Predicting electrical power output of combined cycle power plants using a novel artificial neural network optimized by electrostatic discharge algorithm
• Electrical power output of power plants is predicted with high accuracy. • Electrostatic discharge algorithm is for the first time used for this aim. • Regular MLPs are compared to ESDA- and ASO-optimized versions. • ESDA-MLP is the most efficient model. • An explicit predictive formula is derived...
Ausführliche Beschreibung
Autor*in: |
Zhao, Yinghao [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: High-performance and self-calibrating multi-gas sensor interface to trace multiple gas species with sub-ppm level - Kwon, Yeong Min ELSEVIER, 2022, journal of the International Measurement Confederation (IMEKO), Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:198 ; year:2022 ; pages:0 |
Links: |
---|
DOI / URN: |
10.1016/j.measurement.2022.111405 |
---|
Katalog-ID: |
ELV058220690 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV058220690 | ||
003 | DE-627 | ||
005 | 20230625004614.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220808s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.measurement.2022.111405 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001938.pica |
035 | |a (DE-627)ELV058220690 | ||
035 | |a (ELSEVIER)S0263-2241(22)00638-8 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 620 |q VZ |
084 | |a 50.22 |2 bkl | ||
084 | |a 35.07 |2 bkl | ||
100 | 1 | |a Zhao, Yinghao |e verfasserin |4 aut | |
245 | 1 | 0 | |a Predicting electrical power output of combined cycle power plants using a novel artificial neural network optimized by electrostatic discharge algorithm |
264 | 1 | |c 2022 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a • Electrical power output of power plants is predicted with high accuracy. • Electrostatic discharge algorithm is for the first time used for this aim. • Regular MLPs are compared to ESDA- and ASO-optimized versions. • ESDA-MLP is the most efficient model. • An explicit predictive formula is derived for convenient early prediction. | ||
650 | 7 | |a Electrostatic discharge algorithm |2 Elsevier | |
650 | 7 | |a Combined cycle power plant |2 Elsevier | |
650 | 7 | |a Electrical power |2 Elsevier | |
650 | 7 | |a Artificial neural network |2 Elsevier | |
700 | 1 | |a Kok Foong, Loke |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Kwon, Yeong Min ELSEVIER |t High-performance and self-calibrating multi-gas sensor interface to trace multiple gas species with sub-ppm level |d 2022 |d journal of the International Measurement Confederation (IMEKO) |g Amsterdam [u.a.] |w (DE-627)ELV008789606 |
773 | 1 | 8 | |g volume:198 |g year:2022 |g pages:0 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.measurement.2022.111405 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
936 | b | k | |a 50.22 |j Sensorik |q VZ |
936 | b | k | |a 35.07 |j Chemisches Labor |j chemische Methoden |q VZ |
951 | |a AR | ||
952 | |d 198 |j 2022 |h 0 |
author_variant |
y z yz |
---|---|
matchkey_str |
zhaoyinghaokokfoongloke:2022----:rdciglcrcloeotuocmiecceoepatuignvlriiilerlewrotmz |
hierarchy_sort_str |
2022 |
bklnumber |
50.22 35.07 |
publishDate |
2022 |
allfields |
10.1016/j.measurement.2022.111405 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001938.pica (DE-627)ELV058220690 (ELSEVIER)S0263-2241(22)00638-8 DE-627 ger DE-627 rakwb eng 530 620 VZ 50.22 bkl 35.07 bkl Zhao, Yinghao verfasserin aut Predicting electrical power output of combined cycle power plants using a novel artificial neural network optimized by electrostatic discharge algorithm 2022 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • Electrical power output of power plants is predicted with high accuracy. • Electrostatic discharge algorithm is for the first time used for this aim. • Regular MLPs are compared to ESDA- and ASO-optimized versions. • ESDA-MLP is the most efficient model. • An explicit predictive formula is derived for convenient early prediction. Electrostatic discharge algorithm Elsevier Combined cycle power plant Elsevier Electrical power Elsevier Artificial neural network Elsevier Kok Foong, Loke oth Enthalten in Elsevier Science Kwon, Yeong Min ELSEVIER High-performance and self-calibrating multi-gas sensor interface to trace multiple gas species with sub-ppm level 2022 journal of the International Measurement Confederation (IMEKO) Amsterdam [u.a.] (DE-627)ELV008789606 volume:198 year:2022 pages:0 https://doi.org/10.1016/j.measurement.2022.111405 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 50.22 Sensorik VZ 35.07 Chemisches Labor chemische Methoden VZ AR 198 2022 0 |
spelling |
10.1016/j.measurement.2022.111405 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001938.pica (DE-627)ELV058220690 (ELSEVIER)S0263-2241(22)00638-8 DE-627 ger DE-627 rakwb eng 530 620 VZ 50.22 bkl 35.07 bkl Zhao, Yinghao verfasserin aut Predicting electrical power output of combined cycle power plants using a novel artificial neural network optimized by electrostatic discharge algorithm 2022 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • Electrical power output of power plants is predicted with high accuracy. • Electrostatic discharge algorithm is for the first time used for this aim. • Regular MLPs are compared to ESDA- and ASO-optimized versions. • ESDA-MLP is the most efficient model. • An explicit predictive formula is derived for convenient early prediction. Electrostatic discharge algorithm Elsevier Combined cycle power plant Elsevier Electrical power Elsevier Artificial neural network Elsevier Kok Foong, Loke oth Enthalten in Elsevier Science Kwon, Yeong Min ELSEVIER High-performance and self-calibrating multi-gas sensor interface to trace multiple gas species with sub-ppm level 2022 journal of the International Measurement Confederation (IMEKO) Amsterdam [u.a.] (DE-627)ELV008789606 volume:198 year:2022 pages:0 https://doi.org/10.1016/j.measurement.2022.111405 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 50.22 Sensorik VZ 35.07 Chemisches Labor chemische Methoden VZ AR 198 2022 0 |
allfields_unstemmed |
10.1016/j.measurement.2022.111405 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001938.pica (DE-627)ELV058220690 (ELSEVIER)S0263-2241(22)00638-8 DE-627 ger DE-627 rakwb eng 530 620 VZ 50.22 bkl 35.07 bkl Zhao, Yinghao verfasserin aut Predicting electrical power output of combined cycle power plants using a novel artificial neural network optimized by electrostatic discharge algorithm 2022 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • Electrical power output of power plants is predicted with high accuracy. • Electrostatic discharge algorithm is for the first time used for this aim. • Regular MLPs are compared to ESDA- and ASO-optimized versions. • ESDA-MLP is the most efficient model. • An explicit predictive formula is derived for convenient early prediction. Electrostatic discharge algorithm Elsevier Combined cycle power plant Elsevier Electrical power Elsevier Artificial neural network Elsevier Kok Foong, Loke oth Enthalten in Elsevier Science Kwon, Yeong Min ELSEVIER High-performance and self-calibrating multi-gas sensor interface to trace multiple gas species with sub-ppm level 2022 journal of the International Measurement Confederation (IMEKO) Amsterdam [u.a.] (DE-627)ELV008789606 volume:198 year:2022 pages:0 https://doi.org/10.1016/j.measurement.2022.111405 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 50.22 Sensorik VZ 35.07 Chemisches Labor chemische Methoden VZ AR 198 2022 0 |
allfieldsGer |
10.1016/j.measurement.2022.111405 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001938.pica (DE-627)ELV058220690 (ELSEVIER)S0263-2241(22)00638-8 DE-627 ger DE-627 rakwb eng 530 620 VZ 50.22 bkl 35.07 bkl Zhao, Yinghao verfasserin aut Predicting electrical power output of combined cycle power plants using a novel artificial neural network optimized by electrostatic discharge algorithm 2022 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • Electrical power output of power plants is predicted with high accuracy. • Electrostatic discharge algorithm is for the first time used for this aim. • Regular MLPs are compared to ESDA- and ASO-optimized versions. • ESDA-MLP is the most efficient model. • An explicit predictive formula is derived for convenient early prediction. Electrostatic discharge algorithm Elsevier Combined cycle power plant Elsevier Electrical power Elsevier Artificial neural network Elsevier Kok Foong, Loke oth Enthalten in Elsevier Science Kwon, Yeong Min ELSEVIER High-performance and self-calibrating multi-gas sensor interface to trace multiple gas species with sub-ppm level 2022 journal of the International Measurement Confederation (IMEKO) Amsterdam [u.a.] (DE-627)ELV008789606 volume:198 year:2022 pages:0 https://doi.org/10.1016/j.measurement.2022.111405 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 50.22 Sensorik VZ 35.07 Chemisches Labor chemische Methoden VZ AR 198 2022 0 |
allfieldsSound |
10.1016/j.measurement.2022.111405 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001938.pica (DE-627)ELV058220690 (ELSEVIER)S0263-2241(22)00638-8 DE-627 ger DE-627 rakwb eng 530 620 VZ 50.22 bkl 35.07 bkl Zhao, Yinghao verfasserin aut Predicting electrical power output of combined cycle power plants using a novel artificial neural network optimized by electrostatic discharge algorithm 2022 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • Electrical power output of power plants is predicted with high accuracy. • Electrostatic discharge algorithm is for the first time used for this aim. • Regular MLPs are compared to ESDA- and ASO-optimized versions. • ESDA-MLP is the most efficient model. • An explicit predictive formula is derived for convenient early prediction. Electrostatic discharge algorithm Elsevier Combined cycle power plant Elsevier Electrical power Elsevier Artificial neural network Elsevier Kok Foong, Loke oth Enthalten in Elsevier Science Kwon, Yeong Min ELSEVIER High-performance and self-calibrating multi-gas sensor interface to trace multiple gas species with sub-ppm level 2022 journal of the International Measurement Confederation (IMEKO) Amsterdam [u.a.] (DE-627)ELV008789606 volume:198 year:2022 pages:0 https://doi.org/10.1016/j.measurement.2022.111405 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 50.22 Sensorik VZ 35.07 Chemisches Labor chemische Methoden VZ AR 198 2022 0 |
language |
English |
source |
Enthalten in High-performance and self-calibrating multi-gas sensor interface to trace multiple gas species with sub-ppm level Amsterdam [u.a.] volume:198 year:2022 pages:0 |
sourceStr |
Enthalten in High-performance and self-calibrating multi-gas sensor interface to trace multiple gas species with sub-ppm level Amsterdam [u.a.] volume:198 year:2022 pages:0 |
format_phy_str_mv |
Article |
bklname |
Sensorik Chemisches Labor chemische Methoden |
institution |
findex.gbv.de |
topic_facet |
Electrostatic discharge algorithm Combined cycle power plant Electrical power Artificial neural network |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
High-performance and self-calibrating multi-gas sensor interface to trace multiple gas species with sub-ppm level |
authorswithroles_txt_mv |
Zhao, Yinghao @@aut@@ Kok Foong, Loke @@oth@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
ELV008789606 |
dewey-sort |
3530 |
id |
ELV058220690 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV058220690</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625004614.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220808s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.measurement.2022.111405</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001938.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV058220690</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0263-2241(22)00638-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.22</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.07</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhao, Yinghao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Predicting electrical power output of combined cycle power plants using a novel artificial neural network optimized by electrostatic discharge algorithm</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">• Electrical power output of power plants is predicted with high accuracy. • Electrostatic discharge algorithm is for the first time used for this aim. • Regular MLPs are compared to ESDA- and ASO-optimized versions. • ESDA-MLP is the most efficient model. • An explicit predictive formula is derived for convenient early prediction.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Electrostatic discharge algorithm</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Combined cycle power plant</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Electrical power</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Artificial neural network</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kok Foong, Loke</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Kwon, Yeong Min ELSEVIER</subfield><subfield code="t">High-performance and self-calibrating multi-gas sensor interface to trace multiple gas species with sub-ppm level</subfield><subfield code="d">2022</subfield><subfield code="d">journal of the International Measurement Confederation (IMEKO)</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV008789606</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:198</subfield><subfield code="g">year:2022</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.measurement.2022.111405</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.22</subfield><subfield code="j">Sensorik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.07</subfield><subfield code="j">Chemisches Labor</subfield><subfield code="j">chemische Methoden</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">198</subfield><subfield code="j">2022</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
author |
Zhao, Yinghao |
spellingShingle |
Zhao, Yinghao ddc 530 bkl 50.22 bkl 35.07 Elsevier Electrostatic discharge algorithm Elsevier Combined cycle power plant Elsevier Electrical power Elsevier Artificial neural network Predicting electrical power output of combined cycle power plants using a novel artificial neural network optimized by electrostatic discharge algorithm |
authorStr |
Zhao, Yinghao |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV008789606 |
format |
electronic Article |
dewey-ones |
530 - Physics 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
530 620 VZ 50.22 bkl 35.07 bkl Predicting electrical power output of combined cycle power plants using a novel artificial neural network optimized by electrostatic discharge algorithm Electrostatic discharge algorithm Elsevier Combined cycle power plant Elsevier Electrical power Elsevier Artificial neural network Elsevier |
topic |
ddc 530 bkl 50.22 bkl 35.07 Elsevier Electrostatic discharge algorithm Elsevier Combined cycle power plant Elsevier Electrical power Elsevier Artificial neural network |
topic_unstemmed |
ddc 530 bkl 50.22 bkl 35.07 Elsevier Electrostatic discharge algorithm Elsevier Combined cycle power plant Elsevier Electrical power Elsevier Artificial neural network |
topic_browse |
ddc 530 bkl 50.22 bkl 35.07 Elsevier Electrostatic discharge algorithm Elsevier Combined cycle power plant Elsevier Electrical power Elsevier Artificial neural network |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
f l k fl flk |
hierarchy_parent_title |
High-performance and self-calibrating multi-gas sensor interface to trace multiple gas species with sub-ppm level |
hierarchy_parent_id |
ELV008789606 |
dewey-tens |
530 - Physics 620 - Engineering |
hierarchy_top_title |
High-performance and self-calibrating multi-gas sensor interface to trace multiple gas species with sub-ppm level |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV008789606 |
title |
Predicting electrical power output of combined cycle power plants using a novel artificial neural network optimized by electrostatic discharge algorithm |
ctrlnum |
(DE-627)ELV058220690 (ELSEVIER)S0263-2241(22)00638-8 |
title_full |
Predicting electrical power output of combined cycle power plants using a novel artificial neural network optimized by electrostatic discharge algorithm |
author_sort |
Zhao, Yinghao |
journal |
High-performance and self-calibrating multi-gas sensor interface to trace multiple gas species with sub-ppm level |
journalStr |
High-performance and self-calibrating multi-gas sensor interface to trace multiple gas species with sub-ppm level |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
zzz |
container_start_page |
0 |
author_browse |
Zhao, Yinghao |
container_volume |
198 |
class |
530 620 VZ 50.22 bkl 35.07 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Zhao, Yinghao |
doi_str_mv |
10.1016/j.measurement.2022.111405 |
dewey-full |
530 620 |
title_sort |
predicting electrical power output of combined cycle power plants using a novel artificial neural network optimized by electrostatic discharge algorithm |
title_auth |
Predicting electrical power output of combined cycle power plants using a novel artificial neural network optimized by electrostatic discharge algorithm |
abstract |
• Electrical power output of power plants is predicted with high accuracy. • Electrostatic discharge algorithm is for the first time used for this aim. • Regular MLPs are compared to ESDA- and ASO-optimized versions. • ESDA-MLP is the most efficient model. • An explicit predictive formula is derived for convenient early prediction. |
abstractGer |
• Electrical power output of power plants is predicted with high accuracy. • Electrostatic discharge algorithm is for the first time used for this aim. • Regular MLPs are compared to ESDA- and ASO-optimized versions. • ESDA-MLP is the most efficient model. • An explicit predictive formula is derived for convenient early prediction. |
abstract_unstemmed |
• Electrical power output of power plants is predicted with high accuracy. • Electrostatic discharge algorithm is for the first time used for this aim. • Regular MLPs are compared to ESDA- and ASO-optimized versions. • ESDA-MLP is the most efficient model. • An explicit predictive formula is derived for convenient early prediction. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA |
title_short |
Predicting electrical power output of combined cycle power plants using a novel artificial neural network optimized by electrostatic discharge algorithm |
url |
https://doi.org/10.1016/j.measurement.2022.111405 |
remote_bool |
true |
author2 |
Kok Foong, Loke |
author2Str |
Kok Foong, Loke |
ppnlink |
ELV008789606 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
doi_str |
10.1016/j.measurement.2022.111405 |
up_date |
2024-07-06T18:23:54.220Z |
_version_ |
1803855052638519296 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV058220690</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625004614.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220808s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.measurement.2022.111405</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001938.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV058220690</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0263-2241(22)00638-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.22</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.07</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhao, Yinghao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Predicting electrical power output of combined cycle power plants using a novel artificial neural network optimized by electrostatic discharge algorithm</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">• Electrical power output of power plants is predicted with high accuracy. • Electrostatic discharge algorithm is for the first time used for this aim. • Regular MLPs are compared to ESDA- and ASO-optimized versions. • ESDA-MLP is the most efficient model. • An explicit predictive formula is derived for convenient early prediction.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Electrostatic discharge algorithm</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Combined cycle power plant</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Electrical power</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Artificial neural network</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kok Foong, Loke</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Kwon, Yeong Min ELSEVIER</subfield><subfield code="t">High-performance and self-calibrating multi-gas sensor interface to trace multiple gas species with sub-ppm level</subfield><subfield code="d">2022</subfield><subfield code="d">journal of the International Measurement Confederation (IMEKO)</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV008789606</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:198</subfield><subfield code="g">year:2022</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.measurement.2022.111405</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.22</subfield><subfield code="j">Sensorik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.07</subfield><subfield code="j">Chemisches Labor</subfield><subfield code="j">chemische Methoden</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">198</subfield><subfield code="j">2022</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
score |
7.401231 |