Interspecies and seasonal variations in macroalgae from the Nordic region: Chemical composition and impacts on rumen fermentation and microbiome assembly
Marine macroalgae may serve as sustainable feed resources for ruminant production due to their nutritional attributes, and enteric methane (CH4) mitigating potential. We aimed to characterize the anti-methanogenic properties of 12 Nordic macroalgae species (eight brown, three red, and one green). Di...
Ausführliche Beschreibung
Autor*in: |
Pandey, Deepak [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022transfer abstract |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Self-assembled 3D hierarchical MnCO - Rajendiran, Rajmohan ELSEVIER, 2020, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:363 ; year:2022 ; day:20 ; month:08 ; pages:0 |
Links: |
---|
DOI / URN: |
10.1016/j.jclepro.2022.132456 |
---|
Katalog-ID: |
ELV058205993 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV058205993 | ||
003 | DE-627 | ||
005 | 20230626050508.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220808s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jclepro.2022.132456 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001947.pica |
035 | |a (DE-627)ELV058205993 | ||
035 | |a (ELSEVIER)S0959-6526(22)02057-1 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 540 |q VZ |
084 | |a 35.18 |2 bkl | ||
100 | 1 | |a Pandey, Deepak |e verfasserin |4 aut | |
245 | 1 | 0 | |a Interspecies and seasonal variations in macroalgae from the Nordic region: Chemical composition and impacts on rumen fermentation and microbiome assembly |
264 | 1 | |c 2022transfer abstract | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Marine macroalgae may serve as sustainable feed resources for ruminant production due to their nutritional attributes, and enteric methane (CH4) mitigating potential. We aimed to characterize the anti-methanogenic properties of 12 Nordic macroalgae species (eight brown, three red, and one green). Differences in the chemical composition across two harvesting seasons and impacts of addition of macroalgae (20% dry matter basis) on in vitro rumen fermentability of maize silage (MS) and associated changes in the rumen microbiome composition were also evaluated. Green and red macroalgae contained twice as much crude protein (CP) as compared to brown macroalgae. The latter had higher mineral and total polyphenol content (TPC: 10 to 20 times). In some brown species, ash and CP contents were up to twice as high in spring than in autumn, but TPC was highest in autumn. The TPC content was inversely correlated with in vitro rumen fermentation characteristics: organic matter (OM) degradability (r = −0.85; P < 0.001), production of total gas (r = −0.79; P < 0.001), total volatile fatty acids (r = −0.78; P < 0.001) and CH4 (r = −0.53; P < 0.03) per gram of OM. The polyphenol-rich brown species, Fucus vesiculosus and Ascophyllum nodosum, caused a significant reduction in feed degradability (∼25%) due to the suppression of cellulolytic bacteria (Ruminococcus spp., Lacnospiraceae spp., Rikenellaceae RC9 gut group) in the rumen fluid after fermentation. Interestingly, autumn-harvested samples of those two macroalgae decreased the CH4 production by 62.6% and 48.2%, respectively, and reduced rumen methanogenic archaea (e.g., Methanobrevibacter spp.), although the reduction was not directly correlated with TPC. Thus, Nordic macroalgae, depending upon their species-specific unique properties, could be utilized as anti-methanogenic feed additives or feeding resources for ruminants. In vivo studies are needed to establish the implications of feeding with these macroalgae on overall animal performance. | ||
520 | |a Marine macroalgae may serve as sustainable feed resources for ruminant production due to their nutritional attributes, and enteric methane (CH4) mitigating potential. We aimed to characterize the anti-methanogenic properties of 12 Nordic macroalgae species (eight brown, three red, and one green). Differences in the chemical composition across two harvesting seasons and impacts of addition of macroalgae (20% dry matter basis) on in vitro rumen fermentability of maize silage (MS) and associated changes in the rumen microbiome composition were also evaluated. Green and red macroalgae contained twice as much crude protein (CP) as compared to brown macroalgae. The latter had higher mineral and total polyphenol content (TPC: 10 to 20 times). In some brown species, ash and CP contents were up to twice as high in spring than in autumn, but TPC was highest in autumn. The TPC content was inversely correlated with in vitro rumen fermentation characteristics: organic matter (OM) degradability (r = −0.85; P < 0.001), production of total gas (r = −0.79; P < 0.001), total volatile fatty acids (r = −0.78; P < 0.001) and CH4 (r = −0.53; P < 0.03) per gram of OM. The polyphenol-rich brown species, Fucus vesiculosus and Ascophyllum nodosum, caused a significant reduction in feed degradability (∼25%) due to the suppression of cellulolytic bacteria (Ruminococcus spp., Lacnospiraceae spp., Rikenellaceae RC9 gut group) in the rumen fluid after fermentation. Interestingly, autumn-harvested samples of those two macroalgae decreased the CH4 production by 62.6% and 48.2%, respectively, and reduced rumen methanogenic archaea (e.g., Methanobrevibacter spp.), although the reduction was not directly correlated with TPC. Thus, Nordic macroalgae, depending upon their species-specific unique properties, could be utilized as anti-methanogenic feed additives or feeding resources for ruminants. In vivo studies are needed to establish the implications of feeding with these macroalgae on overall animal performance. | ||
650 | 7 | |a Methane |2 Elsevier | |
650 | 7 | |a Rumen microbiota |2 Elsevier | |
650 | 7 | |a Rumen degradation |2 Elsevier | |
650 | 7 | |a Polyphenols |2 Elsevier | |
650 | 7 | |a Seaweeds |2 Elsevier | |
700 | 1 | |a Hansen, Hanne Helene |4 oth | |
700 | 1 | |a Dhakal, Rajan |4 oth | |
700 | 1 | |a Aryal, Nabin |4 oth | |
700 | 1 | |a Rai, Surya Prakash |4 oth | |
700 | 1 | |a Sapkota, Rumakanta |4 oth | |
700 | 1 | |a Nielsen, Mette Olaf |4 oth | |
700 | 1 | |a Novoa-Garrido, Margarita |4 oth | |
700 | 1 | |a Khanal, Prabhat |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Rajendiran, Rajmohan ELSEVIER |t Self-assembled 3D hierarchical MnCO |d 2020 |g Amsterdam [u.a.] |w (DE-627)ELV003750353 |
773 | 1 | 8 | |g volume:363 |g year:2022 |g day:20 |g month:08 |g pages:0 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.jclepro.2022.132456 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
936 | b | k | |a 35.18 |j Kolloidchemie |j Grenzflächenchemie |q VZ |
951 | |a AR | ||
952 | |d 363 |j 2022 |b 20 |c 0820 |h 0 |
author_variant |
d p dp |
---|---|
matchkey_str |
pandeydeepakhansenhannehelenedhakalrajan:2022----:neseisnsaoavrainimcolafoteodceinhmclopstoadmatorm |
hierarchy_sort_str |
2022transfer abstract |
bklnumber |
35.18 |
publishDate |
2022 |
allfields |
10.1016/j.jclepro.2022.132456 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001947.pica (DE-627)ELV058205993 (ELSEVIER)S0959-6526(22)02057-1 DE-627 ger DE-627 rakwb eng 540 VZ 35.18 bkl Pandey, Deepak verfasserin aut Interspecies and seasonal variations in macroalgae from the Nordic region: Chemical composition and impacts on rumen fermentation and microbiome assembly 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Marine macroalgae may serve as sustainable feed resources for ruminant production due to their nutritional attributes, and enteric methane (CH4) mitigating potential. We aimed to characterize the anti-methanogenic properties of 12 Nordic macroalgae species (eight brown, three red, and one green). Differences in the chemical composition across two harvesting seasons and impacts of addition of macroalgae (20% dry matter basis) on in vitro rumen fermentability of maize silage (MS) and associated changes in the rumen microbiome composition were also evaluated. Green and red macroalgae contained twice as much crude protein (CP) as compared to brown macroalgae. The latter had higher mineral and total polyphenol content (TPC: 10 to 20 times). In some brown species, ash and CP contents were up to twice as high in spring than in autumn, but TPC was highest in autumn. The TPC content was inversely correlated with in vitro rumen fermentation characteristics: organic matter (OM) degradability (r = −0.85; P < 0.001), production of total gas (r = −0.79; P < 0.001), total volatile fatty acids (r = −0.78; P < 0.001) and CH4 (r = −0.53; P < 0.03) per gram of OM. The polyphenol-rich brown species, Fucus vesiculosus and Ascophyllum nodosum, caused a significant reduction in feed degradability (∼25%) due to the suppression of cellulolytic bacteria (Ruminococcus spp., Lacnospiraceae spp., Rikenellaceae RC9 gut group) in the rumen fluid after fermentation. Interestingly, autumn-harvested samples of those two macroalgae decreased the CH4 production by 62.6% and 48.2%, respectively, and reduced rumen methanogenic archaea (e.g., Methanobrevibacter spp.), although the reduction was not directly correlated with TPC. Thus, Nordic macroalgae, depending upon their species-specific unique properties, could be utilized as anti-methanogenic feed additives or feeding resources for ruminants. In vivo studies are needed to establish the implications of feeding with these macroalgae on overall animal performance. Marine macroalgae may serve as sustainable feed resources for ruminant production due to their nutritional attributes, and enteric methane (CH4) mitigating potential. We aimed to characterize the anti-methanogenic properties of 12 Nordic macroalgae species (eight brown, three red, and one green). Differences in the chemical composition across two harvesting seasons and impacts of addition of macroalgae (20% dry matter basis) on in vitro rumen fermentability of maize silage (MS) and associated changes in the rumen microbiome composition were also evaluated. Green and red macroalgae contained twice as much crude protein (CP) as compared to brown macroalgae. The latter had higher mineral and total polyphenol content (TPC: 10 to 20 times). In some brown species, ash and CP contents were up to twice as high in spring than in autumn, but TPC was highest in autumn. The TPC content was inversely correlated with in vitro rumen fermentation characteristics: organic matter (OM) degradability (r = −0.85; P < 0.001), production of total gas (r = −0.79; P < 0.001), total volatile fatty acids (r = −0.78; P < 0.001) and CH4 (r = −0.53; P < 0.03) per gram of OM. The polyphenol-rich brown species, Fucus vesiculosus and Ascophyllum nodosum, caused a significant reduction in feed degradability (∼25%) due to the suppression of cellulolytic bacteria (Ruminococcus spp., Lacnospiraceae spp., Rikenellaceae RC9 gut group) in the rumen fluid after fermentation. Interestingly, autumn-harvested samples of those two macroalgae decreased the CH4 production by 62.6% and 48.2%, respectively, and reduced rumen methanogenic archaea (e.g., Methanobrevibacter spp.), although the reduction was not directly correlated with TPC. Thus, Nordic macroalgae, depending upon their species-specific unique properties, could be utilized as anti-methanogenic feed additives or feeding resources for ruminants. In vivo studies are needed to establish the implications of feeding with these macroalgae on overall animal performance. Methane Elsevier Rumen microbiota Elsevier Rumen degradation Elsevier Polyphenols Elsevier Seaweeds Elsevier Hansen, Hanne Helene oth Dhakal, Rajan oth Aryal, Nabin oth Rai, Surya Prakash oth Sapkota, Rumakanta oth Nielsen, Mette Olaf oth Novoa-Garrido, Margarita oth Khanal, Prabhat oth Enthalten in Elsevier Science Rajendiran, Rajmohan ELSEVIER Self-assembled 3D hierarchical MnCO 2020 Amsterdam [u.a.] (DE-627)ELV003750353 volume:363 year:2022 day:20 month:08 pages:0 https://doi.org/10.1016/j.jclepro.2022.132456 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 35.18 Kolloidchemie Grenzflächenchemie VZ AR 363 2022 20 0820 0 |
spelling |
10.1016/j.jclepro.2022.132456 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001947.pica (DE-627)ELV058205993 (ELSEVIER)S0959-6526(22)02057-1 DE-627 ger DE-627 rakwb eng 540 VZ 35.18 bkl Pandey, Deepak verfasserin aut Interspecies and seasonal variations in macroalgae from the Nordic region: Chemical composition and impacts on rumen fermentation and microbiome assembly 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Marine macroalgae may serve as sustainable feed resources for ruminant production due to their nutritional attributes, and enteric methane (CH4) mitigating potential. We aimed to characterize the anti-methanogenic properties of 12 Nordic macroalgae species (eight brown, three red, and one green). Differences in the chemical composition across two harvesting seasons and impacts of addition of macroalgae (20% dry matter basis) on in vitro rumen fermentability of maize silage (MS) and associated changes in the rumen microbiome composition were also evaluated. Green and red macroalgae contained twice as much crude protein (CP) as compared to brown macroalgae. The latter had higher mineral and total polyphenol content (TPC: 10 to 20 times). In some brown species, ash and CP contents were up to twice as high in spring than in autumn, but TPC was highest in autumn. The TPC content was inversely correlated with in vitro rumen fermentation characteristics: organic matter (OM) degradability (r = −0.85; P < 0.001), production of total gas (r = −0.79; P < 0.001), total volatile fatty acids (r = −0.78; P < 0.001) and CH4 (r = −0.53; P < 0.03) per gram of OM. The polyphenol-rich brown species, Fucus vesiculosus and Ascophyllum nodosum, caused a significant reduction in feed degradability (∼25%) due to the suppression of cellulolytic bacteria (Ruminococcus spp., Lacnospiraceae spp., Rikenellaceae RC9 gut group) in the rumen fluid after fermentation. Interestingly, autumn-harvested samples of those two macroalgae decreased the CH4 production by 62.6% and 48.2%, respectively, and reduced rumen methanogenic archaea (e.g., Methanobrevibacter spp.), although the reduction was not directly correlated with TPC. Thus, Nordic macroalgae, depending upon their species-specific unique properties, could be utilized as anti-methanogenic feed additives or feeding resources for ruminants. In vivo studies are needed to establish the implications of feeding with these macroalgae on overall animal performance. Marine macroalgae may serve as sustainable feed resources for ruminant production due to their nutritional attributes, and enteric methane (CH4) mitigating potential. We aimed to characterize the anti-methanogenic properties of 12 Nordic macroalgae species (eight brown, three red, and one green). Differences in the chemical composition across two harvesting seasons and impacts of addition of macroalgae (20% dry matter basis) on in vitro rumen fermentability of maize silage (MS) and associated changes in the rumen microbiome composition were also evaluated. Green and red macroalgae contained twice as much crude protein (CP) as compared to brown macroalgae. The latter had higher mineral and total polyphenol content (TPC: 10 to 20 times). In some brown species, ash and CP contents were up to twice as high in spring than in autumn, but TPC was highest in autumn. The TPC content was inversely correlated with in vitro rumen fermentation characteristics: organic matter (OM) degradability (r = −0.85; P < 0.001), production of total gas (r = −0.79; P < 0.001), total volatile fatty acids (r = −0.78; P < 0.001) and CH4 (r = −0.53; P < 0.03) per gram of OM. The polyphenol-rich brown species, Fucus vesiculosus and Ascophyllum nodosum, caused a significant reduction in feed degradability (∼25%) due to the suppression of cellulolytic bacteria (Ruminococcus spp., Lacnospiraceae spp., Rikenellaceae RC9 gut group) in the rumen fluid after fermentation. Interestingly, autumn-harvested samples of those two macroalgae decreased the CH4 production by 62.6% and 48.2%, respectively, and reduced rumen methanogenic archaea (e.g., Methanobrevibacter spp.), although the reduction was not directly correlated with TPC. Thus, Nordic macroalgae, depending upon their species-specific unique properties, could be utilized as anti-methanogenic feed additives or feeding resources for ruminants. In vivo studies are needed to establish the implications of feeding with these macroalgae on overall animal performance. Methane Elsevier Rumen microbiota Elsevier Rumen degradation Elsevier Polyphenols Elsevier Seaweeds Elsevier Hansen, Hanne Helene oth Dhakal, Rajan oth Aryal, Nabin oth Rai, Surya Prakash oth Sapkota, Rumakanta oth Nielsen, Mette Olaf oth Novoa-Garrido, Margarita oth Khanal, Prabhat oth Enthalten in Elsevier Science Rajendiran, Rajmohan ELSEVIER Self-assembled 3D hierarchical MnCO 2020 Amsterdam [u.a.] (DE-627)ELV003750353 volume:363 year:2022 day:20 month:08 pages:0 https://doi.org/10.1016/j.jclepro.2022.132456 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 35.18 Kolloidchemie Grenzflächenchemie VZ AR 363 2022 20 0820 0 |
allfields_unstemmed |
10.1016/j.jclepro.2022.132456 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001947.pica (DE-627)ELV058205993 (ELSEVIER)S0959-6526(22)02057-1 DE-627 ger DE-627 rakwb eng 540 VZ 35.18 bkl Pandey, Deepak verfasserin aut Interspecies and seasonal variations in macroalgae from the Nordic region: Chemical composition and impacts on rumen fermentation and microbiome assembly 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Marine macroalgae may serve as sustainable feed resources for ruminant production due to their nutritional attributes, and enteric methane (CH4) mitigating potential. We aimed to characterize the anti-methanogenic properties of 12 Nordic macroalgae species (eight brown, three red, and one green). Differences in the chemical composition across two harvesting seasons and impacts of addition of macroalgae (20% dry matter basis) on in vitro rumen fermentability of maize silage (MS) and associated changes in the rumen microbiome composition were also evaluated. Green and red macroalgae contained twice as much crude protein (CP) as compared to brown macroalgae. The latter had higher mineral and total polyphenol content (TPC: 10 to 20 times). In some brown species, ash and CP contents were up to twice as high in spring than in autumn, but TPC was highest in autumn. The TPC content was inversely correlated with in vitro rumen fermentation characteristics: organic matter (OM) degradability (r = −0.85; P < 0.001), production of total gas (r = −0.79; P < 0.001), total volatile fatty acids (r = −0.78; P < 0.001) and CH4 (r = −0.53; P < 0.03) per gram of OM. The polyphenol-rich brown species, Fucus vesiculosus and Ascophyllum nodosum, caused a significant reduction in feed degradability (∼25%) due to the suppression of cellulolytic bacteria (Ruminococcus spp., Lacnospiraceae spp., Rikenellaceae RC9 gut group) in the rumen fluid after fermentation. Interestingly, autumn-harvested samples of those two macroalgae decreased the CH4 production by 62.6% and 48.2%, respectively, and reduced rumen methanogenic archaea (e.g., Methanobrevibacter spp.), although the reduction was not directly correlated with TPC. Thus, Nordic macroalgae, depending upon their species-specific unique properties, could be utilized as anti-methanogenic feed additives or feeding resources for ruminants. In vivo studies are needed to establish the implications of feeding with these macroalgae on overall animal performance. Marine macroalgae may serve as sustainable feed resources for ruminant production due to their nutritional attributes, and enteric methane (CH4) mitigating potential. We aimed to characterize the anti-methanogenic properties of 12 Nordic macroalgae species (eight brown, three red, and one green). Differences in the chemical composition across two harvesting seasons and impacts of addition of macroalgae (20% dry matter basis) on in vitro rumen fermentability of maize silage (MS) and associated changes in the rumen microbiome composition were also evaluated. Green and red macroalgae contained twice as much crude protein (CP) as compared to brown macroalgae. The latter had higher mineral and total polyphenol content (TPC: 10 to 20 times). In some brown species, ash and CP contents were up to twice as high in spring than in autumn, but TPC was highest in autumn. The TPC content was inversely correlated with in vitro rumen fermentation characteristics: organic matter (OM) degradability (r = −0.85; P < 0.001), production of total gas (r = −0.79; P < 0.001), total volatile fatty acids (r = −0.78; P < 0.001) and CH4 (r = −0.53; P < 0.03) per gram of OM. The polyphenol-rich brown species, Fucus vesiculosus and Ascophyllum nodosum, caused a significant reduction in feed degradability (∼25%) due to the suppression of cellulolytic bacteria (Ruminococcus spp., Lacnospiraceae spp., Rikenellaceae RC9 gut group) in the rumen fluid after fermentation. Interestingly, autumn-harvested samples of those two macroalgae decreased the CH4 production by 62.6% and 48.2%, respectively, and reduced rumen methanogenic archaea (e.g., Methanobrevibacter spp.), although the reduction was not directly correlated with TPC. Thus, Nordic macroalgae, depending upon their species-specific unique properties, could be utilized as anti-methanogenic feed additives or feeding resources for ruminants. In vivo studies are needed to establish the implications of feeding with these macroalgae on overall animal performance. Methane Elsevier Rumen microbiota Elsevier Rumen degradation Elsevier Polyphenols Elsevier Seaweeds Elsevier Hansen, Hanne Helene oth Dhakal, Rajan oth Aryal, Nabin oth Rai, Surya Prakash oth Sapkota, Rumakanta oth Nielsen, Mette Olaf oth Novoa-Garrido, Margarita oth Khanal, Prabhat oth Enthalten in Elsevier Science Rajendiran, Rajmohan ELSEVIER Self-assembled 3D hierarchical MnCO 2020 Amsterdam [u.a.] (DE-627)ELV003750353 volume:363 year:2022 day:20 month:08 pages:0 https://doi.org/10.1016/j.jclepro.2022.132456 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 35.18 Kolloidchemie Grenzflächenchemie VZ AR 363 2022 20 0820 0 |
allfieldsGer |
10.1016/j.jclepro.2022.132456 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001947.pica (DE-627)ELV058205993 (ELSEVIER)S0959-6526(22)02057-1 DE-627 ger DE-627 rakwb eng 540 VZ 35.18 bkl Pandey, Deepak verfasserin aut Interspecies and seasonal variations in macroalgae from the Nordic region: Chemical composition and impacts on rumen fermentation and microbiome assembly 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Marine macroalgae may serve as sustainable feed resources for ruminant production due to their nutritional attributes, and enteric methane (CH4) mitigating potential. We aimed to characterize the anti-methanogenic properties of 12 Nordic macroalgae species (eight brown, three red, and one green). Differences in the chemical composition across two harvesting seasons and impacts of addition of macroalgae (20% dry matter basis) on in vitro rumen fermentability of maize silage (MS) and associated changes in the rumen microbiome composition were also evaluated. Green and red macroalgae contained twice as much crude protein (CP) as compared to brown macroalgae. The latter had higher mineral and total polyphenol content (TPC: 10 to 20 times). In some brown species, ash and CP contents were up to twice as high in spring than in autumn, but TPC was highest in autumn. The TPC content was inversely correlated with in vitro rumen fermentation characteristics: organic matter (OM) degradability (r = −0.85; P < 0.001), production of total gas (r = −0.79; P < 0.001), total volatile fatty acids (r = −0.78; P < 0.001) and CH4 (r = −0.53; P < 0.03) per gram of OM. The polyphenol-rich brown species, Fucus vesiculosus and Ascophyllum nodosum, caused a significant reduction in feed degradability (∼25%) due to the suppression of cellulolytic bacteria (Ruminococcus spp., Lacnospiraceae spp., Rikenellaceae RC9 gut group) in the rumen fluid after fermentation. Interestingly, autumn-harvested samples of those two macroalgae decreased the CH4 production by 62.6% and 48.2%, respectively, and reduced rumen methanogenic archaea (e.g., Methanobrevibacter spp.), although the reduction was not directly correlated with TPC. Thus, Nordic macroalgae, depending upon their species-specific unique properties, could be utilized as anti-methanogenic feed additives or feeding resources for ruminants. In vivo studies are needed to establish the implications of feeding with these macroalgae on overall animal performance. Marine macroalgae may serve as sustainable feed resources for ruminant production due to their nutritional attributes, and enteric methane (CH4) mitigating potential. We aimed to characterize the anti-methanogenic properties of 12 Nordic macroalgae species (eight brown, three red, and one green). Differences in the chemical composition across two harvesting seasons and impacts of addition of macroalgae (20% dry matter basis) on in vitro rumen fermentability of maize silage (MS) and associated changes in the rumen microbiome composition were also evaluated. Green and red macroalgae contained twice as much crude protein (CP) as compared to brown macroalgae. The latter had higher mineral and total polyphenol content (TPC: 10 to 20 times). In some brown species, ash and CP contents were up to twice as high in spring than in autumn, but TPC was highest in autumn. The TPC content was inversely correlated with in vitro rumen fermentation characteristics: organic matter (OM) degradability (r = −0.85; P < 0.001), production of total gas (r = −0.79; P < 0.001), total volatile fatty acids (r = −0.78; P < 0.001) and CH4 (r = −0.53; P < 0.03) per gram of OM. The polyphenol-rich brown species, Fucus vesiculosus and Ascophyllum nodosum, caused a significant reduction in feed degradability (∼25%) due to the suppression of cellulolytic bacteria (Ruminococcus spp., Lacnospiraceae spp., Rikenellaceae RC9 gut group) in the rumen fluid after fermentation. Interestingly, autumn-harvested samples of those two macroalgae decreased the CH4 production by 62.6% and 48.2%, respectively, and reduced rumen methanogenic archaea (e.g., Methanobrevibacter spp.), although the reduction was not directly correlated with TPC. Thus, Nordic macroalgae, depending upon their species-specific unique properties, could be utilized as anti-methanogenic feed additives or feeding resources for ruminants. In vivo studies are needed to establish the implications of feeding with these macroalgae on overall animal performance. Methane Elsevier Rumen microbiota Elsevier Rumen degradation Elsevier Polyphenols Elsevier Seaweeds Elsevier Hansen, Hanne Helene oth Dhakal, Rajan oth Aryal, Nabin oth Rai, Surya Prakash oth Sapkota, Rumakanta oth Nielsen, Mette Olaf oth Novoa-Garrido, Margarita oth Khanal, Prabhat oth Enthalten in Elsevier Science Rajendiran, Rajmohan ELSEVIER Self-assembled 3D hierarchical MnCO 2020 Amsterdam [u.a.] (DE-627)ELV003750353 volume:363 year:2022 day:20 month:08 pages:0 https://doi.org/10.1016/j.jclepro.2022.132456 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 35.18 Kolloidchemie Grenzflächenchemie VZ AR 363 2022 20 0820 0 |
allfieldsSound |
10.1016/j.jclepro.2022.132456 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001947.pica (DE-627)ELV058205993 (ELSEVIER)S0959-6526(22)02057-1 DE-627 ger DE-627 rakwb eng 540 VZ 35.18 bkl Pandey, Deepak verfasserin aut Interspecies and seasonal variations in macroalgae from the Nordic region: Chemical composition and impacts on rumen fermentation and microbiome assembly 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Marine macroalgae may serve as sustainable feed resources for ruminant production due to their nutritional attributes, and enteric methane (CH4) mitigating potential. We aimed to characterize the anti-methanogenic properties of 12 Nordic macroalgae species (eight brown, three red, and one green). Differences in the chemical composition across two harvesting seasons and impacts of addition of macroalgae (20% dry matter basis) on in vitro rumen fermentability of maize silage (MS) and associated changes in the rumen microbiome composition were also evaluated. Green and red macroalgae contained twice as much crude protein (CP) as compared to brown macroalgae. The latter had higher mineral and total polyphenol content (TPC: 10 to 20 times). In some brown species, ash and CP contents were up to twice as high in spring than in autumn, but TPC was highest in autumn. The TPC content was inversely correlated with in vitro rumen fermentation characteristics: organic matter (OM) degradability (r = −0.85; P < 0.001), production of total gas (r = −0.79; P < 0.001), total volatile fatty acids (r = −0.78; P < 0.001) and CH4 (r = −0.53; P < 0.03) per gram of OM. The polyphenol-rich brown species, Fucus vesiculosus and Ascophyllum nodosum, caused a significant reduction in feed degradability (∼25%) due to the suppression of cellulolytic bacteria (Ruminococcus spp., Lacnospiraceae spp., Rikenellaceae RC9 gut group) in the rumen fluid after fermentation. Interestingly, autumn-harvested samples of those two macroalgae decreased the CH4 production by 62.6% and 48.2%, respectively, and reduced rumen methanogenic archaea (e.g., Methanobrevibacter spp.), although the reduction was not directly correlated with TPC. Thus, Nordic macroalgae, depending upon their species-specific unique properties, could be utilized as anti-methanogenic feed additives or feeding resources for ruminants. In vivo studies are needed to establish the implications of feeding with these macroalgae on overall animal performance. Marine macroalgae may serve as sustainable feed resources for ruminant production due to their nutritional attributes, and enteric methane (CH4) mitigating potential. We aimed to characterize the anti-methanogenic properties of 12 Nordic macroalgae species (eight brown, three red, and one green). Differences in the chemical composition across two harvesting seasons and impacts of addition of macroalgae (20% dry matter basis) on in vitro rumen fermentability of maize silage (MS) and associated changes in the rumen microbiome composition were also evaluated. Green and red macroalgae contained twice as much crude protein (CP) as compared to brown macroalgae. The latter had higher mineral and total polyphenol content (TPC: 10 to 20 times). In some brown species, ash and CP contents were up to twice as high in spring than in autumn, but TPC was highest in autumn. The TPC content was inversely correlated with in vitro rumen fermentation characteristics: organic matter (OM) degradability (r = −0.85; P < 0.001), production of total gas (r = −0.79; P < 0.001), total volatile fatty acids (r = −0.78; P < 0.001) and CH4 (r = −0.53; P < 0.03) per gram of OM. The polyphenol-rich brown species, Fucus vesiculosus and Ascophyllum nodosum, caused a significant reduction in feed degradability (∼25%) due to the suppression of cellulolytic bacteria (Ruminococcus spp., Lacnospiraceae spp., Rikenellaceae RC9 gut group) in the rumen fluid after fermentation. Interestingly, autumn-harvested samples of those two macroalgae decreased the CH4 production by 62.6% and 48.2%, respectively, and reduced rumen methanogenic archaea (e.g., Methanobrevibacter spp.), although the reduction was not directly correlated with TPC. Thus, Nordic macroalgae, depending upon their species-specific unique properties, could be utilized as anti-methanogenic feed additives or feeding resources for ruminants. In vivo studies are needed to establish the implications of feeding with these macroalgae on overall animal performance. Methane Elsevier Rumen microbiota Elsevier Rumen degradation Elsevier Polyphenols Elsevier Seaweeds Elsevier Hansen, Hanne Helene oth Dhakal, Rajan oth Aryal, Nabin oth Rai, Surya Prakash oth Sapkota, Rumakanta oth Nielsen, Mette Olaf oth Novoa-Garrido, Margarita oth Khanal, Prabhat oth Enthalten in Elsevier Science Rajendiran, Rajmohan ELSEVIER Self-assembled 3D hierarchical MnCO 2020 Amsterdam [u.a.] (DE-627)ELV003750353 volume:363 year:2022 day:20 month:08 pages:0 https://doi.org/10.1016/j.jclepro.2022.132456 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 35.18 Kolloidchemie Grenzflächenchemie VZ AR 363 2022 20 0820 0 |
language |
English |
source |
Enthalten in Self-assembled 3D hierarchical MnCO Amsterdam [u.a.] volume:363 year:2022 day:20 month:08 pages:0 |
sourceStr |
Enthalten in Self-assembled 3D hierarchical MnCO Amsterdam [u.a.] volume:363 year:2022 day:20 month:08 pages:0 |
format_phy_str_mv |
Article |
bklname |
Kolloidchemie Grenzflächenchemie |
institution |
findex.gbv.de |
topic_facet |
Methane Rumen microbiota Rumen degradation Polyphenols Seaweeds |
dewey-raw |
540 |
isfreeaccess_bool |
false |
container_title |
Self-assembled 3D hierarchical MnCO |
authorswithroles_txt_mv |
Pandey, Deepak @@aut@@ Hansen, Hanne Helene @@oth@@ Dhakal, Rajan @@oth@@ Aryal, Nabin @@oth@@ Rai, Surya Prakash @@oth@@ Sapkota, Rumakanta @@oth@@ Nielsen, Mette Olaf @@oth@@ Novoa-Garrido, Margarita @@oth@@ Khanal, Prabhat @@oth@@ |
publishDateDaySort_date |
2022-01-20T00:00:00Z |
hierarchy_top_id |
ELV003750353 |
dewey-sort |
3540 |
id |
ELV058205993 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV058205993</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626050508.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220808s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jclepro.2022.132456</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001947.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV058205993</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0959-6526(22)02057-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.18</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pandey, Deepak</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Interspecies and seasonal variations in macroalgae from the Nordic region: Chemical composition and impacts on rumen fermentation and microbiome assembly</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Marine macroalgae may serve as sustainable feed resources for ruminant production due to their nutritional attributes, and enteric methane (CH4) mitigating potential. We aimed to characterize the anti-methanogenic properties of 12 Nordic macroalgae species (eight brown, three red, and one green). Differences in the chemical composition across two harvesting seasons and impacts of addition of macroalgae (20% dry matter basis) on in vitro rumen fermentability of maize silage (MS) and associated changes in the rumen microbiome composition were also evaluated. Green and red macroalgae contained twice as much crude protein (CP) as compared to brown macroalgae. The latter had higher mineral and total polyphenol content (TPC: 10 to 20 times). In some brown species, ash and CP contents were up to twice as high in spring than in autumn, but TPC was highest in autumn. The TPC content was inversely correlated with in vitro rumen fermentation characteristics: organic matter (OM) degradability (r = −0.85; P < 0.001), production of total gas (r = −0.79; P < 0.001), total volatile fatty acids (r = −0.78; P < 0.001) and CH4 (r = −0.53; P < 0.03) per gram of OM. The polyphenol-rich brown species, Fucus vesiculosus and Ascophyllum nodosum, caused a significant reduction in feed degradability (∼25%) due to the suppression of cellulolytic bacteria (Ruminococcus spp., Lacnospiraceae spp., Rikenellaceae RC9 gut group) in the rumen fluid after fermentation. Interestingly, autumn-harvested samples of those two macroalgae decreased the CH4 production by 62.6% and 48.2%, respectively, and reduced rumen methanogenic archaea (e.g., Methanobrevibacter spp.), although the reduction was not directly correlated with TPC. Thus, Nordic macroalgae, depending upon their species-specific unique properties, could be utilized as anti-methanogenic feed additives or feeding resources for ruminants. In vivo studies are needed to establish the implications of feeding with these macroalgae on overall animal performance.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Marine macroalgae may serve as sustainable feed resources for ruminant production due to their nutritional attributes, and enteric methane (CH4) mitigating potential. We aimed to characterize the anti-methanogenic properties of 12 Nordic macroalgae species (eight brown, three red, and one green). Differences in the chemical composition across two harvesting seasons and impacts of addition of macroalgae (20% dry matter basis) on in vitro rumen fermentability of maize silage (MS) and associated changes in the rumen microbiome composition were also evaluated. Green and red macroalgae contained twice as much crude protein (CP) as compared to brown macroalgae. The latter had higher mineral and total polyphenol content (TPC: 10 to 20 times). In some brown species, ash and CP contents were up to twice as high in spring than in autumn, but TPC was highest in autumn. The TPC content was inversely correlated with in vitro rumen fermentation characteristics: organic matter (OM) degradability (r = −0.85; P < 0.001), production of total gas (r = −0.79; P < 0.001), total volatile fatty acids (r = −0.78; P < 0.001) and CH4 (r = −0.53; P < 0.03) per gram of OM. The polyphenol-rich brown species, Fucus vesiculosus and Ascophyllum nodosum, caused a significant reduction in feed degradability (∼25%) due to the suppression of cellulolytic bacteria (Ruminococcus spp., Lacnospiraceae spp., Rikenellaceae RC9 gut group) in the rumen fluid after fermentation. Interestingly, autumn-harvested samples of those two macroalgae decreased the CH4 production by 62.6% and 48.2%, respectively, and reduced rumen methanogenic archaea (e.g., Methanobrevibacter spp.), although the reduction was not directly correlated with TPC. Thus, Nordic macroalgae, depending upon their species-specific unique properties, could be utilized as anti-methanogenic feed additives or feeding resources for ruminants. In vivo studies are needed to establish the implications of feeding with these macroalgae on overall animal performance.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Methane</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Rumen microbiota</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Rumen degradation</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Polyphenols</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Seaweeds</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hansen, Hanne Helene</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dhakal, Rajan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Aryal, Nabin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rai, Surya Prakash</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sapkota, Rumakanta</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nielsen, Mette Olaf</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Novoa-Garrido, Margarita</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Khanal, Prabhat</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Rajendiran, Rajmohan ELSEVIER</subfield><subfield code="t">Self-assembled 3D hierarchical MnCO</subfield><subfield code="d">2020</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV003750353</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:363</subfield><subfield code="g">year:2022</subfield><subfield code="g">day:20</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jclepro.2022.132456</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.18</subfield><subfield code="j">Kolloidchemie</subfield><subfield code="j">Grenzflächenchemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">363</subfield><subfield code="j">2022</subfield><subfield code="b">20</subfield><subfield code="c">0820</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
author |
Pandey, Deepak |
spellingShingle |
Pandey, Deepak ddc 540 bkl 35.18 Elsevier Methane Elsevier Rumen microbiota Elsevier Rumen degradation Elsevier Polyphenols Elsevier Seaweeds Interspecies and seasonal variations in macroalgae from the Nordic region: Chemical composition and impacts on rumen fermentation and microbiome assembly |
authorStr |
Pandey, Deepak |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV003750353 |
format |
electronic Article |
dewey-ones |
540 - Chemistry & allied sciences |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
540 VZ 35.18 bkl Interspecies and seasonal variations in macroalgae from the Nordic region: Chemical composition and impacts on rumen fermentation and microbiome assembly Methane Elsevier Rumen microbiota Elsevier Rumen degradation Elsevier Polyphenols Elsevier Seaweeds Elsevier |
topic |
ddc 540 bkl 35.18 Elsevier Methane Elsevier Rumen microbiota Elsevier Rumen degradation Elsevier Polyphenols Elsevier Seaweeds |
topic_unstemmed |
ddc 540 bkl 35.18 Elsevier Methane Elsevier Rumen microbiota Elsevier Rumen degradation Elsevier Polyphenols Elsevier Seaweeds |
topic_browse |
ddc 540 bkl 35.18 Elsevier Methane Elsevier Rumen microbiota Elsevier Rumen degradation Elsevier Polyphenols Elsevier Seaweeds |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
h h h hh hhh r d rd n a na s p r sp spr r s rs m o n mo mon m n g mng p k pk |
hierarchy_parent_title |
Self-assembled 3D hierarchical MnCO |
hierarchy_parent_id |
ELV003750353 |
dewey-tens |
540 - Chemistry |
hierarchy_top_title |
Self-assembled 3D hierarchical MnCO |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV003750353 |
title |
Interspecies and seasonal variations in macroalgae from the Nordic region: Chemical composition and impacts on rumen fermentation and microbiome assembly |
ctrlnum |
(DE-627)ELV058205993 (ELSEVIER)S0959-6526(22)02057-1 |
title_full |
Interspecies and seasonal variations in macroalgae from the Nordic region: Chemical composition and impacts on rumen fermentation and microbiome assembly |
author_sort |
Pandey, Deepak |
journal |
Self-assembled 3D hierarchical MnCO |
journalStr |
Self-assembled 3D hierarchical MnCO |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
zzz |
container_start_page |
0 |
author_browse |
Pandey, Deepak |
container_volume |
363 |
class |
540 VZ 35.18 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Pandey, Deepak |
doi_str_mv |
10.1016/j.jclepro.2022.132456 |
dewey-full |
540 |
title_sort |
interspecies and seasonal variations in macroalgae from the nordic region: chemical composition and impacts on rumen fermentation and microbiome assembly |
title_auth |
Interspecies and seasonal variations in macroalgae from the Nordic region: Chemical composition and impacts on rumen fermentation and microbiome assembly |
abstract |
Marine macroalgae may serve as sustainable feed resources for ruminant production due to their nutritional attributes, and enteric methane (CH4) mitigating potential. We aimed to characterize the anti-methanogenic properties of 12 Nordic macroalgae species (eight brown, three red, and one green). Differences in the chemical composition across two harvesting seasons and impacts of addition of macroalgae (20% dry matter basis) on in vitro rumen fermentability of maize silage (MS) and associated changes in the rumen microbiome composition were also evaluated. Green and red macroalgae contained twice as much crude protein (CP) as compared to brown macroalgae. The latter had higher mineral and total polyphenol content (TPC: 10 to 20 times). In some brown species, ash and CP contents were up to twice as high in spring than in autumn, but TPC was highest in autumn. The TPC content was inversely correlated with in vitro rumen fermentation characteristics: organic matter (OM) degradability (r = −0.85; P < 0.001), production of total gas (r = −0.79; P < 0.001), total volatile fatty acids (r = −0.78; P < 0.001) and CH4 (r = −0.53; P < 0.03) per gram of OM. The polyphenol-rich brown species, Fucus vesiculosus and Ascophyllum nodosum, caused a significant reduction in feed degradability (∼25%) due to the suppression of cellulolytic bacteria (Ruminococcus spp., Lacnospiraceae spp., Rikenellaceae RC9 gut group) in the rumen fluid after fermentation. Interestingly, autumn-harvested samples of those two macroalgae decreased the CH4 production by 62.6% and 48.2%, respectively, and reduced rumen methanogenic archaea (e.g., Methanobrevibacter spp.), although the reduction was not directly correlated with TPC. Thus, Nordic macroalgae, depending upon their species-specific unique properties, could be utilized as anti-methanogenic feed additives or feeding resources for ruminants. In vivo studies are needed to establish the implications of feeding with these macroalgae on overall animal performance. |
abstractGer |
Marine macroalgae may serve as sustainable feed resources for ruminant production due to their nutritional attributes, and enteric methane (CH4) mitigating potential. We aimed to characterize the anti-methanogenic properties of 12 Nordic macroalgae species (eight brown, three red, and one green). Differences in the chemical composition across two harvesting seasons and impacts of addition of macroalgae (20% dry matter basis) on in vitro rumen fermentability of maize silage (MS) and associated changes in the rumen microbiome composition were also evaluated. Green and red macroalgae contained twice as much crude protein (CP) as compared to brown macroalgae. The latter had higher mineral and total polyphenol content (TPC: 10 to 20 times). In some brown species, ash and CP contents were up to twice as high in spring than in autumn, but TPC was highest in autumn. The TPC content was inversely correlated with in vitro rumen fermentation characteristics: organic matter (OM) degradability (r = −0.85; P < 0.001), production of total gas (r = −0.79; P < 0.001), total volatile fatty acids (r = −0.78; P < 0.001) and CH4 (r = −0.53; P < 0.03) per gram of OM. The polyphenol-rich brown species, Fucus vesiculosus and Ascophyllum nodosum, caused a significant reduction in feed degradability (∼25%) due to the suppression of cellulolytic bacteria (Ruminococcus spp., Lacnospiraceae spp., Rikenellaceae RC9 gut group) in the rumen fluid after fermentation. Interestingly, autumn-harvested samples of those two macroalgae decreased the CH4 production by 62.6% and 48.2%, respectively, and reduced rumen methanogenic archaea (e.g., Methanobrevibacter spp.), although the reduction was not directly correlated with TPC. Thus, Nordic macroalgae, depending upon their species-specific unique properties, could be utilized as anti-methanogenic feed additives or feeding resources for ruminants. In vivo studies are needed to establish the implications of feeding with these macroalgae on overall animal performance. |
abstract_unstemmed |
Marine macroalgae may serve as sustainable feed resources for ruminant production due to their nutritional attributes, and enteric methane (CH4) mitigating potential. We aimed to characterize the anti-methanogenic properties of 12 Nordic macroalgae species (eight brown, three red, and one green). Differences in the chemical composition across two harvesting seasons and impacts of addition of macroalgae (20% dry matter basis) on in vitro rumen fermentability of maize silage (MS) and associated changes in the rumen microbiome composition were also evaluated. Green and red macroalgae contained twice as much crude protein (CP) as compared to brown macroalgae. The latter had higher mineral and total polyphenol content (TPC: 10 to 20 times). In some brown species, ash and CP contents were up to twice as high in spring than in autumn, but TPC was highest in autumn. The TPC content was inversely correlated with in vitro rumen fermentation characteristics: organic matter (OM) degradability (r = −0.85; P < 0.001), production of total gas (r = −0.79; P < 0.001), total volatile fatty acids (r = −0.78; P < 0.001) and CH4 (r = −0.53; P < 0.03) per gram of OM. The polyphenol-rich brown species, Fucus vesiculosus and Ascophyllum nodosum, caused a significant reduction in feed degradability (∼25%) due to the suppression of cellulolytic bacteria (Ruminococcus spp., Lacnospiraceae spp., Rikenellaceae RC9 gut group) in the rumen fluid after fermentation. Interestingly, autumn-harvested samples of those two macroalgae decreased the CH4 production by 62.6% and 48.2%, respectively, and reduced rumen methanogenic archaea (e.g., Methanobrevibacter spp.), although the reduction was not directly correlated with TPC. Thus, Nordic macroalgae, depending upon their species-specific unique properties, could be utilized as anti-methanogenic feed additives or feeding resources for ruminants. In vivo studies are needed to establish the implications of feeding with these macroalgae on overall animal performance. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U |
title_short |
Interspecies and seasonal variations in macroalgae from the Nordic region: Chemical composition and impacts on rumen fermentation and microbiome assembly |
url |
https://doi.org/10.1016/j.jclepro.2022.132456 |
remote_bool |
true |
author2 |
Hansen, Hanne Helene Dhakal, Rajan Aryal, Nabin Rai, Surya Prakash Sapkota, Rumakanta Nielsen, Mette Olaf Novoa-Garrido, Margarita Khanal, Prabhat |
author2Str |
Hansen, Hanne Helene Dhakal, Rajan Aryal, Nabin Rai, Surya Prakash Sapkota, Rumakanta Nielsen, Mette Olaf Novoa-Garrido, Margarita Khanal, Prabhat |
ppnlink |
ELV003750353 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth oth oth |
doi_str |
10.1016/j.jclepro.2022.132456 |
up_date |
2024-07-06T18:21:12.662Z |
_version_ |
1803854883233726464 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV058205993</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626050508.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220808s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jclepro.2022.132456</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001947.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV058205993</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0959-6526(22)02057-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.18</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pandey, Deepak</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Interspecies and seasonal variations in macroalgae from the Nordic region: Chemical composition and impacts on rumen fermentation and microbiome assembly</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Marine macroalgae may serve as sustainable feed resources for ruminant production due to their nutritional attributes, and enteric methane (CH4) mitigating potential. We aimed to characterize the anti-methanogenic properties of 12 Nordic macroalgae species (eight brown, three red, and one green). Differences in the chemical composition across two harvesting seasons and impacts of addition of macroalgae (20% dry matter basis) on in vitro rumen fermentability of maize silage (MS) and associated changes in the rumen microbiome composition were also evaluated. Green and red macroalgae contained twice as much crude protein (CP) as compared to brown macroalgae. The latter had higher mineral and total polyphenol content (TPC: 10 to 20 times). In some brown species, ash and CP contents were up to twice as high in spring than in autumn, but TPC was highest in autumn. The TPC content was inversely correlated with in vitro rumen fermentation characteristics: organic matter (OM) degradability (r = −0.85; P < 0.001), production of total gas (r = −0.79; P < 0.001), total volatile fatty acids (r = −0.78; P < 0.001) and CH4 (r = −0.53; P < 0.03) per gram of OM. The polyphenol-rich brown species, Fucus vesiculosus and Ascophyllum nodosum, caused a significant reduction in feed degradability (∼25%) due to the suppression of cellulolytic bacteria (Ruminococcus spp., Lacnospiraceae spp., Rikenellaceae RC9 gut group) in the rumen fluid after fermentation. Interestingly, autumn-harvested samples of those two macroalgae decreased the CH4 production by 62.6% and 48.2%, respectively, and reduced rumen methanogenic archaea (e.g., Methanobrevibacter spp.), although the reduction was not directly correlated with TPC. Thus, Nordic macroalgae, depending upon their species-specific unique properties, could be utilized as anti-methanogenic feed additives or feeding resources for ruminants. In vivo studies are needed to establish the implications of feeding with these macroalgae on overall animal performance.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Marine macroalgae may serve as sustainable feed resources for ruminant production due to their nutritional attributes, and enteric methane (CH4) mitigating potential. We aimed to characterize the anti-methanogenic properties of 12 Nordic macroalgae species (eight brown, three red, and one green). Differences in the chemical composition across two harvesting seasons and impacts of addition of macroalgae (20% dry matter basis) on in vitro rumen fermentability of maize silage (MS) and associated changes in the rumen microbiome composition were also evaluated. Green and red macroalgae contained twice as much crude protein (CP) as compared to brown macroalgae. The latter had higher mineral and total polyphenol content (TPC: 10 to 20 times). In some brown species, ash and CP contents were up to twice as high in spring than in autumn, but TPC was highest in autumn. The TPC content was inversely correlated with in vitro rumen fermentation characteristics: organic matter (OM) degradability (r = −0.85; P < 0.001), production of total gas (r = −0.79; P < 0.001), total volatile fatty acids (r = −0.78; P < 0.001) and CH4 (r = −0.53; P < 0.03) per gram of OM. The polyphenol-rich brown species, Fucus vesiculosus and Ascophyllum nodosum, caused a significant reduction in feed degradability (∼25%) due to the suppression of cellulolytic bacteria (Ruminococcus spp., Lacnospiraceae spp., Rikenellaceae RC9 gut group) in the rumen fluid after fermentation. Interestingly, autumn-harvested samples of those two macroalgae decreased the CH4 production by 62.6% and 48.2%, respectively, and reduced rumen methanogenic archaea (e.g., Methanobrevibacter spp.), although the reduction was not directly correlated with TPC. Thus, Nordic macroalgae, depending upon their species-specific unique properties, could be utilized as anti-methanogenic feed additives or feeding resources for ruminants. In vivo studies are needed to establish the implications of feeding with these macroalgae on overall animal performance.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Methane</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Rumen microbiota</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Rumen degradation</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Polyphenols</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Seaweeds</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hansen, Hanne Helene</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dhakal, Rajan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Aryal, Nabin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rai, Surya Prakash</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sapkota, Rumakanta</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nielsen, Mette Olaf</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Novoa-Garrido, Margarita</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Khanal, Prabhat</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Rajendiran, Rajmohan ELSEVIER</subfield><subfield code="t">Self-assembled 3D hierarchical MnCO</subfield><subfield code="d">2020</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV003750353</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:363</subfield><subfield code="g">year:2022</subfield><subfield code="g">day:20</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jclepro.2022.132456</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.18</subfield><subfield code="j">Kolloidchemie</subfield><subfield code="j">Grenzflächenchemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">363</subfield><subfield code="j">2022</subfield><subfield code="b">20</subfield><subfield code="c">0820</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
score |
7.40166 |