Normal edge-transitive Cayley graphs and Frattini-like subgroups
For a finite group G and an inverse-closed generating set C of G, let Aut ( G ; C ) consist of those automorphisms of G which leave C invariant. We define an Aut ( G ; C ) -invariant normal subgroup Φ ( G ; C ) of G which has the property that, for any Aut ( G ; C ) -invariant normal set of generato...
Ausführliche Beschreibung
Autor*in: |
Khosravi, Behnam [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
26 |
---|
Übergeordnetes Werk: |
Enthalten in: A two stage successive estimation based maximum power point tracking technique for photovoltaic modules - Christy Mano Raj, J.S. ELSEVIER, 2014, San Diego, Calif |
---|---|
Übergeordnetes Werk: |
volume:607 ; year:2022 ; day:1 ; month:10 ; pages:473-498 ; extent:26 |
Links: |
---|
DOI / URN: |
10.1016/j.jalgebra.2021.03.035 |
---|
Katalog-ID: |
ELV058177965 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV058177965 | ||
003 | DE-627 | ||
005 | 20230626050435.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220808s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jalgebra.2021.03.035 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001806.pica |
035 | |a (DE-627)ELV058177965 | ||
035 | |a (ELSEVIER)S0021-8693(21)00207-6 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q VZ |
082 | 0 | 4 | |a 333.7 |a 610 |q VZ |
084 | |a 44.13 |2 bkl | ||
100 | 1 | |a Khosravi, Behnam |e verfasserin |4 aut | |
245 | 1 | 0 | |a Normal edge-transitive Cayley graphs and Frattini-like subgroups |
264 | 1 | |c 2022transfer abstract | |
300 | |a 26 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a For a finite group G and an inverse-closed generating set C of G, let Aut ( G ; C ) consist of those automorphisms of G which leave C invariant. We define an Aut ( G ; C ) -invariant normal subgroup Φ ( G ; C ) of G which has the property that, for any Aut ( G ; C ) -invariant normal set of generators for G, if we remove from it all the elements of Φ ( G ; C ) , then the remaining set is still an Aut ( G ; C ) -invariant normal generating set for G. The subgroup Φ ( G ; C ) contains the Frattini subgroup Φ ( G ) but the inclusion may be proper. The Cayley graph Cay ( G , C ) is normal edge-transitive if Aut ( G ; C ) acts transitively on the pairs { c , c − 1 } from C. We show that, for a normal edge-transitive Cayley graph Cay ( G , C ) , its quotient modulo Φ ( G ; C ) is the unique largest normal quotient which is isomorphic to a subdirect product of normal edge-transitive Cayley graphs of characteristically simple groups. In particular, we may therefore view normal edge-transitive Cayley graphs of characteristically simple groups as building blocks for normal edge-transitive Cayley graphs whenever we have Φ ( G ; C ) trivial. We explore several questions which these results raise, some concerned with the set of all inverse-closed generating sets for groups in a given family. In particular we use this theory to classify all 4-valent normal edge-transitive Cayley graphs for dihedral groups; this involves a new construction of an infinite family of examples, and disproves a conjecture of Talebi. | ||
520 | |a For a finite group G and an inverse-closed generating set C of G, let Aut ( G ; C ) consist of those automorphisms of G which leave C invariant. We define an Aut ( G ; C ) -invariant normal subgroup Φ ( G ; C ) of G which has the property that, for any Aut ( G ; C ) -invariant normal set of generators for G, if we remove from it all the elements of Φ ( G ; C ) , then the remaining set is still an Aut ( G ; C ) -invariant normal generating set for G. The subgroup Φ ( G ; C ) contains the Frattini subgroup Φ ( G ) but the inclusion may be proper. The Cayley graph Cay ( G , C ) is normal edge-transitive if Aut ( G ; C ) acts transitively on the pairs { c , c − 1 } from C. We show that, for a normal edge-transitive Cayley graph Cay ( G , C ) , its quotient modulo Φ ( G ; C ) is the unique largest normal quotient which is isomorphic to a subdirect product of normal edge-transitive Cayley graphs of characteristically simple groups. In particular, we may therefore view normal edge-transitive Cayley graphs of characteristically simple groups as building blocks for normal edge-transitive Cayley graphs whenever we have Φ ( G ; C ) trivial. We explore several questions which these results raise, some concerned with the set of all inverse-closed generating sets for groups in a given family. In particular we use this theory to classify all 4-valent normal edge-transitive Cayley graphs for dihedral groups; this involves a new construction of an infinite family of examples, and disproves a conjecture of Talebi. | ||
650 | 7 | |a secondary |2 Elsevier | |
650 | 7 | |a 08A35 |2 Elsevier | |
650 | 7 | |a 08A30 |2 Elsevier | |
650 | 7 | |a primary |2 Elsevier | |
700 | 1 | |a Praeger, Cheryl E. |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Christy Mano Raj, J.S. ELSEVIER |t A two stage successive estimation based maximum power point tracking technique for photovoltaic modules |d 2014 |g San Diego, Calif |w (DE-627)ELV018117414 |
773 | 1 | 8 | |g volume:607 |g year:2022 |g day:1 |g month:10 |g pages:473-498 |g extent:26 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.jalgebra.2021.03.035 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_2532 | ||
936 | b | k | |a 44.13 |j Medizinische Ökologie |q VZ |
951 | |a AR | ||
952 | |d 607 |j 2022 |b 1 |c 1001 |h 473-498 |g 26 |
author_variant |
b k bk |
---|---|
matchkey_str |
khosravibehnampraegercheryle:2022----:omlderniiealyrpsnfatn |
hierarchy_sort_str |
2022transfer abstract |
bklnumber |
44.13 |
publishDate |
2022 |
allfields |
10.1016/j.jalgebra.2021.03.035 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001806.pica (DE-627)ELV058177965 (ELSEVIER)S0021-8693(21)00207-6 DE-627 ger DE-627 rakwb eng 530 VZ 333.7 610 VZ 44.13 bkl Khosravi, Behnam verfasserin aut Normal edge-transitive Cayley graphs and Frattini-like subgroups 2022transfer abstract 26 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier For a finite group G and an inverse-closed generating set C of G, let Aut ( G ; C ) consist of those automorphisms of G which leave C invariant. We define an Aut ( G ; C ) -invariant normal subgroup Φ ( G ; C ) of G which has the property that, for any Aut ( G ; C ) -invariant normal set of generators for G, if we remove from it all the elements of Φ ( G ; C ) , then the remaining set is still an Aut ( G ; C ) -invariant normal generating set for G. The subgroup Φ ( G ; C ) contains the Frattini subgroup Φ ( G ) but the inclusion may be proper. The Cayley graph Cay ( G , C ) is normal edge-transitive if Aut ( G ; C ) acts transitively on the pairs { c , c − 1 } from C. We show that, for a normal edge-transitive Cayley graph Cay ( G , C ) , its quotient modulo Φ ( G ; C ) is the unique largest normal quotient which is isomorphic to a subdirect product of normal edge-transitive Cayley graphs of characteristically simple groups. In particular, we may therefore view normal edge-transitive Cayley graphs of characteristically simple groups as building blocks for normal edge-transitive Cayley graphs whenever we have Φ ( G ; C ) trivial. We explore several questions which these results raise, some concerned with the set of all inverse-closed generating sets for groups in a given family. In particular we use this theory to classify all 4-valent normal edge-transitive Cayley graphs for dihedral groups; this involves a new construction of an infinite family of examples, and disproves a conjecture of Talebi. For a finite group G and an inverse-closed generating set C of G, let Aut ( G ; C ) consist of those automorphisms of G which leave C invariant. We define an Aut ( G ; C ) -invariant normal subgroup Φ ( G ; C ) of G which has the property that, for any Aut ( G ; C ) -invariant normal set of generators for G, if we remove from it all the elements of Φ ( G ; C ) , then the remaining set is still an Aut ( G ; C ) -invariant normal generating set for G. The subgroup Φ ( G ; C ) contains the Frattini subgroup Φ ( G ) but the inclusion may be proper. The Cayley graph Cay ( G , C ) is normal edge-transitive if Aut ( G ; C ) acts transitively on the pairs { c , c − 1 } from C. We show that, for a normal edge-transitive Cayley graph Cay ( G , C ) , its quotient modulo Φ ( G ; C ) is the unique largest normal quotient which is isomorphic to a subdirect product of normal edge-transitive Cayley graphs of characteristically simple groups. In particular, we may therefore view normal edge-transitive Cayley graphs of characteristically simple groups as building blocks for normal edge-transitive Cayley graphs whenever we have Φ ( G ; C ) trivial. We explore several questions which these results raise, some concerned with the set of all inverse-closed generating sets for groups in a given family. In particular we use this theory to classify all 4-valent normal edge-transitive Cayley graphs for dihedral groups; this involves a new construction of an infinite family of examples, and disproves a conjecture of Talebi. secondary Elsevier 08A35 Elsevier 08A30 Elsevier primary Elsevier Praeger, Cheryl E. oth Enthalten in Elsevier Christy Mano Raj, J.S. ELSEVIER A two stage successive estimation based maximum power point tracking technique for photovoltaic modules 2014 San Diego, Calif (DE-627)ELV018117414 volume:607 year:2022 day:1 month:10 pages:473-498 extent:26 https://doi.org/10.1016/j.jalgebra.2021.03.035 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_40 GBV_ILN_2532 44.13 Medizinische Ökologie VZ AR 607 2022 1 1001 473-498 26 |
spelling |
10.1016/j.jalgebra.2021.03.035 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001806.pica (DE-627)ELV058177965 (ELSEVIER)S0021-8693(21)00207-6 DE-627 ger DE-627 rakwb eng 530 VZ 333.7 610 VZ 44.13 bkl Khosravi, Behnam verfasserin aut Normal edge-transitive Cayley graphs and Frattini-like subgroups 2022transfer abstract 26 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier For a finite group G and an inverse-closed generating set C of G, let Aut ( G ; C ) consist of those automorphisms of G which leave C invariant. We define an Aut ( G ; C ) -invariant normal subgroup Φ ( G ; C ) of G which has the property that, for any Aut ( G ; C ) -invariant normal set of generators for G, if we remove from it all the elements of Φ ( G ; C ) , then the remaining set is still an Aut ( G ; C ) -invariant normal generating set for G. The subgroup Φ ( G ; C ) contains the Frattini subgroup Φ ( G ) but the inclusion may be proper. The Cayley graph Cay ( G , C ) is normal edge-transitive if Aut ( G ; C ) acts transitively on the pairs { c , c − 1 } from C. We show that, for a normal edge-transitive Cayley graph Cay ( G , C ) , its quotient modulo Φ ( G ; C ) is the unique largest normal quotient which is isomorphic to a subdirect product of normal edge-transitive Cayley graphs of characteristically simple groups. In particular, we may therefore view normal edge-transitive Cayley graphs of characteristically simple groups as building blocks for normal edge-transitive Cayley graphs whenever we have Φ ( G ; C ) trivial. We explore several questions which these results raise, some concerned with the set of all inverse-closed generating sets for groups in a given family. In particular we use this theory to classify all 4-valent normal edge-transitive Cayley graphs for dihedral groups; this involves a new construction of an infinite family of examples, and disproves a conjecture of Talebi. For a finite group G and an inverse-closed generating set C of G, let Aut ( G ; C ) consist of those automorphisms of G which leave C invariant. We define an Aut ( G ; C ) -invariant normal subgroup Φ ( G ; C ) of G which has the property that, for any Aut ( G ; C ) -invariant normal set of generators for G, if we remove from it all the elements of Φ ( G ; C ) , then the remaining set is still an Aut ( G ; C ) -invariant normal generating set for G. The subgroup Φ ( G ; C ) contains the Frattini subgroup Φ ( G ) but the inclusion may be proper. The Cayley graph Cay ( G , C ) is normal edge-transitive if Aut ( G ; C ) acts transitively on the pairs { c , c − 1 } from C. We show that, for a normal edge-transitive Cayley graph Cay ( G , C ) , its quotient modulo Φ ( G ; C ) is the unique largest normal quotient which is isomorphic to a subdirect product of normal edge-transitive Cayley graphs of characteristically simple groups. In particular, we may therefore view normal edge-transitive Cayley graphs of characteristically simple groups as building blocks for normal edge-transitive Cayley graphs whenever we have Φ ( G ; C ) trivial. We explore several questions which these results raise, some concerned with the set of all inverse-closed generating sets for groups in a given family. In particular we use this theory to classify all 4-valent normal edge-transitive Cayley graphs for dihedral groups; this involves a new construction of an infinite family of examples, and disproves a conjecture of Talebi. secondary Elsevier 08A35 Elsevier 08A30 Elsevier primary Elsevier Praeger, Cheryl E. oth Enthalten in Elsevier Christy Mano Raj, J.S. ELSEVIER A two stage successive estimation based maximum power point tracking technique for photovoltaic modules 2014 San Diego, Calif (DE-627)ELV018117414 volume:607 year:2022 day:1 month:10 pages:473-498 extent:26 https://doi.org/10.1016/j.jalgebra.2021.03.035 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_40 GBV_ILN_2532 44.13 Medizinische Ökologie VZ AR 607 2022 1 1001 473-498 26 |
allfields_unstemmed |
10.1016/j.jalgebra.2021.03.035 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001806.pica (DE-627)ELV058177965 (ELSEVIER)S0021-8693(21)00207-6 DE-627 ger DE-627 rakwb eng 530 VZ 333.7 610 VZ 44.13 bkl Khosravi, Behnam verfasserin aut Normal edge-transitive Cayley graphs and Frattini-like subgroups 2022transfer abstract 26 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier For a finite group G and an inverse-closed generating set C of G, let Aut ( G ; C ) consist of those automorphisms of G which leave C invariant. We define an Aut ( G ; C ) -invariant normal subgroup Φ ( G ; C ) of G which has the property that, for any Aut ( G ; C ) -invariant normal set of generators for G, if we remove from it all the elements of Φ ( G ; C ) , then the remaining set is still an Aut ( G ; C ) -invariant normal generating set for G. The subgroup Φ ( G ; C ) contains the Frattini subgroup Φ ( G ) but the inclusion may be proper. The Cayley graph Cay ( G , C ) is normal edge-transitive if Aut ( G ; C ) acts transitively on the pairs { c , c − 1 } from C. We show that, for a normal edge-transitive Cayley graph Cay ( G , C ) , its quotient modulo Φ ( G ; C ) is the unique largest normal quotient which is isomorphic to a subdirect product of normal edge-transitive Cayley graphs of characteristically simple groups. In particular, we may therefore view normal edge-transitive Cayley graphs of characteristically simple groups as building blocks for normal edge-transitive Cayley graphs whenever we have Φ ( G ; C ) trivial. We explore several questions which these results raise, some concerned with the set of all inverse-closed generating sets for groups in a given family. In particular we use this theory to classify all 4-valent normal edge-transitive Cayley graphs for dihedral groups; this involves a new construction of an infinite family of examples, and disproves a conjecture of Talebi. For a finite group G and an inverse-closed generating set C of G, let Aut ( G ; C ) consist of those automorphisms of G which leave C invariant. We define an Aut ( G ; C ) -invariant normal subgroup Φ ( G ; C ) of G which has the property that, for any Aut ( G ; C ) -invariant normal set of generators for G, if we remove from it all the elements of Φ ( G ; C ) , then the remaining set is still an Aut ( G ; C ) -invariant normal generating set for G. The subgroup Φ ( G ; C ) contains the Frattini subgroup Φ ( G ) but the inclusion may be proper. The Cayley graph Cay ( G , C ) is normal edge-transitive if Aut ( G ; C ) acts transitively on the pairs { c , c − 1 } from C. We show that, for a normal edge-transitive Cayley graph Cay ( G , C ) , its quotient modulo Φ ( G ; C ) is the unique largest normal quotient which is isomorphic to a subdirect product of normal edge-transitive Cayley graphs of characteristically simple groups. In particular, we may therefore view normal edge-transitive Cayley graphs of characteristically simple groups as building blocks for normal edge-transitive Cayley graphs whenever we have Φ ( G ; C ) trivial. We explore several questions which these results raise, some concerned with the set of all inverse-closed generating sets for groups in a given family. In particular we use this theory to classify all 4-valent normal edge-transitive Cayley graphs for dihedral groups; this involves a new construction of an infinite family of examples, and disproves a conjecture of Talebi. secondary Elsevier 08A35 Elsevier 08A30 Elsevier primary Elsevier Praeger, Cheryl E. oth Enthalten in Elsevier Christy Mano Raj, J.S. ELSEVIER A two stage successive estimation based maximum power point tracking technique for photovoltaic modules 2014 San Diego, Calif (DE-627)ELV018117414 volume:607 year:2022 day:1 month:10 pages:473-498 extent:26 https://doi.org/10.1016/j.jalgebra.2021.03.035 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_40 GBV_ILN_2532 44.13 Medizinische Ökologie VZ AR 607 2022 1 1001 473-498 26 |
allfieldsGer |
10.1016/j.jalgebra.2021.03.035 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001806.pica (DE-627)ELV058177965 (ELSEVIER)S0021-8693(21)00207-6 DE-627 ger DE-627 rakwb eng 530 VZ 333.7 610 VZ 44.13 bkl Khosravi, Behnam verfasserin aut Normal edge-transitive Cayley graphs and Frattini-like subgroups 2022transfer abstract 26 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier For a finite group G and an inverse-closed generating set C of G, let Aut ( G ; C ) consist of those automorphisms of G which leave C invariant. We define an Aut ( G ; C ) -invariant normal subgroup Φ ( G ; C ) of G which has the property that, for any Aut ( G ; C ) -invariant normal set of generators for G, if we remove from it all the elements of Φ ( G ; C ) , then the remaining set is still an Aut ( G ; C ) -invariant normal generating set for G. The subgroup Φ ( G ; C ) contains the Frattini subgroup Φ ( G ) but the inclusion may be proper. The Cayley graph Cay ( G , C ) is normal edge-transitive if Aut ( G ; C ) acts transitively on the pairs { c , c − 1 } from C. We show that, for a normal edge-transitive Cayley graph Cay ( G , C ) , its quotient modulo Φ ( G ; C ) is the unique largest normal quotient which is isomorphic to a subdirect product of normal edge-transitive Cayley graphs of characteristically simple groups. In particular, we may therefore view normal edge-transitive Cayley graphs of characteristically simple groups as building blocks for normal edge-transitive Cayley graphs whenever we have Φ ( G ; C ) trivial. We explore several questions which these results raise, some concerned with the set of all inverse-closed generating sets for groups in a given family. In particular we use this theory to classify all 4-valent normal edge-transitive Cayley graphs for dihedral groups; this involves a new construction of an infinite family of examples, and disproves a conjecture of Talebi. For a finite group G and an inverse-closed generating set C of G, let Aut ( G ; C ) consist of those automorphisms of G which leave C invariant. We define an Aut ( G ; C ) -invariant normal subgroup Φ ( G ; C ) of G which has the property that, for any Aut ( G ; C ) -invariant normal set of generators for G, if we remove from it all the elements of Φ ( G ; C ) , then the remaining set is still an Aut ( G ; C ) -invariant normal generating set for G. The subgroup Φ ( G ; C ) contains the Frattini subgroup Φ ( G ) but the inclusion may be proper. The Cayley graph Cay ( G , C ) is normal edge-transitive if Aut ( G ; C ) acts transitively on the pairs { c , c − 1 } from C. We show that, for a normal edge-transitive Cayley graph Cay ( G , C ) , its quotient modulo Φ ( G ; C ) is the unique largest normal quotient which is isomorphic to a subdirect product of normal edge-transitive Cayley graphs of characteristically simple groups. In particular, we may therefore view normal edge-transitive Cayley graphs of characteristically simple groups as building blocks for normal edge-transitive Cayley graphs whenever we have Φ ( G ; C ) trivial. We explore several questions which these results raise, some concerned with the set of all inverse-closed generating sets for groups in a given family. In particular we use this theory to classify all 4-valent normal edge-transitive Cayley graphs for dihedral groups; this involves a new construction of an infinite family of examples, and disproves a conjecture of Talebi. secondary Elsevier 08A35 Elsevier 08A30 Elsevier primary Elsevier Praeger, Cheryl E. oth Enthalten in Elsevier Christy Mano Raj, J.S. ELSEVIER A two stage successive estimation based maximum power point tracking technique for photovoltaic modules 2014 San Diego, Calif (DE-627)ELV018117414 volume:607 year:2022 day:1 month:10 pages:473-498 extent:26 https://doi.org/10.1016/j.jalgebra.2021.03.035 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_40 GBV_ILN_2532 44.13 Medizinische Ökologie VZ AR 607 2022 1 1001 473-498 26 |
allfieldsSound |
10.1016/j.jalgebra.2021.03.035 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001806.pica (DE-627)ELV058177965 (ELSEVIER)S0021-8693(21)00207-6 DE-627 ger DE-627 rakwb eng 530 VZ 333.7 610 VZ 44.13 bkl Khosravi, Behnam verfasserin aut Normal edge-transitive Cayley graphs and Frattini-like subgroups 2022transfer abstract 26 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier For a finite group G and an inverse-closed generating set C of G, let Aut ( G ; C ) consist of those automorphisms of G which leave C invariant. We define an Aut ( G ; C ) -invariant normal subgroup Φ ( G ; C ) of G which has the property that, for any Aut ( G ; C ) -invariant normal set of generators for G, if we remove from it all the elements of Φ ( G ; C ) , then the remaining set is still an Aut ( G ; C ) -invariant normal generating set for G. The subgroup Φ ( G ; C ) contains the Frattini subgroup Φ ( G ) but the inclusion may be proper. The Cayley graph Cay ( G , C ) is normal edge-transitive if Aut ( G ; C ) acts transitively on the pairs { c , c − 1 } from C. We show that, for a normal edge-transitive Cayley graph Cay ( G , C ) , its quotient modulo Φ ( G ; C ) is the unique largest normal quotient which is isomorphic to a subdirect product of normal edge-transitive Cayley graphs of characteristically simple groups. In particular, we may therefore view normal edge-transitive Cayley graphs of characteristically simple groups as building blocks for normal edge-transitive Cayley graphs whenever we have Φ ( G ; C ) trivial. We explore several questions which these results raise, some concerned with the set of all inverse-closed generating sets for groups in a given family. In particular we use this theory to classify all 4-valent normal edge-transitive Cayley graphs for dihedral groups; this involves a new construction of an infinite family of examples, and disproves a conjecture of Talebi. For a finite group G and an inverse-closed generating set C of G, let Aut ( G ; C ) consist of those automorphisms of G which leave C invariant. We define an Aut ( G ; C ) -invariant normal subgroup Φ ( G ; C ) of G which has the property that, for any Aut ( G ; C ) -invariant normal set of generators for G, if we remove from it all the elements of Φ ( G ; C ) , then the remaining set is still an Aut ( G ; C ) -invariant normal generating set for G. The subgroup Φ ( G ; C ) contains the Frattini subgroup Φ ( G ) but the inclusion may be proper. The Cayley graph Cay ( G , C ) is normal edge-transitive if Aut ( G ; C ) acts transitively on the pairs { c , c − 1 } from C. We show that, for a normal edge-transitive Cayley graph Cay ( G , C ) , its quotient modulo Φ ( G ; C ) is the unique largest normal quotient which is isomorphic to a subdirect product of normal edge-transitive Cayley graphs of characteristically simple groups. In particular, we may therefore view normal edge-transitive Cayley graphs of characteristically simple groups as building blocks for normal edge-transitive Cayley graphs whenever we have Φ ( G ; C ) trivial. We explore several questions which these results raise, some concerned with the set of all inverse-closed generating sets for groups in a given family. In particular we use this theory to classify all 4-valent normal edge-transitive Cayley graphs for dihedral groups; this involves a new construction of an infinite family of examples, and disproves a conjecture of Talebi. secondary Elsevier 08A35 Elsevier 08A30 Elsevier primary Elsevier Praeger, Cheryl E. oth Enthalten in Elsevier Christy Mano Raj, J.S. ELSEVIER A two stage successive estimation based maximum power point tracking technique for photovoltaic modules 2014 San Diego, Calif (DE-627)ELV018117414 volume:607 year:2022 day:1 month:10 pages:473-498 extent:26 https://doi.org/10.1016/j.jalgebra.2021.03.035 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_40 GBV_ILN_2532 44.13 Medizinische Ökologie VZ AR 607 2022 1 1001 473-498 26 |
language |
English |
source |
Enthalten in A two stage successive estimation based maximum power point tracking technique for photovoltaic modules San Diego, Calif volume:607 year:2022 day:1 month:10 pages:473-498 extent:26 |
sourceStr |
Enthalten in A two stage successive estimation based maximum power point tracking technique for photovoltaic modules San Diego, Calif volume:607 year:2022 day:1 month:10 pages:473-498 extent:26 |
format_phy_str_mv |
Article |
bklname |
Medizinische Ökologie |
institution |
findex.gbv.de |
topic_facet |
secondary 08A35 08A30 primary |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
A two stage successive estimation based maximum power point tracking technique for photovoltaic modules |
authorswithroles_txt_mv |
Khosravi, Behnam @@aut@@ Praeger, Cheryl E. @@oth@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
ELV018117414 |
dewey-sort |
3530 |
id |
ELV058177965 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV058177965</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626050435.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220808s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jalgebra.2021.03.035</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001806.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV058177965</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0021-8693(21)00207-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">333.7</subfield><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.13</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Khosravi, Behnam</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Normal edge-transitive Cayley graphs and Frattini-like subgroups</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">26</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">For a finite group G and an inverse-closed generating set C of G, let Aut ( G ; C ) consist of those automorphisms of G which leave C invariant. We define an Aut ( G ; C ) -invariant normal subgroup Φ ( G ; C ) of G which has the property that, for any Aut ( G ; C ) -invariant normal set of generators for G, if we remove from it all the elements of Φ ( G ; C ) , then the remaining set is still an Aut ( G ; C ) -invariant normal generating set for G. The subgroup Φ ( G ; C ) contains the Frattini subgroup Φ ( G ) but the inclusion may be proper. The Cayley graph Cay ( G , C ) is normal edge-transitive if Aut ( G ; C ) acts transitively on the pairs { c , c − 1 } from C. We show that, for a normal edge-transitive Cayley graph Cay ( G , C ) , its quotient modulo Φ ( G ; C ) is the unique largest normal quotient which is isomorphic to a subdirect product of normal edge-transitive Cayley graphs of characteristically simple groups. In particular, we may therefore view normal edge-transitive Cayley graphs of characteristically simple groups as building blocks for normal edge-transitive Cayley graphs whenever we have Φ ( G ; C ) trivial. We explore several questions which these results raise, some concerned with the set of all inverse-closed generating sets for groups in a given family. In particular we use this theory to classify all 4-valent normal edge-transitive Cayley graphs for dihedral groups; this involves a new construction of an infinite family of examples, and disproves a conjecture of Talebi.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">For a finite group G and an inverse-closed generating set C of G, let Aut ( G ; C ) consist of those automorphisms of G which leave C invariant. We define an Aut ( G ; C ) -invariant normal subgroup Φ ( G ; C ) of G which has the property that, for any Aut ( G ; C ) -invariant normal set of generators for G, if we remove from it all the elements of Φ ( G ; C ) , then the remaining set is still an Aut ( G ; C ) -invariant normal generating set for G. The subgroup Φ ( G ; C ) contains the Frattini subgroup Φ ( G ) but the inclusion may be proper. The Cayley graph Cay ( G , C ) is normal edge-transitive if Aut ( G ; C ) acts transitively on the pairs { c , c − 1 } from C. We show that, for a normal edge-transitive Cayley graph Cay ( G , C ) , its quotient modulo Φ ( G ; C ) is the unique largest normal quotient which is isomorphic to a subdirect product of normal edge-transitive Cayley graphs of characteristically simple groups. In particular, we may therefore view normal edge-transitive Cayley graphs of characteristically simple groups as building blocks for normal edge-transitive Cayley graphs whenever we have Φ ( G ; C ) trivial. We explore several questions which these results raise, some concerned with the set of all inverse-closed generating sets for groups in a given family. In particular we use this theory to classify all 4-valent normal edge-transitive Cayley graphs for dihedral groups; this involves a new construction of an infinite family of examples, and disproves a conjecture of Talebi.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">secondary</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">08A35</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">08A30</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">primary</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Praeger, Cheryl E.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Christy Mano Raj, J.S. ELSEVIER</subfield><subfield code="t">A two stage successive estimation based maximum power point tracking technique for photovoltaic modules</subfield><subfield code="d">2014</subfield><subfield code="g">San Diego, Calif</subfield><subfield code="w">(DE-627)ELV018117414</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:607</subfield><subfield code="g">year:2022</subfield><subfield code="g">day:1</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:473-498</subfield><subfield code="g">extent:26</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jalgebra.2021.03.035</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2532</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.13</subfield><subfield code="j">Medizinische Ökologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">607</subfield><subfield code="j">2022</subfield><subfield code="b">1</subfield><subfield code="c">1001</subfield><subfield code="h">473-498</subfield><subfield code="g">26</subfield></datafield></record></collection>
|
author |
Khosravi, Behnam |
spellingShingle |
Khosravi, Behnam ddc 530 ddc 333.7 bkl 44.13 Elsevier secondary Elsevier 08A35 Elsevier 08A30 Elsevier primary Normal edge-transitive Cayley graphs and Frattini-like subgroups |
authorStr |
Khosravi, Behnam |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV018117414 |
format |
electronic Article |
dewey-ones |
530 - Physics 333 - Economics of land & energy 610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
530 VZ 333.7 610 VZ 44.13 bkl Normal edge-transitive Cayley graphs and Frattini-like subgroups secondary Elsevier 08A35 Elsevier 08A30 Elsevier primary Elsevier |
topic |
ddc 530 ddc 333.7 bkl 44.13 Elsevier secondary Elsevier 08A35 Elsevier 08A30 Elsevier primary |
topic_unstemmed |
ddc 530 ddc 333.7 bkl 44.13 Elsevier secondary Elsevier 08A35 Elsevier 08A30 Elsevier primary |
topic_browse |
ddc 530 ddc 333.7 bkl 44.13 Elsevier secondary Elsevier 08A35 Elsevier 08A30 Elsevier primary |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
c e p ce cep |
hierarchy_parent_title |
A two stage successive estimation based maximum power point tracking technique for photovoltaic modules |
hierarchy_parent_id |
ELV018117414 |
dewey-tens |
530 - Physics 330 - Economics 610 - Medicine & health |
hierarchy_top_title |
A two stage successive estimation based maximum power point tracking technique for photovoltaic modules |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV018117414 |
title |
Normal edge-transitive Cayley graphs and Frattini-like subgroups |
ctrlnum |
(DE-627)ELV058177965 (ELSEVIER)S0021-8693(21)00207-6 |
title_full |
Normal edge-transitive Cayley graphs and Frattini-like subgroups |
author_sort |
Khosravi, Behnam |
journal |
A two stage successive estimation based maximum power point tracking technique for photovoltaic modules |
journalStr |
A two stage successive estimation based maximum power point tracking technique for photovoltaic modules |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 300 - Social sciences 600 - Technology |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
zzz |
container_start_page |
473 |
author_browse |
Khosravi, Behnam |
container_volume |
607 |
physical |
26 |
class |
530 VZ 333.7 610 VZ 44.13 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Khosravi, Behnam |
doi_str_mv |
10.1016/j.jalgebra.2021.03.035 |
dewey-full |
530 333.7 610 |
title_sort |
normal edge-transitive cayley graphs and frattini-like subgroups |
title_auth |
Normal edge-transitive Cayley graphs and Frattini-like subgroups |
abstract |
For a finite group G and an inverse-closed generating set C of G, let Aut ( G ; C ) consist of those automorphisms of G which leave C invariant. We define an Aut ( G ; C ) -invariant normal subgroup Φ ( G ; C ) of G which has the property that, for any Aut ( G ; C ) -invariant normal set of generators for G, if we remove from it all the elements of Φ ( G ; C ) , then the remaining set is still an Aut ( G ; C ) -invariant normal generating set for G. The subgroup Φ ( G ; C ) contains the Frattini subgroup Φ ( G ) but the inclusion may be proper. The Cayley graph Cay ( G , C ) is normal edge-transitive if Aut ( G ; C ) acts transitively on the pairs { c , c − 1 } from C. We show that, for a normal edge-transitive Cayley graph Cay ( G , C ) , its quotient modulo Φ ( G ; C ) is the unique largest normal quotient which is isomorphic to a subdirect product of normal edge-transitive Cayley graphs of characteristically simple groups. In particular, we may therefore view normal edge-transitive Cayley graphs of characteristically simple groups as building blocks for normal edge-transitive Cayley graphs whenever we have Φ ( G ; C ) trivial. We explore several questions which these results raise, some concerned with the set of all inverse-closed generating sets for groups in a given family. In particular we use this theory to classify all 4-valent normal edge-transitive Cayley graphs for dihedral groups; this involves a new construction of an infinite family of examples, and disproves a conjecture of Talebi. |
abstractGer |
For a finite group G and an inverse-closed generating set C of G, let Aut ( G ; C ) consist of those automorphisms of G which leave C invariant. We define an Aut ( G ; C ) -invariant normal subgroup Φ ( G ; C ) of G which has the property that, for any Aut ( G ; C ) -invariant normal set of generators for G, if we remove from it all the elements of Φ ( G ; C ) , then the remaining set is still an Aut ( G ; C ) -invariant normal generating set for G. The subgroup Φ ( G ; C ) contains the Frattini subgroup Φ ( G ) but the inclusion may be proper. The Cayley graph Cay ( G , C ) is normal edge-transitive if Aut ( G ; C ) acts transitively on the pairs { c , c − 1 } from C. We show that, for a normal edge-transitive Cayley graph Cay ( G , C ) , its quotient modulo Φ ( G ; C ) is the unique largest normal quotient which is isomorphic to a subdirect product of normal edge-transitive Cayley graphs of characteristically simple groups. In particular, we may therefore view normal edge-transitive Cayley graphs of characteristically simple groups as building blocks for normal edge-transitive Cayley graphs whenever we have Φ ( G ; C ) trivial. We explore several questions which these results raise, some concerned with the set of all inverse-closed generating sets for groups in a given family. In particular we use this theory to classify all 4-valent normal edge-transitive Cayley graphs for dihedral groups; this involves a new construction of an infinite family of examples, and disproves a conjecture of Talebi. |
abstract_unstemmed |
For a finite group G and an inverse-closed generating set C of G, let Aut ( G ; C ) consist of those automorphisms of G which leave C invariant. We define an Aut ( G ; C ) -invariant normal subgroup Φ ( G ; C ) of G which has the property that, for any Aut ( G ; C ) -invariant normal set of generators for G, if we remove from it all the elements of Φ ( G ; C ) , then the remaining set is still an Aut ( G ; C ) -invariant normal generating set for G. The subgroup Φ ( G ; C ) contains the Frattini subgroup Φ ( G ) but the inclusion may be proper. The Cayley graph Cay ( G , C ) is normal edge-transitive if Aut ( G ; C ) acts transitively on the pairs { c , c − 1 } from C. We show that, for a normal edge-transitive Cayley graph Cay ( G , C ) , its quotient modulo Φ ( G ; C ) is the unique largest normal quotient which is isomorphic to a subdirect product of normal edge-transitive Cayley graphs of characteristically simple groups. In particular, we may therefore view normal edge-transitive Cayley graphs of characteristically simple groups as building blocks for normal edge-transitive Cayley graphs whenever we have Φ ( G ; C ) trivial. We explore several questions which these results raise, some concerned with the set of all inverse-closed generating sets for groups in a given family. In particular we use this theory to classify all 4-valent normal edge-transitive Cayley graphs for dihedral groups; this involves a new construction of an infinite family of examples, and disproves a conjecture of Talebi. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_40 GBV_ILN_2532 |
title_short |
Normal edge-transitive Cayley graphs and Frattini-like subgroups |
url |
https://doi.org/10.1016/j.jalgebra.2021.03.035 |
remote_bool |
true |
author2 |
Praeger, Cheryl E. |
author2Str |
Praeger, Cheryl E. |
ppnlink |
ELV018117414 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
doi_str |
10.1016/j.jalgebra.2021.03.035 |
up_date |
2024-07-06T18:16:09.761Z |
_version_ |
1803854565617958912 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV058177965</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626050435.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220808s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jalgebra.2021.03.035</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001806.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV058177965</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0021-8693(21)00207-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">333.7</subfield><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.13</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Khosravi, Behnam</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Normal edge-transitive Cayley graphs and Frattini-like subgroups</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">26</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">For a finite group G and an inverse-closed generating set C of G, let Aut ( G ; C ) consist of those automorphisms of G which leave C invariant. We define an Aut ( G ; C ) -invariant normal subgroup Φ ( G ; C ) of G which has the property that, for any Aut ( G ; C ) -invariant normal set of generators for G, if we remove from it all the elements of Φ ( G ; C ) , then the remaining set is still an Aut ( G ; C ) -invariant normal generating set for G. The subgroup Φ ( G ; C ) contains the Frattini subgroup Φ ( G ) but the inclusion may be proper. The Cayley graph Cay ( G , C ) is normal edge-transitive if Aut ( G ; C ) acts transitively on the pairs { c , c − 1 } from C. We show that, for a normal edge-transitive Cayley graph Cay ( G , C ) , its quotient modulo Φ ( G ; C ) is the unique largest normal quotient which is isomorphic to a subdirect product of normal edge-transitive Cayley graphs of characteristically simple groups. In particular, we may therefore view normal edge-transitive Cayley graphs of characteristically simple groups as building blocks for normal edge-transitive Cayley graphs whenever we have Φ ( G ; C ) trivial. We explore several questions which these results raise, some concerned with the set of all inverse-closed generating sets for groups in a given family. In particular we use this theory to classify all 4-valent normal edge-transitive Cayley graphs for dihedral groups; this involves a new construction of an infinite family of examples, and disproves a conjecture of Talebi.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">For a finite group G and an inverse-closed generating set C of G, let Aut ( G ; C ) consist of those automorphisms of G which leave C invariant. We define an Aut ( G ; C ) -invariant normal subgroup Φ ( G ; C ) of G which has the property that, for any Aut ( G ; C ) -invariant normal set of generators for G, if we remove from it all the elements of Φ ( G ; C ) , then the remaining set is still an Aut ( G ; C ) -invariant normal generating set for G. The subgroup Φ ( G ; C ) contains the Frattini subgroup Φ ( G ) but the inclusion may be proper. The Cayley graph Cay ( G , C ) is normal edge-transitive if Aut ( G ; C ) acts transitively on the pairs { c , c − 1 } from C. We show that, for a normal edge-transitive Cayley graph Cay ( G , C ) , its quotient modulo Φ ( G ; C ) is the unique largest normal quotient which is isomorphic to a subdirect product of normal edge-transitive Cayley graphs of characteristically simple groups. In particular, we may therefore view normal edge-transitive Cayley graphs of characteristically simple groups as building blocks for normal edge-transitive Cayley graphs whenever we have Φ ( G ; C ) trivial. We explore several questions which these results raise, some concerned with the set of all inverse-closed generating sets for groups in a given family. In particular we use this theory to classify all 4-valent normal edge-transitive Cayley graphs for dihedral groups; this involves a new construction of an infinite family of examples, and disproves a conjecture of Talebi.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">secondary</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">08A35</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">08A30</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">primary</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Praeger, Cheryl E.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Christy Mano Raj, J.S. ELSEVIER</subfield><subfield code="t">A two stage successive estimation based maximum power point tracking technique for photovoltaic modules</subfield><subfield code="d">2014</subfield><subfield code="g">San Diego, Calif</subfield><subfield code="w">(DE-627)ELV018117414</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:607</subfield><subfield code="g">year:2022</subfield><subfield code="g">day:1</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:473-498</subfield><subfield code="g">extent:26</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jalgebra.2021.03.035</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2532</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.13</subfield><subfield code="j">Medizinische Ökologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">607</subfield><subfield code="j">2022</subfield><subfield code="b">1</subfield><subfield code="c">1001</subfield><subfield code="h">473-498</subfield><subfield code="g">26</subfield></datafield></record></collection>
|
score |
7.40125 |