An RF timer of electrons and photons with the potential to reach picosecond precision
This paper describes a new radio frequency timer of keV energy electrons. It is based on a helical deflector, which performs circular or elliptical sweeps of keV electrons, by means of 500 MHz radio frequency field. By converting a time distribution of incident electrons to a hit position distributi...
Ausführliche Beschreibung
Autor*in: |
Margaryan, Amur [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022transfer abstract |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: The efficacy of EEG-biofeedback for acute pain management, a randomized sham-controlled study of a tailored protocol - Ide, C.V. ELSEVIER, 2017, a journal on accelerators, instrumentation and techniques applied to research in nuclear and atomic physics, materials science and related fields in physics, Amsterdam |
---|---|
Übergeordnetes Werk: |
volume:1038 ; year:2022 ; day:1 ; month:09 ; pages:0 |
Links: |
---|
DOI / URN: |
10.1016/j.nima.2022.166926 |
---|
Katalog-ID: |
ELV058275797 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV058275797 | ||
003 | DE-627 | ||
005 | 20230626050606.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220808s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.nima.2022.166926 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001892.pica |
035 | |a (DE-627)ELV058275797 | ||
035 | |a (ELSEVIER)S0168-9002(22)00374-6 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 610 |q VZ |
084 | |a 44.90 |2 bkl | ||
100 | 1 | |a Margaryan, Amur |e verfasserin |4 aut | |
245 | 1 | 0 | |a An RF timer of electrons and photons with the potential to reach picosecond precision |
264 | 1 | |c 2022transfer abstract | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a This paper describes a new radio frequency timer of keV energy electrons. It is based on a helical deflector, which performs circular or elliptical sweeps of keV electrons, by means of 500 MHz radio frequency field. By converting a time distribution of incident electrons to a hit position distribution on a circle or ellipse, this device achieves extremely precise timing. Streak Cameras, based on similar principles, routinely operate in the ps and sub-ps time domain, but have substantial dead time associated with the readout system. Here, we report a new type of RF timing technique, where the position sensor, consisting of microchannel plates and a delay-line anode, produces ∼ ns duration pulses with small dead time. Measurements made with sub-ps duration laser pulses, synchronized to the radio frequency power, produced a timing resolution of ∼ 10 ps. This ultra-high precision technique has potential applications in a large variety of scientific devices, and in all cases, electrons are timed and detected simultaneously in the same device. | ||
520 | |a This paper describes a new radio frequency timer of keV energy electrons. It is based on a helical deflector, which performs circular or elliptical sweeps of keV electrons, by means of 500 MHz radio frequency field. By converting a time distribution of incident electrons to a hit position distribution on a circle or ellipse, this device achieves extremely precise timing. Streak Cameras, based on similar principles, routinely operate in the ps and sub-ps time domain, but have substantial dead time associated with the readout system. Here, we report a new type of RF timing technique, where the position sensor, consisting of microchannel plates and a delay-line anode, produces ∼ ns duration pulses with small dead time. Measurements made with sub-ps duration laser pulses, synchronized to the radio frequency power, produced a timing resolution of ∼ 10 ps. This ultra-high precision technique has potential applications in a large variety of scientific devices, and in all cases, electrons are timed and detected simultaneously in the same device. | ||
650 | 7 | |a Photon detector |2 Elsevier | |
650 | 7 | |a Timing jitter |2 Elsevier | |
650 | 7 | |a Picosecond |2 Elsevier | |
650 | 7 | |a Radio frequency deflector |2 Elsevier | |
650 | 7 | |a Synchronization |2 Elsevier | |
650 | 7 | |a Microchannel plate |2 Elsevier | |
650 | 7 | |a Mode-locked laser |2 Elsevier | |
700 | 1 | |a Kakoyan, Vanik |4 oth | |
700 | 1 | |a Zhamkochyan, Simon |4 oth | |
700 | 1 | |a Abrahamyan, Sergey |4 oth | |
700 | 1 | |a Elbakyan, Hayk |4 oth | |
700 | 1 | |a Mayilyan, Samvel |4 oth | |
700 | 1 | |a Vardanyan, Henrik |4 oth | |
700 | 1 | |a Zohrabyan, Hamlet |4 oth | |
700 | 1 | |a Gevorgian, Lekdar |4 oth | |
700 | 1 | |a Ayvazyan, Robert |4 oth | |
700 | 1 | |a Papyan, Artashes |4 oth | |
700 | 1 | |a Ayvazyan, Garnik |4 oth | |
700 | 1 | |a Grigoryan, Bagrat |4 oth | |
700 | 1 | |a Annand, John |4 oth | |
700 | 1 | |a Livingston, Kenneth |4 oth | |
700 | 1 | |a Montgomery, Rachel |4 oth | |
700 | 1 | |a Achenbach, Patrick |4 oth | |
700 | 1 | |a Pochodzalla, Josef |4 oth | |
700 | 1 | |a Balabanski, Dimiter L. |4 oth | |
700 | 1 | |a Nakamura, Satoshi N. |4 oth | |
773 | 0 | 8 | |i Enthalten in |n North-Holland Publ. Co |a Ide, C.V. ELSEVIER |t The efficacy of EEG-biofeedback for acute pain management, a randomized sham-controlled study of a tailored protocol |d 2017 |d a journal on accelerators, instrumentation and techniques applied to research in nuclear and atomic physics, materials science and related fields in physics |g Amsterdam |w (DE-627)ELV000874671 |
773 | 1 | 8 | |g volume:1038 |g year:2022 |g day:1 |g month:09 |g pages:0 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.nima.2022.166926 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
936 | b | k | |a 44.90 |j Neurologie |q VZ |
951 | |a AR | ||
952 | |d 1038 |j 2022 |b 1 |c 0901 |h 0 |
author_variant |
a m am |
---|---|
matchkey_str |
margaryanamurkakoyanvanikzhamkochyansimo:2022----:nfieoeetosnpoosihhptniloecp |
hierarchy_sort_str |
2022transfer abstract |
bklnumber |
44.90 |
publishDate |
2022 |
allfields |
10.1016/j.nima.2022.166926 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001892.pica (DE-627)ELV058275797 (ELSEVIER)S0168-9002(22)00374-6 DE-627 ger DE-627 rakwb eng 610 VZ 44.90 bkl Margaryan, Amur verfasserin aut An RF timer of electrons and photons with the potential to reach picosecond precision 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier This paper describes a new radio frequency timer of keV energy electrons. It is based on a helical deflector, which performs circular or elliptical sweeps of keV electrons, by means of 500 MHz radio frequency field. By converting a time distribution of incident electrons to a hit position distribution on a circle or ellipse, this device achieves extremely precise timing. Streak Cameras, based on similar principles, routinely operate in the ps and sub-ps time domain, but have substantial dead time associated with the readout system. Here, we report a new type of RF timing technique, where the position sensor, consisting of microchannel plates and a delay-line anode, produces ∼ ns duration pulses with small dead time. Measurements made with sub-ps duration laser pulses, synchronized to the radio frequency power, produced a timing resolution of ∼ 10 ps. This ultra-high precision technique has potential applications in a large variety of scientific devices, and in all cases, electrons are timed and detected simultaneously in the same device. This paper describes a new radio frequency timer of keV energy electrons. It is based on a helical deflector, which performs circular or elliptical sweeps of keV electrons, by means of 500 MHz radio frequency field. By converting a time distribution of incident electrons to a hit position distribution on a circle or ellipse, this device achieves extremely precise timing. Streak Cameras, based on similar principles, routinely operate in the ps and sub-ps time domain, but have substantial dead time associated with the readout system. Here, we report a new type of RF timing technique, where the position sensor, consisting of microchannel plates and a delay-line anode, produces ∼ ns duration pulses with small dead time. Measurements made with sub-ps duration laser pulses, synchronized to the radio frequency power, produced a timing resolution of ∼ 10 ps. This ultra-high precision technique has potential applications in a large variety of scientific devices, and in all cases, electrons are timed and detected simultaneously in the same device. Photon detector Elsevier Timing jitter Elsevier Picosecond Elsevier Radio frequency deflector Elsevier Synchronization Elsevier Microchannel plate Elsevier Mode-locked laser Elsevier Kakoyan, Vanik oth Zhamkochyan, Simon oth Abrahamyan, Sergey oth Elbakyan, Hayk oth Mayilyan, Samvel oth Vardanyan, Henrik oth Zohrabyan, Hamlet oth Gevorgian, Lekdar oth Ayvazyan, Robert oth Papyan, Artashes oth Ayvazyan, Garnik oth Grigoryan, Bagrat oth Annand, John oth Livingston, Kenneth oth Montgomery, Rachel oth Achenbach, Patrick oth Pochodzalla, Josef oth Balabanski, Dimiter L. oth Nakamura, Satoshi N. oth Enthalten in North-Holland Publ. Co Ide, C.V. ELSEVIER The efficacy of EEG-biofeedback for acute pain management, a randomized sham-controlled study of a tailored protocol 2017 a journal on accelerators, instrumentation and techniques applied to research in nuclear and atomic physics, materials science and related fields in physics Amsterdam (DE-627)ELV000874671 volume:1038 year:2022 day:1 month:09 pages:0 https://doi.org/10.1016/j.nima.2022.166926 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.90 Neurologie VZ AR 1038 2022 1 0901 0 |
spelling |
10.1016/j.nima.2022.166926 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001892.pica (DE-627)ELV058275797 (ELSEVIER)S0168-9002(22)00374-6 DE-627 ger DE-627 rakwb eng 610 VZ 44.90 bkl Margaryan, Amur verfasserin aut An RF timer of electrons and photons with the potential to reach picosecond precision 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier This paper describes a new radio frequency timer of keV energy electrons. It is based on a helical deflector, which performs circular or elliptical sweeps of keV electrons, by means of 500 MHz radio frequency field. By converting a time distribution of incident electrons to a hit position distribution on a circle or ellipse, this device achieves extremely precise timing. Streak Cameras, based on similar principles, routinely operate in the ps and sub-ps time domain, but have substantial dead time associated with the readout system. Here, we report a new type of RF timing technique, where the position sensor, consisting of microchannel plates and a delay-line anode, produces ∼ ns duration pulses with small dead time. Measurements made with sub-ps duration laser pulses, synchronized to the radio frequency power, produced a timing resolution of ∼ 10 ps. This ultra-high precision technique has potential applications in a large variety of scientific devices, and in all cases, electrons are timed and detected simultaneously in the same device. This paper describes a new radio frequency timer of keV energy electrons. It is based on a helical deflector, which performs circular or elliptical sweeps of keV electrons, by means of 500 MHz radio frequency field. By converting a time distribution of incident electrons to a hit position distribution on a circle or ellipse, this device achieves extremely precise timing. Streak Cameras, based on similar principles, routinely operate in the ps and sub-ps time domain, but have substantial dead time associated with the readout system. Here, we report a new type of RF timing technique, where the position sensor, consisting of microchannel plates and a delay-line anode, produces ∼ ns duration pulses with small dead time. Measurements made with sub-ps duration laser pulses, synchronized to the radio frequency power, produced a timing resolution of ∼ 10 ps. This ultra-high precision technique has potential applications in a large variety of scientific devices, and in all cases, electrons are timed and detected simultaneously in the same device. Photon detector Elsevier Timing jitter Elsevier Picosecond Elsevier Radio frequency deflector Elsevier Synchronization Elsevier Microchannel plate Elsevier Mode-locked laser Elsevier Kakoyan, Vanik oth Zhamkochyan, Simon oth Abrahamyan, Sergey oth Elbakyan, Hayk oth Mayilyan, Samvel oth Vardanyan, Henrik oth Zohrabyan, Hamlet oth Gevorgian, Lekdar oth Ayvazyan, Robert oth Papyan, Artashes oth Ayvazyan, Garnik oth Grigoryan, Bagrat oth Annand, John oth Livingston, Kenneth oth Montgomery, Rachel oth Achenbach, Patrick oth Pochodzalla, Josef oth Balabanski, Dimiter L. oth Nakamura, Satoshi N. oth Enthalten in North-Holland Publ. Co Ide, C.V. ELSEVIER The efficacy of EEG-biofeedback for acute pain management, a randomized sham-controlled study of a tailored protocol 2017 a journal on accelerators, instrumentation and techniques applied to research in nuclear and atomic physics, materials science and related fields in physics Amsterdam (DE-627)ELV000874671 volume:1038 year:2022 day:1 month:09 pages:0 https://doi.org/10.1016/j.nima.2022.166926 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.90 Neurologie VZ AR 1038 2022 1 0901 0 |
allfields_unstemmed |
10.1016/j.nima.2022.166926 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001892.pica (DE-627)ELV058275797 (ELSEVIER)S0168-9002(22)00374-6 DE-627 ger DE-627 rakwb eng 610 VZ 44.90 bkl Margaryan, Amur verfasserin aut An RF timer of electrons and photons with the potential to reach picosecond precision 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier This paper describes a new radio frequency timer of keV energy electrons. It is based on a helical deflector, which performs circular or elliptical sweeps of keV electrons, by means of 500 MHz radio frequency field. By converting a time distribution of incident electrons to a hit position distribution on a circle or ellipse, this device achieves extremely precise timing. Streak Cameras, based on similar principles, routinely operate in the ps and sub-ps time domain, but have substantial dead time associated with the readout system. Here, we report a new type of RF timing technique, where the position sensor, consisting of microchannel plates and a delay-line anode, produces ∼ ns duration pulses with small dead time. Measurements made with sub-ps duration laser pulses, synchronized to the radio frequency power, produced a timing resolution of ∼ 10 ps. This ultra-high precision technique has potential applications in a large variety of scientific devices, and in all cases, electrons are timed and detected simultaneously in the same device. This paper describes a new radio frequency timer of keV energy electrons. It is based on a helical deflector, which performs circular or elliptical sweeps of keV electrons, by means of 500 MHz radio frequency field. By converting a time distribution of incident electrons to a hit position distribution on a circle or ellipse, this device achieves extremely precise timing. Streak Cameras, based on similar principles, routinely operate in the ps and sub-ps time domain, but have substantial dead time associated with the readout system. Here, we report a new type of RF timing technique, where the position sensor, consisting of microchannel plates and a delay-line anode, produces ∼ ns duration pulses with small dead time. Measurements made with sub-ps duration laser pulses, synchronized to the radio frequency power, produced a timing resolution of ∼ 10 ps. This ultra-high precision technique has potential applications in a large variety of scientific devices, and in all cases, electrons are timed and detected simultaneously in the same device. Photon detector Elsevier Timing jitter Elsevier Picosecond Elsevier Radio frequency deflector Elsevier Synchronization Elsevier Microchannel plate Elsevier Mode-locked laser Elsevier Kakoyan, Vanik oth Zhamkochyan, Simon oth Abrahamyan, Sergey oth Elbakyan, Hayk oth Mayilyan, Samvel oth Vardanyan, Henrik oth Zohrabyan, Hamlet oth Gevorgian, Lekdar oth Ayvazyan, Robert oth Papyan, Artashes oth Ayvazyan, Garnik oth Grigoryan, Bagrat oth Annand, John oth Livingston, Kenneth oth Montgomery, Rachel oth Achenbach, Patrick oth Pochodzalla, Josef oth Balabanski, Dimiter L. oth Nakamura, Satoshi N. oth Enthalten in North-Holland Publ. Co Ide, C.V. ELSEVIER The efficacy of EEG-biofeedback for acute pain management, a randomized sham-controlled study of a tailored protocol 2017 a journal on accelerators, instrumentation and techniques applied to research in nuclear and atomic physics, materials science and related fields in physics Amsterdam (DE-627)ELV000874671 volume:1038 year:2022 day:1 month:09 pages:0 https://doi.org/10.1016/j.nima.2022.166926 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.90 Neurologie VZ AR 1038 2022 1 0901 0 |
allfieldsGer |
10.1016/j.nima.2022.166926 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001892.pica (DE-627)ELV058275797 (ELSEVIER)S0168-9002(22)00374-6 DE-627 ger DE-627 rakwb eng 610 VZ 44.90 bkl Margaryan, Amur verfasserin aut An RF timer of electrons and photons with the potential to reach picosecond precision 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier This paper describes a new radio frequency timer of keV energy electrons. It is based on a helical deflector, which performs circular or elliptical sweeps of keV electrons, by means of 500 MHz radio frequency field. By converting a time distribution of incident electrons to a hit position distribution on a circle or ellipse, this device achieves extremely precise timing. Streak Cameras, based on similar principles, routinely operate in the ps and sub-ps time domain, but have substantial dead time associated with the readout system. Here, we report a new type of RF timing technique, where the position sensor, consisting of microchannel plates and a delay-line anode, produces ∼ ns duration pulses with small dead time. Measurements made with sub-ps duration laser pulses, synchronized to the radio frequency power, produced a timing resolution of ∼ 10 ps. This ultra-high precision technique has potential applications in a large variety of scientific devices, and in all cases, electrons are timed and detected simultaneously in the same device. This paper describes a new radio frequency timer of keV energy electrons. It is based on a helical deflector, which performs circular or elliptical sweeps of keV electrons, by means of 500 MHz radio frequency field. By converting a time distribution of incident electrons to a hit position distribution on a circle or ellipse, this device achieves extremely precise timing. Streak Cameras, based on similar principles, routinely operate in the ps and sub-ps time domain, but have substantial dead time associated with the readout system. Here, we report a new type of RF timing technique, where the position sensor, consisting of microchannel plates and a delay-line anode, produces ∼ ns duration pulses with small dead time. Measurements made with sub-ps duration laser pulses, synchronized to the radio frequency power, produced a timing resolution of ∼ 10 ps. This ultra-high precision technique has potential applications in a large variety of scientific devices, and in all cases, electrons are timed and detected simultaneously in the same device. Photon detector Elsevier Timing jitter Elsevier Picosecond Elsevier Radio frequency deflector Elsevier Synchronization Elsevier Microchannel plate Elsevier Mode-locked laser Elsevier Kakoyan, Vanik oth Zhamkochyan, Simon oth Abrahamyan, Sergey oth Elbakyan, Hayk oth Mayilyan, Samvel oth Vardanyan, Henrik oth Zohrabyan, Hamlet oth Gevorgian, Lekdar oth Ayvazyan, Robert oth Papyan, Artashes oth Ayvazyan, Garnik oth Grigoryan, Bagrat oth Annand, John oth Livingston, Kenneth oth Montgomery, Rachel oth Achenbach, Patrick oth Pochodzalla, Josef oth Balabanski, Dimiter L. oth Nakamura, Satoshi N. oth Enthalten in North-Holland Publ. Co Ide, C.V. ELSEVIER The efficacy of EEG-biofeedback for acute pain management, a randomized sham-controlled study of a tailored protocol 2017 a journal on accelerators, instrumentation and techniques applied to research in nuclear and atomic physics, materials science and related fields in physics Amsterdam (DE-627)ELV000874671 volume:1038 year:2022 day:1 month:09 pages:0 https://doi.org/10.1016/j.nima.2022.166926 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.90 Neurologie VZ AR 1038 2022 1 0901 0 |
allfieldsSound |
10.1016/j.nima.2022.166926 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001892.pica (DE-627)ELV058275797 (ELSEVIER)S0168-9002(22)00374-6 DE-627 ger DE-627 rakwb eng 610 VZ 44.90 bkl Margaryan, Amur verfasserin aut An RF timer of electrons and photons with the potential to reach picosecond precision 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier This paper describes a new radio frequency timer of keV energy electrons. It is based on a helical deflector, which performs circular or elliptical sweeps of keV electrons, by means of 500 MHz radio frequency field. By converting a time distribution of incident electrons to a hit position distribution on a circle or ellipse, this device achieves extremely precise timing. Streak Cameras, based on similar principles, routinely operate in the ps and sub-ps time domain, but have substantial dead time associated with the readout system. Here, we report a new type of RF timing technique, where the position sensor, consisting of microchannel plates and a delay-line anode, produces ∼ ns duration pulses with small dead time. Measurements made with sub-ps duration laser pulses, synchronized to the radio frequency power, produced a timing resolution of ∼ 10 ps. This ultra-high precision technique has potential applications in a large variety of scientific devices, and in all cases, electrons are timed and detected simultaneously in the same device. This paper describes a new radio frequency timer of keV energy electrons. It is based on a helical deflector, which performs circular or elliptical sweeps of keV electrons, by means of 500 MHz radio frequency field. By converting a time distribution of incident electrons to a hit position distribution on a circle or ellipse, this device achieves extremely precise timing. Streak Cameras, based on similar principles, routinely operate in the ps and sub-ps time domain, but have substantial dead time associated with the readout system. Here, we report a new type of RF timing technique, where the position sensor, consisting of microchannel plates and a delay-line anode, produces ∼ ns duration pulses with small dead time. Measurements made with sub-ps duration laser pulses, synchronized to the radio frequency power, produced a timing resolution of ∼ 10 ps. This ultra-high precision technique has potential applications in a large variety of scientific devices, and in all cases, electrons are timed and detected simultaneously in the same device. Photon detector Elsevier Timing jitter Elsevier Picosecond Elsevier Radio frequency deflector Elsevier Synchronization Elsevier Microchannel plate Elsevier Mode-locked laser Elsevier Kakoyan, Vanik oth Zhamkochyan, Simon oth Abrahamyan, Sergey oth Elbakyan, Hayk oth Mayilyan, Samvel oth Vardanyan, Henrik oth Zohrabyan, Hamlet oth Gevorgian, Lekdar oth Ayvazyan, Robert oth Papyan, Artashes oth Ayvazyan, Garnik oth Grigoryan, Bagrat oth Annand, John oth Livingston, Kenneth oth Montgomery, Rachel oth Achenbach, Patrick oth Pochodzalla, Josef oth Balabanski, Dimiter L. oth Nakamura, Satoshi N. oth Enthalten in North-Holland Publ. Co Ide, C.V. ELSEVIER The efficacy of EEG-biofeedback for acute pain management, a randomized sham-controlled study of a tailored protocol 2017 a journal on accelerators, instrumentation and techniques applied to research in nuclear and atomic physics, materials science and related fields in physics Amsterdam (DE-627)ELV000874671 volume:1038 year:2022 day:1 month:09 pages:0 https://doi.org/10.1016/j.nima.2022.166926 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.90 Neurologie VZ AR 1038 2022 1 0901 0 |
language |
English |
source |
Enthalten in The efficacy of EEG-biofeedback for acute pain management, a randomized sham-controlled study of a tailored protocol Amsterdam volume:1038 year:2022 day:1 month:09 pages:0 |
sourceStr |
Enthalten in The efficacy of EEG-biofeedback for acute pain management, a randomized sham-controlled study of a tailored protocol Amsterdam volume:1038 year:2022 day:1 month:09 pages:0 |
format_phy_str_mv |
Article |
bklname |
Neurologie |
institution |
findex.gbv.de |
topic_facet |
Photon detector Timing jitter Picosecond Radio frequency deflector Synchronization Microchannel plate Mode-locked laser |
dewey-raw |
610 |
isfreeaccess_bool |
false |
container_title |
The efficacy of EEG-biofeedback for acute pain management, a randomized sham-controlled study of a tailored protocol |
authorswithroles_txt_mv |
Margaryan, Amur @@aut@@ Kakoyan, Vanik @@oth@@ Zhamkochyan, Simon @@oth@@ Abrahamyan, Sergey @@oth@@ Elbakyan, Hayk @@oth@@ Mayilyan, Samvel @@oth@@ Vardanyan, Henrik @@oth@@ Zohrabyan, Hamlet @@oth@@ Gevorgian, Lekdar @@oth@@ Ayvazyan, Robert @@oth@@ Papyan, Artashes @@oth@@ Ayvazyan, Garnik @@oth@@ Grigoryan, Bagrat @@oth@@ Annand, John @@oth@@ Livingston, Kenneth @@oth@@ Montgomery, Rachel @@oth@@ Achenbach, Patrick @@oth@@ Pochodzalla, Josef @@oth@@ Balabanski, Dimiter L. @@oth@@ Nakamura, Satoshi N. @@oth@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
ELV000874671 |
dewey-sort |
3610 |
id |
ELV058275797 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV058275797</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626050606.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220808s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.nima.2022.166926</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001892.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV058275797</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0168-9002(22)00374-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.90</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Margaryan, Amur</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An RF timer of electrons and photons with the potential to reach picosecond precision</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper describes a new radio frequency timer of keV energy electrons. It is based on a helical deflector, which performs circular or elliptical sweeps of keV electrons, by means of 500 MHz radio frequency field. By converting a time distribution of incident electrons to a hit position distribution on a circle or ellipse, this device achieves extremely precise timing. Streak Cameras, based on similar principles, routinely operate in the ps and sub-ps time domain, but have substantial dead time associated with the readout system. Here, we report a new type of RF timing technique, where the position sensor, consisting of microchannel plates and a delay-line anode, produces ∼ ns duration pulses with small dead time. Measurements made with sub-ps duration laser pulses, synchronized to the radio frequency power, produced a timing resolution of ∼ 10 ps. This ultra-high precision technique has potential applications in a large variety of scientific devices, and in all cases, electrons are timed and detected simultaneously in the same device.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper describes a new radio frequency timer of keV energy electrons. It is based on a helical deflector, which performs circular or elliptical sweeps of keV electrons, by means of 500 MHz radio frequency field. By converting a time distribution of incident electrons to a hit position distribution on a circle or ellipse, this device achieves extremely precise timing. Streak Cameras, based on similar principles, routinely operate in the ps and sub-ps time domain, but have substantial dead time associated with the readout system. Here, we report a new type of RF timing technique, where the position sensor, consisting of microchannel plates and a delay-line anode, produces ∼ ns duration pulses with small dead time. Measurements made with sub-ps duration laser pulses, synchronized to the radio frequency power, produced a timing resolution of ∼ 10 ps. This ultra-high precision technique has potential applications in a large variety of scientific devices, and in all cases, electrons are timed and detected simultaneously in the same device.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Photon detector</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Timing jitter</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Picosecond</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Radio frequency deflector</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Synchronization</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Microchannel plate</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mode-locked laser</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kakoyan, Vanik</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhamkochyan, Simon</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Abrahamyan, Sergey</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Elbakyan, Hayk</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mayilyan, Samvel</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vardanyan, Henrik</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zohrabyan, Hamlet</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gevorgian, Lekdar</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ayvazyan, Robert</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Papyan, Artashes</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ayvazyan, Garnik</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Grigoryan, Bagrat</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Annand, John</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Livingston, Kenneth</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Montgomery, Rachel</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Achenbach, Patrick</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pochodzalla, Josef</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Balabanski, Dimiter L.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nakamura, Satoshi N.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">North-Holland Publ. Co</subfield><subfield code="a">Ide, C.V. ELSEVIER</subfield><subfield code="t">The efficacy of EEG-biofeedback for acute pain management, a randomized sham-controlled study of a tailored protocol</subfield><subfield code="d">2017</subfield><subfield code="d">a journal on accelerators, instrumentation and techniques applied to research in nuclear and atomic physics, materials science and related fields in physics</subfield><subfield code="g">Amsterdam</subfield><subfield code="w">(DE-627)ELV000874671</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:1038</subfield><subfield code="g">year:2022</subfield><subfield code="g">day:1</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.nima.2022.166926</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.90</subfield><subfield code="j">Neurologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">1038</subfield><subfield code="j">2022</subfield><subfield code="b">1</subfield><subfield code="c">0901</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
author |
Margaryan, Amur |
spellingShingle |
Margaryan, Amur ddc 610 bkl 44.90 Elsevier Photon detector Elsevier Timing jitter Elsevier Picosecond Elsevier Radio frequency deflector Elsevier Synchronization Elsevier Microchannel plate Elsevier Mode-locked laser An RF timer of electrons and photons with the potential to reach picosecond precision |
authorStr |
Margaryan, Amur |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV000874671 |
format |
electronic Article |
dewey-ones |
610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
610 VZ 44.90 bkl An RF timer of electrons and photons with the potential to reach picosecond precision Photon detector Elsevier Timing jitter Elsevier Picosecond Elsevier Radio frequency deflector Elsevier Synchronization Elsevier Microchannel plate Elsevier Mode-locked laser Elsevier |
topic |
ddc 610 bkl 44.90 Elsevier Photon detector Elsevier Timing jitter Elsevier Picosecond Elsevier Radio frequency deflector Elsevier Synchronization Elsevier Microchannel plate Elsevier Mode-locked laser |
topic_unstemmed |
ddc 610 bkl 44.90 Elsevier Photon detector Elsevier Timing jitter Elsevier Picosecond Elsevier Radio frequency deflector Elsevier Synchronization Elsevier Microchannel plate Elsevier Mode-locked laser |
topic_browse |
ddc 610 bkl 44.90 Elsevier Photon detector Elsevier Timing jitter Elsevier Picosecond Elsevier Radio frequency deflector Elsevier Synchronization Elsevier Microchannel plate Elsevier Mode-locked laser |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
v k vk s z sz s a sa h e he s m sm h v hv h z hz l g lg r a ra a p ap g a ga b g bg j a ja k l kl r m rm p a pa j p jp d l b dl dlb s n n sn snn |
hierarchy_parent_title |
The efficacy of EEG-biofeedback for acute pain management, a randomized sham-controlled study of a tailored protocol |
hierarchy_parent_id |
ELV000874671 |
dewey-tens |
610 - Medicine & health |
hierarchy_top_title |
The efficacy of EEG-biofeedback for acute pain management, a randomized sham-controlled study of a tailored protocol |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV000874671 |
title |
An RF timer of electrons and photons with the potential to reach picosecond precision |
ctrlnum |
(DE-627)ELV058275797 (ELSEVIER)S0168-9002(22)00374-6 |
title_full |
An RF timer of electrons and photons with the potential to reach picosecond precision |
author_sort |
Margaryan, Amur |
journal |
The efficacy of EEG-biofeedback for acute pain management, a randomized sham-controlled study of a tailored protocol |
journalStr |
The efficacy of EEG-biofeedback for acute pain management, a randomized sham-controlled study of a tailored protocol |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
zzz |
container_start_page |
0 |
author_browse |
Margaryan, Amur |
container_volume |
1038 |
class |
610 VZ 44.90 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Margaryan, Amur |
doi_str_mv |
10.1016/j.nima.2022.166926 |
dewey-full |
610 |
title_sort |
an rf timer of electrons and photons with the potential to reach picosecond precision |
title_auth |
An RF timer of electrons and photons with the potential to reach picosecond precision |
abstract |
This paper describes a new radio frequency timer of keV energy electrons. It is based on a helical deflector, which performs circular or elliptical sweeps of keV electrons, by means of 500 MHz radio frequency field. By converting a time distribution of incident electrons to a hit position distribution on a circle or ellipse, this device achieves extremely precise timing. Streak Cameras, based on similar principles, routinely operate in the ps and sub-ps time domain, but have substantial dead time associated with the readout system. Here, we report a new type of RF timing technique, where the position sensor, consisting of microchannel plates and a delay-line anode, produces ∼ ns duration pulses with small dead time. Measurements made with sub-ps duration laser pulses, synchronized to the radio frequency power, produced a timing resolution of ∼ 10 ps. This ultra-high precision technique has potential applications in a large variety of scientific devices, and in all cases, electrons are timed and detected simultaneously in the same device. |
abstractGer |
This paper describes a new radio frequency timer of keV energy electrons. It is based on a helical deflector, which performs circular or elliptical sweeps of keV electrons, by means of 500 MHz radio frequency field. By converting a time distribution of incident electrons to a hit position distribution on a circle or ellipse, this device achieves extremely precise timing. Streak Cameras, based on similar principles, routinely operate in the ps and sub-ps time domain, but have substantial dead time associated with the readout system. Here, we report a new type of RF timing technique, where the position sensor, consisting of microchannel plates and a delay-line anode, produces ∼ ns duration pulses with small dead time. Measurements made with sub-ps duration laser pulses, synchronized to the radio frequency power, produced a timing resolution of ∼ 10 ps. This ultra-high precision technique has potential applications in a large variety of scientific devices, and in all cases, electrons are timed and detected simultaneously in the same device. |
abstract_unstemmed |
This paper describes a new radio frequency timer of keV energy electrons. It is based on a helical deflector, which performs circular or elliptical sweeps of keV electrons, by means of 500 MHz radio frequency field. By converting a time distribution of incident electrons to a hit position distribution on a circle or ellipse, this device achieves extremely precise timing. Streak Cameras, based on similar principles, routinely operate in the ps and sub-ps time domain, but have substantial dead time associated with the readout system. Here, we report a new type of RF timing technique, where the position sensor, consisting of microchannel plates and a delay-line anode, produces ∼ ns duration pulses with small dead time. Measurements made with sub-ps duration laser pulses, synchronized to the radio frequency power, produced a timing resolution of ∼ 10 ps. This ultra-high precision technique has potential applications in a large variety of scientific devices, and in all cases, electrons are timed and detected simultaneously in the same device. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA |
title_short |
An RF timer of electrons and photons with the potential to reach picosecond precision |
url |
https://doi.org/10.1016/j.nima.2022.166926 |
remote_bool |
true |
author2 |
Kakoyan, Vanik Zhamkochyan, Simon Abrahamyan, Sergey Elbakyan, Hayk Mayilyan, Samvel Vardanyan, Henrik Zohrabyan, Hamlet Gevorgian, Lekdar Ayvazyan, Robert Papyan, Artashes Ayvazyan, Garnik Grigoryan, Bagrat Annand, John Livingston, Kenneth Montgomery, Rachel Achenbach, Patrick Pochodzalla, Josef Balabanski, Dimiter L. Nakamura, Satoshi N. |
author2Str |
Kakoyan, Vanik Zhamkochyan, Simon Abrahamyan, Sergey Elbakyan, Hayk Mayilyan, Samvel Vardanyan, Henrik Zohrabyan, Hamlet Gevorgian, Lekdar Ayvazyan, Robert Papyan, Artashes Ayvazyan, Garnik Grigoryan, Bagrat Annand, John Livingston, Kenneth Montgomery, Rachel Achenbach, Patrick Pochodzalla, Josef Balabanski, Dimiter L. Nakamura, Satoshi N. |
ppnlink |
ELV000874671 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth oth oth oth oth oth oth oth oth oth oth oth oth oth |
doi_str |
10.1016/j.nima.2022.166926 |
up_date |
2024-07-06T18:33:11.803Z |
_version_ |
1803855637306671104 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV058275797</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626050606.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220808s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.nima.2022.166926</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001892.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV058275797</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0168-9002(22)00374-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.90</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Margaryan, Amur</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An RF timer of electrons and photons with the potential to reach picosecond precision</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper describes a new radio frequency timer of keV energy electrons. It is based on a helical deflector, which performs circular or elliptical sweeps of keV electrons, by means of 500 MHz radio frequency field. By converting a time distribution of incident electrons to a hit position distribution on a circle or ellipse, this device achieves extremely precise timing. Streak Cameras, based on similar principles, routinely operate in the ps and sub-ps time domain, but have substantial dead time associated with the readout system. Here, we report a new type of RF timing technique, where the position sensor, consisting of microchannel plates and a delay-line anode, produces ∼ ns duration pulses with small dead time. Measurements made with sub-ps duration laser pulses, synchronized to the radio frequency power, produced a timing resolution of ∼ 10 ps. This ultra-high precision technique has potential applications in a large variety of scientific devices, and in all cases, electrons are timed and detected simultaneously in the same device.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper describes a new radio frequency timer of keV energy electrons. It is based on a helical deflector, which performs circular or elliptical sweeps of keV electrons, by means of 500 MHz radio frequency field. By converting a time distribution of incident electrons to a hit position distribution on a circle or ellipse, this device achieves extremely precise timing. Streak Cameras, based on similar principles, routinely operate in the ps and sub-ps time domain, but have substantial dead time associated with the readout system. Here, we report a new type of RF timing technique, where the position sensor, consisting of microchannel plates and a delay-line anode, produces ∼ ns duration pulses with small dead time. Measurements made with sub-ps duration laser pulses, synchronized to the radio frequency power, produced a timing resolution of ∼ 10 ps. This ultra-high precision technique has potential applications in a large variety of scientific devices, and in all cases, electrons are timed and detected simultaneously in the same device.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Photon detector</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Timing jitter</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Picosecond</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Radio frequency deflector</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Synchronization</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Microchannel plate</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mode-locked laser</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kakoyan, Vanik</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhamkochyan, Simon</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Abrahamyan, Sergey</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Elbakyan, Hayk</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mayilyan, Samvel</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vardanyan, Henrik</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zohrabyan, Hamlet</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gevorgian, Lekdar</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ayvazyan, Robert</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Papyan, Artashes</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ayvazyan, Garnik</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Grigoryan, Bagrat</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Annand, John</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Livingston, Kenneth</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Montgomery, Rachel</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Achenbach, Patrick</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pochodzalla, Josef</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Balabanski, Dimiter L.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nakamura, Satoshi N.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">North-Holland Publ. Co</subfield><subfield code="a">Ide, C.V. ELSEVIER</subfield><subfield code="t">The efficacy of EEG-biofeedback for acute pain management, a randomized sham-controlled study of a tailored protocol</subfield><subfield code="d">2017</subfield><subfield code="d">a journal on accelerators, instrumentation and techniques applied to research in nuclear and atomic physics, materials science and related fields in physics</subfield><subfield code="g">Amsterdam</subfield><subfield code="w">(DE-627)ELV000874671</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:1038</subfield><subfield code="g">year:2022</subfield><subfield code="g">day:1</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.nima.2022.166926</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.90</subfield><subfield code="j">Neurologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">1038</subfield><subfield code="j">2022</subfield><subfield code="b">1</subfield><subfield code="c">0901</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
score |
7.4006987 |