat flux conditions. Under uniform temperature conditions, the temperature gradients are outstanding in the annular heat exchanger. A filling medium with greater thermal conductivity is suggested since it can effectively improve the circumferential temperature nonuniformity. This study provides a design guideline as well as heat transfer performance optimization for the heat pipe heat exchangers.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heat pipe heat exchanger</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Annular heat exchanger</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Eccentric annulus</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heat transfer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Longitudinal fins</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Wei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zeng, Chang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Ge</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chai, Xiaoming</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of thermal sciences</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1996</subfield><subfield code="g">179</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320509982</subfield><subfield code="w">(DE-600)2013298-0</subfield><subfield code="w">(DE-576)259271438</subfield><subfield code="x">1778-4166</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:179</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.38</subfield><subfield code="j">Technische Thermodynamik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">179</subfield></datafield></record></collection>
|
author |
Bai, Wandong |
spellingShingle |
Bai, Wandong ddc 530 bkl 50.38 misc Heat pipe heat exchanger misc Annular heat exchanger misc Eccentric annulus misc Heat transfer misc Longitudinal fins Heat transfer and eccentric effect investigation on heat pipe used annular heat exchangers with densely longitudinal fins |
authorStr |
Bai, Wandong |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320509982 |
format |
electronic Article |
dewey-ones |
530 - Physics 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1778-4166 |
topic_title |
530 620 VZ 50.38 bkl Heat transfer and eccentric effect investigation on heat pipe used annular heat exchangers with densely longitudinal fins Heat pipe heat exchanger Annular heat exchanger Eccentric annulus Heat transfer Longitudinal fins |
topic |
ddc 530 bkl 50.38 misc Heat pipe heat exchanger misc Annular heat exchanger misc Eccentric annulus misc Heat transfer misc Longitudinal fins |
topic_unstemmed |
ddc 530 bkl 50.38 misc Heat pipe heat exchanger misc Annular heat exchanger misc Eccentric annulus misc Heat transfer misc Longitudinal fins |
topic_browse |
ddc 530 bkl 50.38 misc Heat pipe heat exchanger misc Annular heat exchanger misc Eccentric annulus misc Heat transfer misc Longitudinal fins |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
International journal of thermal sciences |
hierarchy_parent_id |
320509982 |
dewey-tens |
530 - Physics 620 - Engineering |
hierarchy_top_title |
International journal of thermal sciences |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320509982 (DE-600)2013298-0 (DE-576)259271438 |
title |
Heat transfer and eccentric effect investigation on heat pipe used annular heat exchangers with densely longitudinal fins |
ctrlnum |
(DE-627)ELV058049622 (ELSEVIER)S1290-0729(22)00195-8 |
title_full |
Heat transfer and eccentric effect investigation on heat pipe used annular heat exchangers with densely longitudinal fins |
author_sort |
Bai, Wandong |
journal |
International journal of thermal sciences |
journalStr |
International journal of thermal sciences |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
zzz |
author_browse |
Bai, Wandong Chen, Wei Zeng, Chang Wu, Ge Chai, Xiaoming |
container_volume |
179 |
class |
530 620 VZ 50.38 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Bai, Wandong |
doi_str_mv |
10.1016/j.ijthermalsci.2022.107658 |
dewey-full |
530 620 |
author2-role |
verfasserin |
title_sort |
heat transfer and eccentric effect investigation on heat pipe used annular heat exchangers with densely longitudinal fins |
title_auth |
Heat transfer and eccentric effect investigation on heat pipe used annular heat exchangers with densely longitudinal fins |
abstract |
Within the annular heat pipe heat exchangers, heat transfer capacity and assembly eccentricity are two crucial issues for the overall thermal performance (such as heat transfer capacity, flow friction, and temperature distribution). This study aimed to investigate: 1) the heat transfer and fluid flow characteristics of two annular heat exchangers for the purpose of configuration optimization; and 2) the influence of an assembly clearance and the resulting eccentricity on heat transfer characteristic and temperature distribution. Two types of densely longitudinal fins with different heights were designed to enhance heat transfer. Three eccentricities were compared under uniform heat flux and uniform temperature conditions, and two mediums of air and helium were considered to fill the assembly clearance. The results indicated that due to the larger heat transfer area, the average heat transfer coefficient and friction factor produced by the high fins equipped annular heat exchanger were about 20% and 28% higher than the ones with short fins within Re = 2000–15000. The thermal resistance of the clearance varied with the assembly eccentricity. The larger the eccentricity, the smaller the average thermal resistance. Significant temperature gradients appeared in assembly clearance under uniform heat flux conditions. Under uniform temperature conditions, the temperature gradients are outstanding in the annular heat exchanger. A filling medium with greater thermal conductivity is suggested since it can effectively improve the circumferential temperature nonuniformity. This study provides a design guideline as well as heat transfer performance optimization for the heat pipe heat exchangers. |
abstractGer |
Within the annular heat pipe heat exchangers, heat transfer capacity and assembly eccentricity are two crucial issues for the overall thermal performance (such as heat transfer capacity, flow friction, and temperature distribution). This study aimed to investigate: 1) the heat transfer and fluid flow characteristics of two annular heat exchangers for the purpose of configuration optimization; and 2) the influence of an assembly clearance and the resulting eccentricity on heat transfer characteristic and temperature distribution. Two types of densely longitudinal fins with different heights were designed to enhance heat transfer. Three eccentricities were compared under uniform heat flux and uniform temperature conditions, and two mediums of air and helium were considered to fill the assembly clearance. The results indicated that due to the larger heat transfer area, the average heat transfer coefficient and friction factor produced by the high fins equipped annular heat exchanger were about 20% and 28% higher than the ones with short fins within Re = 2000–15000. The thermal resistance of the clearance varied with the assembly eccentricity. The larger the eccentricity, the smaller the average thermal resistance. Significant temperature gradients appeared in assembly clearance under uniform heat flux conditions. Under uniform temperature conditions, the temperature gradients are outstanding in the annular heat exchanger. A filling medium with greater thermal conductivity is suggested since it can effectively improve the circumferential temperature nonuniformity. This study provides a design guideline as well as heat transfer performance optimization for the heat pipe heat exchangers. |
abstract_unstemmed |
Within the annular heat pipe heat exchangers, heat transfer capacity and assembly eccentricity are two crucial issues for the overall thermal performance (such as heat transfer capacity, flow friction, and temperature distribution). This study aimed to investigate: 1) the heat transfer and fluid flow characteristics of two annular heat exchangers for the purpose of configuration optimization; and 2) the influence of an assembly clearance and the resulting eccentricity on heat transfer characteristic and temperature distribution. Two types of densely longitudinal fins with different heights were designed to enhance heat transfer. Three eccentricities were compared under uniform heat flux and uniform temperature conditions, and two mediums of air and helium were considered to fill the assembly clearance. The results indicated that due to the larger heat transfer area, the average heat transfer coefficient and friction factor produced by the high fins equipped annular heat exchanger were about 20% and 28% higher than the ones with short fins within Re = 2000–15000. The thermal resistance of the clearance varied with the assembly eccentricity. The larger the eccentricity, the smaller the average thermal resistance. Significant temperature gradients appeared in assembly clearance under uniform heat flux conditions. Under uniform temperature conditions, the temperature gradients are outstanding in the annular heat exchanger. A filling medium with greater thermal conductivity is suggested since it can effectively improve the circumferential temperature nonuniformity. This study provides a design guideline as well as heat transfer performance optimization for the heat pipe heat exchangers. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Heat transfer and eccentric effect investigation on heat pipe used annular heat exchangers with densely longitudinal fins |
remote_bool |
true |
author2 |
Chen, Wei Zeng, Chang Wu, Ge Chai, Xiaoming |
author2Str |
Chen, Wei Zeng, Chang Wu, Ge Chai, Xiaoming |
ppnlink |
320509982 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.ijthermalsci.2022.107658 |
up_date |
2024-07-06T17:55:02.750Z |
_version_ |
1803853237062729728 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV058049622</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230927084926.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220808s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijthermalsci.2022.107658</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV058049622</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1290-0729(22)00195-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bai, Wandong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Heat transfer and eccentric effect investigation on heat pipe used annular heat exchangers with densely longitudinal fins</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Within the annular heat pipe heat exchangers, heat transfer capacity and assembly eccentricity are two crucial issues for the overall thermal performance (such as heat transfer capacity, flow friction, and temperature distribution). This study aimed to investigate: 1) the heat transfer and fluid flow characteristics of two annular heat exchangers for the purpose of configuration optimization; and 2) the influence of an assembly clearance and the resulting eccentricity on heat transfer characteristic and temperature distribution. Two types of densely longitudinal fins with different heights were designed to enhance heat transfer. Three eccentricities were compared under uniform heat flux and uniform temperature conditions, and two mediums of air and helium were considered to fill the assembly clearance. The results indicated that due to the larger heat transfer area, the average heat transfer coefficient and friction factor produced by the high fins equipped annular heat exchanger were about 20% and 28% higher than the ones with short fins within Re = 2000–15000. The thermal resistance of the clearance varied with the assembly eccentricity. The larger the eccentricity, the smaller the average thermal resistance. Significant temperature gradients appeared in assembly clearance under uniform heat flux conditions. Under uniform temperature conditions, the temperature gradients are outstanding in the annular heat exchanger. A filling medium with greater thermal conductivity is suggested since it can effectively improve the circumferential temperature nonuniformity. This study provides a design guideline as well as heat transfer performance optimization for the heat pipe heat exchangers.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heat pipe heat exchanger</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Annular heat exchanger</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Eccentric annulus</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heat transfer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Longitudinal fins</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Wei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zeng, Chang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Ge</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chai, Xiaoming</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of thermal sciences</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1996</subfield><subfield code="g">179</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320509982</subfield><subfield code="w">(DE-600)2013298-0</subfield><subfield code="w">(DE-576)259271438</subfield><subfield code="x">1778-4166</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:179</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.38</subfield><subfield code="j">Technische Thermodynamik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">179</subfield></datafield></record></collection>
|
score |
7.401886 |