Down to ppb level NO2 detection by vertically MoS2 nanoflakes grown on In2O3 microtubes at room temperature
Metal oxide-based gas sensors have advantages over electrochemical sensors of small size, low cost, and longer utilization life, but their performance in detecting ppb-level NO2 is compromised at room temperature (RT). In this work, a p-n MoS2-In2O3 heterojunction was constructed by in situ vertical...
Ausführliche Beschreibung
Autor*in: |
Liu, Yanna [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022transfer abstract |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Reaction mechanism investigation of furfural conversion to 2-methylfuran on Cu(1 1 1) surface - Ren, Guoqing ELSEVIER, 2018, an international journal devoted to the principles and applications of colloid and interface science, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:648 ; year:2022 ; day:5 ; month:09 ; pages:0 |
Links: |
---|
DOI / URN: |
10.1016/j.colsurfa.2022.129435 |
---|
Katalog-ID: |
ELV058213120 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV058213120 | ||
003 | DE-627 | ||
005 | 20230626050518.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220808s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.colsurfa.2022.129435 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001928.pica |
035 | |a (DE-627)ELV058213120 | ||
035 | |a (ELSEVIER)S0927-7757(22)01190-6 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 540 |q VZ |
084 | |a 35.10 |2 bkl | ||
100 | 1 | |a Liu, Yanna |e verfasserin |4 aut | |
245 | 1 | 0 | |a Down to ppb level NO2 detection by vertically MoS2 nanoflakes grown on In2O3 microtubes at room temperature |
264 | 1 | |c 2022transfer abstract | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Metal oxide-based gas sensors have advantages over electrochemical sensors of small size, low cost, and longer utilization life, but their performance in detecting ppb-level NO2 is compromised at room temperature (RT). In this work, a p-n MoS2-In2O3 heterojunction was constructed by in situ vertically growing MoS2 nanoflakes on the surface of In2O3 microtubes. The In2O3MoS2 composite with a 25 % mass rate of MoS2 presents an outstanding sensing performance with a response of 39.4 to 1 ppm NO2 at RT. The response and recovery time are 72 s and 118 s, respectively, and the detection limit is 115.4 ppb. The enhanced NO2 sensing performance may benefit from p-n heterojunction at the MoS2-In2O3 interface, the increased oxygen vacancies and chemisorbed oxygen, and the unique structure. The exposed sulfur active sites and chemical bonds introduced from MoS2 also contribute to the excellent gas sensor performance. Thus, this work proved that the In2O3@MoS2 sensor is a promising material for detecting trace NO2 at RT. | ||
520 | |a Metal oxide-based gas sensors have advantages over electrochemical sensors of small size, low cost, and longer utilization life, but their performance in detecting ppb-level NO2 is compromised at room temperature (RT). In this work, a p-n MoS2-In2O3 heterojunction was constructed by in situ vertically growing MoS2 nanoflakes on the surface of In2O3 microtubes. The In2O3MoS2 composite with a 25 % mass rate of MoS2 presents an outstanding sensing performance with a response of 39.4 to 1 ppm NO2 at RT. The response and recovery time are 72 s and 118 s, respectively, and the detection limit is 115.4 ppb. The enhanced NO2 sensing performance may benefit from p-n heterojunction at the MoS2-In2O3 interface, the increased oxygen vacancies and chemisorbed oxygen, and the unique structure. The exposed sulfur active sites and chemical bonds introduced from MoS2 also contribute to the excellent gas sensor performance. Thus, this work proved that the In2O3@MoS2 sensor is a promising material for detecting trace NO2 at RT. | ||
650 | 7 | |a MoS2 nanoflakes |2 Elsevier | |
650 | 7 | |a Room temperature gas sensor |2 Elsevier | |
650 | 7 | |a P-n heterojunction |2 Elsevier | |
650 | 7 | |a In2O3 microtubes |2 Elsevier | |
650 | 7 | |a NO2 |2 Elsevier | |
700 | 1 | |a Li, Sheng |4 oth | |
700 | 1 | |a Xiao, Song |4 oth | |
700 | 1 | |a Du, Ke |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Ren, Guoqing ELSEVIER |t Reaction mechanism investigation of furfural conversion to 2-methylfuran on Cu(1 1 1) surface |d 2018 |d an international journal devoted to the principles and applications of colloid and interface science |g Amsterdam [u.a.] |w (DE-627)ELV003763498 |
773 | 1 | 8 | |g volume:648 |g year:2022 |g day:5 |g month:09 |g pages:0 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.colsurfa.2022.129435 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
936 | b | k | |a 35.10 |j Physikalische Chemie: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 648 |j 2022 |b 5 |c 0905 |h 0 |
author_variant |
y l yl |
---|---|
matchkey_str |
liuyannalishengxiaosongduke:2022----:onoplvlodtcinyetclyo2aolksrwoi23i |
hierarchy_sort_str |
2022transfer abstract |
bklnumber |
35.10 |
publishDate |
2022 |
allfields |
10.1016/j.colsurfa.2022.129435 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001928.pica (DE-627)ELV058213120 (ELSEVIER)S0927-7757(22)01190-6 DE-627 ger DE-627 rakwb eng 540 VZ 35.10 bkl Liu, Yanna verfasserin aut Down to ppb level NO2 detection by vertically MoS2 nanoflakes grown on In2O3 microtubes at room temperature 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Metal oxide-based gas sensors have advantages over electrochemical sensors of small size, low cost, and longer utilization life, but their performance in detecting ppb-level NO2 is compromised at room temperature (RT). In this work, a p-n MoS2-In2O3 heterojunction was constructed by in situ vertically growing MoS2 nanoflakes on the surface of In2O3 microtubes. The In2O3MoS2 composite with a 25 % mass rate of MoS2 presents an outstanding sensing performance with a response of 39.4 to 1 ppm NO2 at RT. The response and recovery time are 72 s and 118 s, respectively, and the detection limit is 115.4 ppb. The enhanced NO2 sensing performance may benefit from p-n heterojunction at the MoS2-In2O3 interface, the increased oxygen vacancies and chemisorbed oxygen, and the unique structure. The exposed sulfur active sites and chemical bonds introduced from MoS2 also contribute to the excellent gas sensor performance. Thus, this work proved that the In2O3@MoS2 sensor is a promising material for detecting trace NO2 at RT. Metal oxide-based gas sensors have advantages over electrochemical sensors of small size, low cost, and longer utilization life, but their performance in detecting ppb-level NO2 is compromised at room temperature (RT). In this work, a p-n MoS2-In2O3 heterojunction was constructed by in situ vertically growing MoS2 nanoflakes on the surface of In2O3 microtubes. The In2O3MoS2 composite with a 25 % mass rate of MoS2 presents an outstanding sensing performance with a response of 39.4 to 1 ppm NO2 at RT. The response and recovery time are 72 s and 118 s, respectively, and the detection limit is 115.4 ppb. The enhanced NO2 sensing performance may benefit from p-n heterojunction at the MoS2-In2O3 interface, the increased oxygen vacancies and chemisorbed oxygen, and the unique structure. The exposed sulfur active sites and chemical bonds introduced from MoS2 also contribute to the excellent gas sensor performance. Thus, this work proved that the In2O3@MoS2 sensor is a promising material for detecting trace NO2 at RT. MoS2 nanoflakes Elsevier Room temperature gas sensor Elsevier P-n heterojunction Elsevier In2O3 microtubes Elsevier NO2 Elsevier Li, Sheng oth Xiao, Song oth Du, Ke oth Enthalten in Elsevier Science Ren, Guoqing ELSEVIER Reaction mechanism investigation of furfural conversion to 2-methylfuran on Cu(1 1 1) surface 2018 an international journal devoted to the principles and applications of colloid and interface science Amsterdam [u.a.] (DE-627)ELV003763498 volume:648 year:2022 day:5 month:09 pages:0 https://doi.org/10.1016/j.colsurfa.2022.129435 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 35.10 Physikalische Chemie: Allgemeines VZ AR 648 2022 5 0905 0 |
spelling |
10.1016/j.colsurfa.2022.129435 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001928.pica (DE-627)ELV058213120 (ELSEVIER)S0927-7757(22)01190-6 DE-627 ger DE-627 rakwb eng 540 VZ 35.10 bkl Liu, Yanna verfasserin aut Down to ppb level NO2 detection by vertically MoS2 nanoflakes grown on In2O3 microtubes at room temperature 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Metal oxide-based gas sensors have advantages over electrochemical sensors of small size, low cost, and longer utilization life, but their performance in detecting ppb-level NO2 is compromised at room temperature (RT). In this work, a p-n MoS2-In2O3 heterojunction was constructed by in situ vertically growing MoS2 nanoflakes on the surface of In2O3 microtubes. The In2O3MoS2 composite with a 25 % mass rate of MoS2 presents an outstanding sensing performance with a response of 39.4 to 1 ppm NO2 at RT. The response and recovery time are 72 s and 118 s, respectively, and the detection limit is 115.4 ppb. The enhanced NO2 sensing performance may benefit from p-n heterojunction at the MoS2-In2O3 interface, the increased oxygen vacancies and chemisorbed oxygen, and the unique structure. The exposed sulfur active sites and chemical bonds introduced from MoS2 also contribute to the excellent gas sensor performance. Thus, this work proved that the In2O3@MoS2 sensor is a promising material for detecting trace NO2 at RT. Metal oxide-based gas sensors have advantages over electrochemical sensors of small size, low cost, and longer utilization life, but their performance in detecting ppb-level NO2 is compromised at room temperature (RT). In this work, a p-n MoS2-In2O3 heterojunction was constructed by in situ vertically growing MoS2 nanoflakes on the surface of In2O3 microtubes. The In2O3MoS2 composite with a 25 % mass rate of MoS2 presents an outstanding sensing performance with a response of 39.4 to 1 ppm NO2 at RT. The response and recovery time are 72 s and 118 s, respectively, and the detection limit is 115.4 ppb. The enhanced NO2 sensing performance may benefit from p-n heterojunction at the MoS2-In2O3 interface, the increased oxygen vacancies and chemisorbed oxygen, and the unique structure. The exposed sulfur active sites and chemical bonds introduced from MoS2 also contribute to the excellent gas sensor performance. Thus, this work proved that the In2O3@MoS2 sensor is a promising material for detecting trace NO2 at RT. MoS2 nanoflakes Elsevier Room temperature gas sensor Elsevier P-n heterojunction Elsevier In2O3 microtubes Elsevier NO2 Elsevier Li, Sheng oth Xiao, Song oth Du, Ke oth Enthalten in Elsevier Science Ren, Guoqing ELSEVIER Reaction mechanism investigation of furfural conversion to 2-methylfuran on Cu(1 1 1) surface 2018 an international journal devoted to the principles and applications of colloid and interface science Amsterdam [u.a.] (DE-627)ELV003763498 volume:648 year:2022 day:5 month:09 pages:0 https://doi.org/10.1016/j.colsurfa.2022.129435 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 35.10 Physikalische Chemie: Allgemeines VZ AR 648 2022 5 0905 0 |
allfields_unstemmed |
10.1016/j.colsurfa.2022.129435 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001928.pica (DE-627)ELV058213120 (ELSEVIER)S0927-7757(22)01190-6 DE-627 ger DE-627 rakwb eng 540 VZ 35.10 bkl Liu, Yanna verfasserin aut Down to ppb level NO2 detection by vertically MoS2 nanoflakes grown on In2O3 microtubes at room temperature 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Metal oxide-based gas sensors have advantages over electrochemical sensors of small size, low cost, and longer utilization life, but their performance in detecting ppb-level NO2 is compromised at room temperature (RT). In this work, a p-n MoS2-In2O3 heterojunction was constructed by in situ vertically growing MoS2 nanoflakes on the surface of In2O3 microtubes. The In2O3MoS2 composite with a 25 % mass rate of MoS2 presents an outstanding sensing performance with a response of 39.4 to 1 ppm NO2 at RT. The response and recovery time are 72 s and 118 s, respectively, and the detection limit is 115.4 ppb. The enhanced NO2 sensing performance may benefit from p-n heterojunction at the MoS2-In2O3 interface, the increased oxygen vacancies and chemisorbed oxygen, and the unique structure. The exposed sulfur active sites and chemical bonds introduced from MoS2 also contribute to the excellent gas sensor performance. Thus, this work proved that the In2O3@MoS2 sensor is a promising material for detecting trace NO2 at RT. Metal oxide-based gas sensors have advantages over electrochemical sensors of small size, low cost, and longer utilization life, but their performance in detecting ppb-level NO2 is compromised at room temperature (RT). In this work, a p-n MoS2-In2O3 heterojunction was constructed by in situ vertically growing MoS2 nanoflakes on the surface of In2O3 microtubes. The In2O3MoS2 composite with a 25 % mass rate of MoS2 presents an outstanding sensing performance with a response of 39.4 to 1 ppm NO2 at RT. The response and recovery time are 72 s and 118 s, respectively, and the detection limit is 115.4 ppb. The enhanced NO2 sensing performance may benefit from p-n heterojunction at the MoS2-In2O3 interface, the increased oxygen vacancies and chemisorbed oxygen, and the unique structure. The exposed sulfur active sites and chemical bonds introduced from MoS2 also contribute to the excellent gas sensor performance. Thus, this work proved that the In2O3@MoS2 sensor is a promising material for detecting trace NO2 at RT. MoS2 nanoflakes Elsevier Room temperature gas sensor Elsevier P-n heterojunction Elsevier In2O3 microtubes Elsevier NO2 Elsevier Li, Sheng oth Xiao, Song oth Du, Ke oth Enthalten in Elsevier Science Ren, Guoqing ELSEVIER Reaction mechanism investigation of furfural conversion to 2-methylfuran on Cu(1 1 1) surface 2018 an international journal devoted to the principles and applications of colloid and interface science Amsterdam [u.a.] (DE-627)ELV003763498 volume:648 year:2022 day:5 month:09 pages:0 https://doi.org/10.1016/j.colsurfa.2022.129435 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 35.10 Physikalische Chemie: Allgemeines VZ AR 648 2022 5 0905 0 |
allfieldsGer |
10.1016/j.colsurfa.2022.129435 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001928.pica (DE-627)ELV058213120 (ELSEVIER)S0927-7757(22)01190-6 DE-627 ger DE-627 rakwb eng 540 VZ 35.10 bkl Liu, Yanna verfasserin aut Down to ppb level NO2 detection by vertically MoS2 nanoflakes grown on In2O3 microtubes at room temperature 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Metal oxide-based gas sensors have advantages over electrochemical sensors of small size, low cost, and longer utilization life, but their performance in detecting ppb-level NO2 is compromised at room temperature (RT). In this work, a p-n MoS2-In2O3 heterojunction was constructed by in situ vertically growing MoS2 nanoflakes on the surface of In2O3 microtubes. The In2O3MoS2 composite with a 25 % mass rate of MoS2 presents an outstanding sensing performance with a response of 39.4 to 1 ppm NO2 at RT. The response and recovery time are 72 s and 118 s, respectively, and the detection limit is 115.4 ppb. The enhanced NO2 sensing performance may benefit from p-n heterojunction at the MoS2-In2O3 interface, the increased oxygen vacancies and chemisorbed oxygen, and the unique structure. The exposed sulfur active sites and chemical bonds introduced from MoS2 also contribute to the excellent gas sensor performance. Thus, this work proved that the In2O3@MoS2 sensor is a promising material for detecting trace NO2 at RT. Metal oxide-based gas sensors have advantages over electrochemical sensors of small size, low cost, and longer utilization life, but their performance in detecting ppb-level NO2 is compromised at room temperature (RT). In this work, a p-n MoS2-In2O3 heterojunction was constructed by in situ vertically growing MoS2 nanoflakes on the surface of In2O3 microtubes. The In2O3MoS2 composite with a 25 % mass rate of MoS2 presents an outstanding sensing performance with a response of 39.4 to 1 ppm NO2 at RT. The response and recovery time are 72 s and 118 s, respectively, and the detection limit is 115.4 ppb. The enhanced NO2 sensing performance may benefit from p-n heterojunction at the MoS2-In2O3 interface, the increased oxygen vacancies and chemisorbed oxygen, and the unique structure. The exposed sulfur active sites and chemical bonds introduced from MoS2 also contribute to the excellent gas sensor performance. Thus, this work proved that the In2O3@MoS2 sensor is a promising material for detecting trace NO2 at RT. MoS2 nanoflakes Elsevier Room temperature gas sensor Elsevier P-n heterojunction Elsevier In2O3 microtubes Elsevier NO2 Elsevier Li, Sheng oth Xiao, Song oth Du, Ke oth Enthalten in Elsevier Science Ren, Guoqing ELSEVIER Reaction mechanism investigation of furfural conversion to 2-methylfuran on Cu(1 1 1) surface 2018 an international journal devoted to the principles and applications of colloid and interface science Amsterdam [u.a.] (DE-627)ELV003763498 volume:648 year:2022 day:5 month:09 pages:0 https://doi.org/10.1016/j.colsurfa.2022.129435 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 35.10 Physikalische Chemie: Allgemeines VZ AR 648 2022 5 0905 0 |
allfieldsSound |
10.1016/j.colsurfa.2022.129435 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001928.pica (DE-627)ELV058213120 (ELSEVIER)S0927-7757(22)01190-6 DE-627 ger DE-627 rakwb eng 540 VZ 35.10 bkl Liu, Yanna verfasserin aut Down to ppb level NO2 detection by vertically MoS2 nanoflakes grown on In2O3 microtubes at room temperature 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Metal oxide-based gas sensors have advantages over electrochemical sensors of small size, low cost, and longer utilization life, but their performance in detecting ppb-level NO2 is compromised at room temperature (RT). In this work, a p-n MoS2-In2O3 heterojunction was constructed by in situ vertically growing MoS2 nanoflakes on the surface of In2O3 microtubes. The In2O3MoS2 composite with a 25 % mass rate of MoS2 presents an outstanding sensing performance with a response of 39.4 to 1 ppm NO2 at RT. The response and recovery time are 72 s and 118 s, respectively, and the detection limit is 115.4 ppb. The enhanced NO2 sensing performance may benefit from p-n heterojunction at the MoS2-In2O3 interface, the increased oxygen vacancies and chemisorbed oxygen, and the unique structure. The exposed sulfur active sites and chemical bonds introduced from MoS2 also contribute to the excellent gas sensor performance. Thus, this work proved that the In2O3@MoS2 sensor is a promising material for detecting trace NO2 at RT. Metal oxide-based gas sensors have advantages over electrochemical sensors of small size, low cost, and longer utilization life, but their performance in detecting ppb-level NO2 is compromised at room temperature (RT). In this work, a p-n MoS2-In2O3 heterojunction was constructed by in situ vertically growing MoS2 nanoflakes on the surface of In2O3 microtubes. The In2O3MoS2 composite with a 25 % mass rate of MoS2 presents an outstanding sensing performance with a response of 39.4 to 1 ppm NO2 at RT. The response and recovery time are 72 s and 118 s, respectively, and the detection limit is 115.4 ppb. The enhanced NO2 sensing performance may benefit from p-n heterojunction at the MoS2-In2O3 interface, the increased oxygen vacancies and chemisorbed oxygen, and the unique structure. The exposed sulfur active sites and chemical bonds introduced from MoS2 also contribute to the excellent gas sensor performance. Thus, this work proved that the In2O3@MoS2 sensor is a promising material for detecting trace NO2 at RT. MoS2 nanoflakes Elsevier Room temperature gas sensor Elsevier P-n heterojunction Elsevier In2O3 microtubes Elsevier NO2 Elsevier Li, Sheng oth Xiao, Song oth Du, Ke oth Enthalten in Elsevier Science Ren, Guoqing ELSEVIER Reaction mechanism investigation of furfural conversion to 2-methylfuran on Cu(1 1 1) surface 2018 an international journal devoted to the principles and applications of colloid and interface science Amsterdam [u.a.] (DE-627)ELV003763498 volume:648 year:2022 day:5 month:09 pages:0 https://doi.org/10.1016/j.colsurfa.2022.129435 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 35.10 Physikalische Chemie: Allgemeines VZ AR 648 2022 5 0905 0 |
language |
English |
source |
Enthalten in Reaction mechanism investigation of furfural conversion to 2-methylfuran on Cu(1 1 1) surface Amsterdam [u.a.] volume:648 year:2022 day:5 month:09 pages:0 |
sourceStr |
Enthalten in Reaction mechanism investigation of furfural conversion to 2-methylfuran on Cu(1 1 1) surface Amsterdam [u.a.] volume:648 year:2022 day:5 month:09 pages:0 |
format_phy_str_mv |
Article |
bklname |
Physikalische Chemie: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
MoS2 nanoflakes Room temperature gas sensor P-n heterojunction In2O3 microtubes NO2 |
dewey-raw |
540 |
isfreeaccess_bool |
false |
container_title |
Reaction mechanism investigation of furfural conversion to 2-methylfuran on Cu(1 1 1) surface |
authorswithroles_txt_mv |
Liu, Yanna @@aut@@ Li, Sheng @@oth@@ Xiao, Song @@oth@@ Du, Ke @@oth@@ |
publishDateDaySort_date |
2022-01-05T00:00:00Z |
hierarchy_top_id |
ELV003763498 |
dewey-sort |
3540 |
id |
ELV058213120 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV058213120</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626050518.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220808s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.colsurfa.2022.129435</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001928.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV058213120</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0927-7757(22)01190-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.10</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liu, Yanna</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Down to ppb level NO2 detection by vertically MoS2 nanoflakes grown on In2O3 microtubes at room temperature</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Metal oxide-based gas sensors have advantages over electrochemical sensors of small size, low cost, and longer utilization life, but their performance in detecting ppb-level NO2 is compromised at room temperature (RT). In this work, a p-n MoS2-In2O3 heterojunction was constructed by in situ vertically growing MoS2 nanoflakes on the surface of In2O3 microtubes. The In2O3MoS2 composite with a 25 % mass rate of MoS2 presents an outstanding sensing performance with a response of 39.4 to 1 ppm NO2 at RT. The response and recovery time are 72 s and 118 s, respectively, and the detection limit is 115.4 ppb. The enhanced NO2 sensing performance may benefit from p-n heterojunction at the MoS2-In2O3 interface, the increased oxygen vacancies and chemisorbed oxygen, and the unique structure. The exposed sulfur active sites and chemical bonds introduced from MoS2 also contribute to the excellent gas sensor performance. Thus, this work proved that the In2O3@MoS2 sensor is a promising material for detecting trace NO2 at RT.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Metal oxide-based gas sensors have advantages over electrochemical sensors of small size, low cost, and longer utilization life, but their performance in detecting ppb-level NO2 is compromised at room temperature (RT). In this work, a p-n MoS2-In2O3 heterojunction was constructed by in situ vertically growing MoS2 nanoflakes on the surface of In2O3 microtubes. The In2O3MoS2 composite with a 25 % mass rate of MoS2 presents an outstanding sensing performance with a response of 39.4 to 1 ppm NO2 at RT. The response and recovery time are 72 s and 118 s, respectively, and the detection limit is 115.4 ppb. The enhanced NO2 sensing performance may benefit from p-n heterojunction at the MoS2-In2O3 interface, the increased oxygen vacancies and chemisorbed oxygen, and the unique structure. The exposed sulfur active sites and chemical bonds introduced from MoS2 also contribute to the excellent gas sensor performance. Thus, this work proved that the In2O3@MoS2 sensor is a promising material for detecting trace NO2 at RT.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MoS2 nanoflakes</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Room temperature gas sensor</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">P-n heterojunction</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">In2O3 microtubes</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">NO2</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Sheng</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xiao, Song</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Du, Ke</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Ren, Guoqing ELSEVIER</subfield><subfield code="t">Reaction mechanism investigation of furfural conversion to 2-methylfuran on Cu(1 1 1) surface</subfield><subfield code="d">2018</subfield><subfield code="d">an international journal devoted to the principles and applications of colloid and interface science</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV003763498</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:648</subfield><subfield code="g">year:2022</subfield><subfield code="g">day:5</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.colsurfa.2022.129435</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.10</subfield><subfield code="j">Physikalische Chemie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">648</subfield><subfield code="j">2022</subfield><subfield code="b">5</subfield><subfield code="c">0905</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
author |
Liu, Yanna |
spellingShingle |
Liu, Yanna ddc 540 bkl 35.10 Elsevier MoS2 nanoflakes Elsevier Room temperature gas sensor Elsevier P-n heterojunction Elsevier In2O3 microtubes Elsevier NO2 Down to ppb level NO2 detection by vertically MoS2 nanoflakes grown on In2O3 microtubes at room temperature |
authorStr |
Liu, Yanna |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV003763498 |
format |
electronic Article |
dewey-ones |
540 - Chemistry & allied sciences |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
540 VZ 35.10 bkl Down to ppb level NO2 detection by vertically MoS2 nanoflakes grown on In2O3 microtubes at room temperature MoS2 nanoflakes Elsevier Room temperature gas sensor Elsevier P-n heterojunction Elsevier In2O3 microtubes Elsevier NO2 Elsevier |
topic |
ddc 540 bkl 35.10 Elsevier MoS2 nanoflakes Elsevier Room temperature gas sensor Elsevier P-n heterojunction Elsevier In2O3 microtubes Elsevier NO2 |
topic_unstemmed |
ddc 540 bkl 35.10 Elsevier MoS2 nanoflakes Elsevier Room temperature gas sensor Elsevier P-n heterojunction Elsevier In2O3 microtubes Elsevier NO2 |
topic_browse |
ddc 540 bkl 35.10 Elsevier MoS2 nanoflakes Elsevier Room temperature gas sensor Elsevier P-n heterojunction Elsevier In2O3 microtubes Elsevier NO2 |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
s l sl s x sx k d kd |
hierarchy_parent_title |
Reaction mechanism investigation of furfural conversion to 2-methylfuran on Cu(1 1 1) surface |
hierarchy_parent_id |
ELV003763498 |
dewey-tens |
540 - Chemistry |
hierarchy_top_title |
Reaction mechanism investigation of furfural conversion to 2-methylfuran on Cu(1 1 1) surface |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV003763498 |
title |
Down to ppb level NO2 detection by vertically MoS2 nanoflakes grown on In2O3 microtubes at room temperature |
ctrlnum |
(DE-627)ELV058213120 (ELSEVIER)S0927-7757(22)01190-6 |
title_full |
Down to ppb level NO2 detection by vertically MoS2 nanoflakes grown on In2O3 microtubes at room temperature |
author_sort |
Liu, Yanna |
journal |
Reaction mechanism investigation of furfural conversion to 2-methylfuran on Cu(1 1 1) surface |
journalStr |
Reaction mechanism investigation of furfural conversion to 2-methylfuran on Cu(1 1 1) surface |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
zzz |
container_start_page |
0 |
author_browse |
Liu, Yanna |
container_volume |
648 |
class |
540 VZ 35.10 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Liu, Yanna |
doi_str_mv |
10.1016/j.colsurfa.2022.129435 |
dewey-full |
540 |
title_sort |
down to ppb level no2 detection by vertically mos2 nanoflakes grown on in2o3 microtubes at room temperature |
title_auth |
Down to ppb level NO2 detection by vertically MoS2 nanoflakes grown on In2O3 microtubes at room temperature |
abstract |
Metal oxide-based gas sensors have advantages over electrochemical sensors of small size, low cost, and longer utilization life, but their performance in detecting ppb-level NO2 is compromised at room temperature (RT). In this work, a p-n MoS2-In2O3 heterojunction was constructed by in situ vertically growing MoS2 nanoflakes on the surface of In2O3 microtubes. The In2O3MoS2 composite with a 25 % mass rate of MoS2 presents an outstanding sensing performance with a response of 39.4 to 1 ppm NO2 at RT. The response and recovery time are 72 s and 118 s, respectively, and the detection limit is 115.4 ppb. The enhanced NO2 sensing performance may benefit from p-n heterojunction at the MoS2-In2O3 interface, the increased oxygen vacancies and chemisorbed oxygen, and the unique structure. The exposed sulfur active sites and chemical bonds introduced from MoS2 also contribute to the excellent gas sensor performance. Thus, this work proved that the In2O3@MoS2 sensor is a promising material for detecting trace NO2 at RT. |
abstractGer |
Metal oxide-based gas sensors have advantages over electrochemical sensors of small size, low cost, and longer utilization life, but their performance in detecting ppb-level NO2 is compromised at room temperature (RT). In this work, a p-n MoS2-In2O3 heterojunction was constructed by in situ vertically growing MoS2 nanoflakes on the surface of In2O3 microtubes. The In2O3MoS2 composite with a 25 % mass rate of MoS2 presents an outstanding sensing performance with a response of 39.4 to 1 ppm NO2 at RT. The response and recovery time are 72 s and 118 s, respectively, and the detection limit is 115.4 ppb. The enhanced NO2 sensing performance may benefit from p-n heterojunction at the MoS2-In2O3 interface, the increased oxygen vacancies and chemisorbed oxygen, and the unique structure. The exposed sulfur active sites and chemical bonds introduced from MoS2 also contribute to the excellent gas sensor performance. Thus, this work proved that the In2O3@MoS2 sensor is a promising material for detecting trace NO2 at RT. |
abstract_unstemmed |
Metal oxide-based gas sensors have advantages over electrochemical sensors of small size, low cost, and longer utilization life, but their performance in detecting ppb-level NO2 is compromised at room temperature (RT). In this work, a p-n MoS2-In2O3 heterojunction was constructed by in situ vertically growing MoS2 nanoflakes on the surface of In2O3 microtubes. The In2O3MoS2 composite with a 25 % mass rate of MoS2 presents an outstanding sensing performance with a response of 39.4 to 1 ppm NO2 at RT. The response and recovery time are 72 s and 118 s, respectively, and the detection limit is 115.4 ppb. The enhanced NO2 sensing performance may benefit from p-n heterojunction at the MoS2-In2O3 interface, the increased oxygen vacancies and chemisorbed oxygen, and the unique structure. The exposed sulfur active sites and chemical bonds introduced from MoS2 also contribute to the excellent gas sensor performance. Thus, this work proved that the In2O3@MoS2 sensor is a promising material for detecting trace NO2 at RT. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA |
title_short |
Down to ppb level NO2 detection by vertically MoS2 nanoflakes grown on In2O3 microtubes at room temperature |
url |
https://doi.org/10.1016/j.colsurfa.2022.129435 |
remote_bool |
true |
author2 |
Li, Sheng Xiao, Song Du, Ke |
author2Str |
Li, Sheng Xiao, Song Du, Ke |
ppnlink |
ELV003763498 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth |
doi_str |
10.1016/j.colsurfa.2022.129435 |
up_date |
2024-07-06T18:22:38.972Z |
_version_ |
1803854973735272448 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV058213120</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626050518.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220808s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.colsurfa.2022.129435</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001928.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV058213120</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0927-7757(22)01190-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.10</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liu, Yanna</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Down to ppb level NO2 detection by vertically MoS2 nanoflakes grown on In2O3 microtubes at room temperature</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Metal oxide-based gas sensors have advantages over electrochemical sensors of small size, low cost, and longer utilization life, but their performance in detecting ppb-level NO2 is compromised at room temperature (RT). In this work, a p-n MoS2-In2O3 heterojunction was constructed by in situ vertically growing MoS2 nanoflakes on the surface of In2O3 microtubes. The In2O3MoS2 composite with a 25 % mass rate of MoS2 presents an outstanding sensing performance with a response of 39.4 to 1 ppm NO2 at RT. The response and recovery time are 72 s and 118 s, respectively, and the detection limit is 115.4 ppb. The enhanced NO2 sensing performance may benefit from p-n heterojunction at the MoS2-In2O3 interface, the increased oxygen vacancies and chemisorbed oxygen, and the unique structure. The exposed sulfur active sites and chemical bonds introduced from MoS2 also contribute to the excellent gas sensor performance. Thus, this work proved that the In2O3@MoS2 sensor is a promising material for detecting trace NO2 at RT.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Metal oxide-based gas sensors have advantages over electrochemical sensors of small size, low cost, and longer utilization life, but their performance in detecting ppb-level NO2 is compromised at room temperature (RT). In this work, a p-n MoS2-In2O3 heterojunction was constructed by in situ vertically growing MoS2 nanoflakes on the surface of In2O3 microtubes. The In2O3MoS2 composite with a 25 % mass rate of MoS2 presents an outstanding sensing performance with a response of 39.4 to 1 ppm NO2 at RT. The response and recovery time are 72 s and 118 s, respectively, and the detection limit is 115.4 ppb. The enhanced NO2 sensing performance may benefit from p-n heterojunction at the MoS2-In2O3 interface, the increased oxygen vacancies and chemisorbed oxygen, and the unique structure. The exposed sulfur active sites and chemical bonds introduced from MoS2 also contribute to the excellent gas sensor performance. Thus, this work proved that the In2O3@MoS2 sensor is a promising material for detecting trace NO2 at RT.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MoS2 nanoflakes</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Room temperature gas sensor</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">P-n heterojunction</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">In2O3 microtubes</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">NO2</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Sheng</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xiao, Song</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Du, Ke</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Ren, Guoqing ELSEVIER</subfield><subfield code="t">Reaction mechanism investigation of furfural conversion to 2-methylfuran on Cu(1 1 1) surface</subfield><subfield code="d">2018</subfield><subfield code="d">an international journal devoted to the principles and applications of colloid and interface science</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV003763498</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:648</subfield><subfield code="g">year:2022</subfield><subfield code="g">day:5</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.colsurfa.2022.129435</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.10</subfield><subfield code="j">Physikalische Chemie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">648</subfield><subfield code="j">2022</subfield><subfield code="b">5</subfield><subfield code="c">0905</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
score |
7.401458 |