Plasma metal concentrations and their interactions with genetic susceptibility on homocysteine levels
Limited studies have evaluated the associations of multiple metal exposures with homocysteine (Hcy) levels, which were independent risk factor for cardiovascular disease (CVD). Furthermore, the interactions between genetic variants and plasma metals in relation to Hcy levels were largely unknown. We...
Ausführliche Beschreibung
Autor*in: |
Long, Pinpin [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022transfer abstract |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Erysipelas, the “Other” Cellulitis: A Practical Guide for Nurse Practitioners - Fetters, Lisa ELSEVIER, 2021, EES : official journal of the International Society of Ecotoxicology and Environmental safety, Amsterdam |
---|---|
Übergeordnetes Werk: |
volume:241 ; year:2022 ; pages:0 |
Links: |
---|
DOI / URN: |
10.1016/j.ecoenv.2022.113705 |
---|
Katalog-ID: |
ELV058340432 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV058340432 | ||
003 | DE-627 | ||
005 | 20230626050702.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220808s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ecoenv.2022.113705 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001889.pica |
035 | |a (DE-627)ELV058340432 | ||
035 | |a (ELSEVIER)S0147-6513(22)00545-0 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 610 |q VZ |
084 | |a 44.63 |2 bkl | ||
100 | 1 | |a Long, Pinpin |e verfasserin |4 aut | |
245 | 1 | 0 | |a Plasma metal concentrations and their interactions with genetic susceptibility on homocysteine levels |
264 | 1 | |c 2022transfer abstract | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Limited studies have evaluated the associations of multiple metal exposures with homocysteine (Hcy) levels, which were independent risk factor for cardiovascular disease (CVD). Furthermore, the interactions between genetic variants and plasma metals in relation to Hcy levels were largely unknown. We aimed to explore the associations of multiple plasma metals (including metalloids arsenic [As] and selenium [Se]) with Hcy levels and whether their associations were modified by genetic susceptibility. We included 2989 participants from the baseline of the Dongfeng-Tongji cohort (DFTJ cohort) and conducted a cross-sectional study to explore the associations of 17 plasma metals with serum Hcy levels. Both multi-variable linear regression model (single-metal model) and LASSO penalized regression model (multiple-metal model) were used to identify the Hcy-associated metals. The weighted genetic risk score (GRS) was calculated based on 18 established Hcy-associated genetic variants. For metals that were associated with Hcy, we further assessed the gene-metal interactions on Hcy levels. Among 17 metals, plasma molybdenum (Mo), strontium (Sr), and Zinc (Zn) were positively associated with Hcy levels, whereas Se was inversely associated with Hcy levels in both single- and multiple-metal models. We also observed that the genetic predisposition to Hcy significantly modified the association between plasma Se and serum Hcy levels (P for interaction = 0.003), while no significant gene-metal interactions were found for Mo, Sr, and Zn (all P for interactions > 0.05). These findings provide novel insight into the associations of the plasma concentrations of Mo, Se, Sr and Zn with Hcy levels and address the importance of Se as a potential upstream modifiable factor for the personalized prevention of elevated Hcy levels and CVD. | ||
520 | |a Limited studies have evaluated the associations of multiple metal exposures with homocysteine (Hcy) levels, which were independent risk factor for cardiovascular disease (CVD). Furthermore, the interactions between genetic variants and plasma metals in relation to Hcy levels were largely unknown. We aimed to explore the associations of multiple plasma metals (including metalloids arsenic [As] and selenium [Se]) with Hcy levels and whether their associations were modified by genetic susceptibility. We included 2989 participants from the baseline of the Dongfeng-Tongji cohort (DFTJ cohort) and conducted a cross-sectional study to explore the associations of 17 plasma metals with serum Hcy levels. Both multi-variable linear regression model (single-metal model) and LASSO penalized regression model (multiple-metal model) were used to identify the Hcy-associated metals. The weighted genetic risk score (GRS) was calculated based on 18 established Hcy-associated genetic variants. For metals that were associated with Hcy, we further assessed the gene-metal interactions on Hcy levels. Among 17 metals, plasma molybdenum (Mo), strontium (Sr), and Zinc (Zn) were positively associated with Hcy levels, whereas Se was inversely associated with Hcy levels in both single- and multiple-metal models. We also observed that the genetic predisposition to Hcy significantly modified the association between plasma Se and serum Hcy levels (P for interaction = 0.003), while no significant gene-metal interactions were found for Mo, Sr, and Zn (all P for interactions > 0.05). These findings provide novel insight into the associations of the plasma concentrations of Mo, Se, Sr and Zn with Hcy levels and address the importance of Se as a potential upstream modifiable factor for the personalized prevention of elevated Hcy levels and CVD. | ||
650 | 7 | |a Cd |2 Elsevier | |
650 | 7 | |a GWAS |2 Elsevier | |
650 | 7 | |a MTR |2 Elsevier | |
650 | 7 | |a Co |2 Elsevier | |
650 | 7 | |a Cr |2 Elsevier | |
650 | 7 | |a HDL-C |2 Elsevier | |
650 | 7 | |a DNMT |2 Elsevier | |
650 | 7 | |a Cu |2 Elsevier | |
650 | 7 | |a Pb |2 Elsevier | |
650 | 7 | |a Ti |2 Elsevier | |
650 | 7 | |a HWE |2 Elsevier | |
650 | 7 | |a Tl |2 Elsevier | |
650 | 7 | |a LOD |2 Elsevier | |
650 | 7 | |a HNF1A |2 Elsevier | |
650 | 7 | |a IQR |2 Elsevier | |
650 | 7 | |a PCA |2 Elsevier | |
650 | 7 | |a CVD |2 Elsevier | |
650 | 7 | |a RCTs |2 Elsevier | |
650 | 7 | |a DPEP1 |2 Elsevier | |
650 | 7 | |a ICP-MS |2 Elsevier | |
650 | 7 | |a SAH |2 Elsevier | |
650 | 7 | |a SAM |2 Elsevier | |
650 | 7 | |a Hcy |2 Elsevier | |
650 | 7 | |a Mn |2 Elsevier | |
650 | 7 | |a Mo |2 Elsevier | |
650 | 7 | |a GRS |2 Elsevier | |
650 | 7 | |a Al |2 Elsevier | |
650 | 7 | |a Rb |2 Elsevier | |
650 | 7 | |a SD |2 Elsevier | |
650 | 7 | |a As |2 Elsevier | |
650 | 7 | |a SNP |2 Elsevier | |
650 | 7 | |a Zn |2 Elsevier | |
650 | 7 | |a CBS |2 Elsevier | |
650 | 7 | |a U |2 Elsevier | |
650 | 7 | |a V |2 Elsevier | |
650 | 7 | |a W |2 Elsevier | |
650 | 7 | |a DMC |2 Elsevier | |
650 | 7 | |a Ni |2 Elsevier | |
650 | 7 | |a GSH |2 Elsevier | |
650 | 7 | |a Ba |2 Elsevier | |
650 | 7 | |a BMI |2 Elsevier | |
650 | 7 | |a Fe |2 Elsevier | |
650 | 7 | |a NDNS |2 Elsevier | |
650 | 7 | |a eGFR |2 Elsevier | |
650 | 7 | |a CVs |2 Elsevier | |
650 | 7 | |a VB12 |2 Elsevier | |
650 | 7 | |a CI |2 Elsevier | |
650 | 7 | |a ECG |2 Elsevier | |
650 | 7 | |a MTHFR |2 Elsevier | |
650 | 7 | |a Sb |2 Elsevier | |
650 | 7 | |a Se |2 Elsevier | |
650 | 7 | |a DFTJ cohort |2 Elsevier | |
650 | 7 | |a NOX4 |2 Elsevier | |
650 | 7 | |a Sn |2 Elsevier | |
650 | 7 | |a CHD |2 Elsevier | |
650 | 7 | |a Sr |2 Elsevier | |
700 | 1 | |a Wang, Hao |4 oth | |
700 | 1 | |a Zhang, Zirui |4 oth | |
700 | 1 | |a Li, Wending |4 oth | |
700 | 1 | |a Zhang, Yizhi |4 oth | |
700 | 1 | |a He, Shiqi |4 oth | |
700 | 1 | |a Yu, Kuai |4 oth | |
700 | 1 | |a Jiang, Haijing |4 oth | |
700 | 1 | |a Liu, Xuezhen |4 oth | |
700 | 1 | |a Guo, Huan |4 oth | |
700 | 1 | |a He, Meian |4 oth | |
700 | 1 | |a Zhang, Xiaomin |4 oth | |
700 | 1 | |a Wu, Tangchun |4 oth | |
700 | 1 | |a Yuan, Yu |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Fetters, Lisa ELSEVIER |t Erysipelas, the “Other” Cellulitis: A Practical Guide for Nurse Practitioners |d 2021 |d EES : official journal of the International Society of Ecotoxicology and Environmental safety |g Amsterdam |w (DE-627)ELV006765629 |
773 | 1 | 8 | |g volume:241 |g year:2022 |g pages:0 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.ecoenv.2022.113705 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
936 | b | k | |a 44.63 |j Krankenpflege |q VZ |
951 | |a AR | ||
952 | |d 241 |j 2022 |h 0 |
author_variant |
p l pl |
---|---|
matchkey_str |
longpinpinwanghaozhangziruiliwendingzhan:2022----:lsaeacnetainadhiitrcinwtgntcucpii |
hierarchy_sort_str |
2022transfer abstract |
bklnumber |
44.63 |
publishDate |
2022 |
allfields |
10.1016/j.ecoenv.2022.113705 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001889.pica (DE-627)ELV058340432 (ELSEVIER)S0147-6513(22)00545-0 DE-627 ger DE-627 rakwb eng 610 VZ 44.63 bkl Long, Pinpin verfasserin aut Plasma metal concentrations and their interactions with genetic susceptibility on homocysteine levels 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Limited studies have evaluated the associations of multiple metal exposures with homocysteine (Hcy) levels, which were independent risk factor for cardiovascular disease (CVD). Furthermore, the interactions between genetic variants and plasma metals in relation to Hcy levels were largely unknown. We aimed to explore the associations of multiple plasma metals (including metalloids arsenic [As] and selenium [Se]) with Hcy levels and whether their associations were modified by genetic susceptibility. We included 2989 participants from the baseline of the Dongfeng-Tongji cohort (DFTJ cohort) and conducted a cross-sectional study to explore the associations of 17 plasma metals with serum Hcy levels. Both multi-variable linear regression model (single-metal model) and LASSO penalized regression model (multiple-metal model) were used to identify the Hcy-associated metals. The weighted genetic risk score (GRS) was calculated based on 18 established Hcy-associated genetic variants. For metals that were associated with Hcy, we further assessed the gene-metal interactions on Hcy levels. Among 17 metals, plasma molybdenum (Mo), strontium (Sr), and Zinc (Zn) were positively associated with Hcy levels, whereas Se was inversely associated with Hcy levels in both single- and multiple-metal models. We also observed that the genetic predisposition to Hcy significantly modified the association between plasma Se and serum Hcy levels (P for interaction = 0.003), while no significant gene-metal interactions were found for Mo, Sr, and Zn (all P for interactions > 0.05). These findings provide novel insight into the associations of the plasma concentrations of Mo, Se, Sr and Zn with Hcy levels and address the importance of Se as a potential upstream modifiable factor for the personalized prevention of elevated Hcy levels and CVD. Limited studies have evaluated the associations of multiple metal exposures with homocysteine (Hcy) levels, which were independent risk factor for cardiovascular disease (CVD). Furthermore, the interactions between genetic variants and plasma metals in relation to Hcy levels were largely unknown. We aimed to explore the associations of multiple plasma metals (including metalloids arsenic [As] and selenium [Se]) with Hcy levels and whether their associations were modified by genetic susceptibility. We included 2989 participants from the baseline of the Dongfeng-Tongji cohort (DFTJ cohort) and conducted a cross-sectional study to explore the associations of 17 plasma metals with serum Hcy levels. Both multi-variable linear regression model (single-metal model) and LASSO penalized regression model (multiple-metal model) were used to identify the Hcy-associated metals. The weighted genetic risk score (GRS) was calculated based on 18 established Hcy-associated genetic variants. For metals that were associated with Hcy, we further assessed the gene-metal interactions on Hcy levels. Among 17 metals, plasma molybdenum (Mo), strontium (Sr), and Zinc (Zn) were positively associated with Hcy levels, whereas Se was inversely associated with Hcy levels in both single- and multiple-metal models. We also observed that the genetic predisposition to Hcy significantly modified the association between plasma Se and serum Hcy levels (P for interaction = 0.003), while no significant gene-metal interactions were found for Mo, Sr, and Zn (all P for interactions > 0.05). These findings provide novel insight into the associations of the plasma concentrations of Mo, Se, Sr and Zn with Hcy levels and address the importance of Se as a potential upstream modifiable factor for the personalized prevention of elevated Hcy levels and CVD. Cd Elsevier GWAS Elsevier MTR Elsevier Co Elsevier Cr Elsevier HDL-C Elsevier DNMT Elsevier Cu Elsevier Pb Elsevier Ti Elsevier HWE Elsevier Tl Elsevier LOD Elsevier HNF1A Elsevier IQR Elsevier PCA Elsevier CVD Elsevier RCTs Elsevier DPEP1 Elsevier ICP-MS Elsevier SAH Elsevier SAM Elsevier Hcy Elsevier Mn Elsevier Mo Elsevier GRS Elsevier Al Elsevier Rb Elsevier SD Elsevier As Elsevier SNP Elsevier Zn Elsevier CBS Elsevier U Elsevier V Elsevier W Elsevier DMC Elsevier Ni Elsevier GSH Elsevier Ba Elsevier BMI Elsevier Fe Elsevier NDNS Elsevier eGFR Elsevier CVs Elsevier VB12 Elsevier CI Elsevier ECG Elsevier MTHFR Elsevier Sb Elsevier Se Elsevier DFTJ cohort Elsevier NOX4 Elsevier Sn Elsevier CHD Elsevier Sr Elsevier Wang, Hao oth Zhang, Zirui oth Li, Wending oth Zhang, Yizhi oth He, Shiqi oth Yu, Kuai oth Jiang, Haijing oth Liu, Xuezhen oth Guo, Huan oth He, Meian oth Zhang, Xiaomin oth Wu, Tangchun oth Yuan, Yu oth Enthalten in Elsevier Fetters, Lisa ELSEVIER Erysipelas, the “Other” Cellulitis: A Practical Guide for Nurse Practitioners 2021 EES : official journal of the International Society of Ecotoxicology and Environmental safety Amsterdam (DE-627)ELV006765629 volume:241 year:2022 pages:0 https://doi.org/10.1016/j.ecoenv.2022.113705 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 44.63 Krankenpflege VZ AR 241 2022 0 |
spelling |
10.1016/j.ecoenv.2022.113705 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001889.pica (DE-627)ELV058340432 (ELSEVIER)S0147-6513(22)00545-0 DE-627 ger DE-627 rakwb eng 610 VZ 44.63 bkl Long, Pinpin verfasserin aut Plasma metal concentrations and their interactions with genetic susceptibility on homocysteine levels 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Limited studies have evaluated the associations of multiple metal exposures with homocysteine (Hcy) levels, which were independent risk factor for cardiovascular disease (CVD). Furthermore, the interactions between genetic variants and plasma metals in relation to Hcy levels were largely unknown. We aimed to explore the associations of multiple plasma metals (including metalloids arsenic [As] and selenium [Se]) with Hcy levels and whether their associations were modified by genetic susceptibility. We included 2989 participants from the baseline of the Dongfeng-Tongji cohort (DFTJ cohort) and conducted a cross-sectional study to explore the associations of 17 plasma metals with serum Hcy levels. Both multi-variable linear regression model (single-metal model) and LASSO penalized regression model (multiple-metal model) were used to identify the Hcy-associated metals. The weighted genetic risk score (GRS) was calculated based on 18 established Hcy-associated genetic variants. For metals that were associated with Hcy, we further assessed the gene-metal interactions on Hcy levels. Among 17 metals, plasma molybdenum (Mo), strontium (Sr), and Zinc (Zn) were positively associated with Hcy levels, whereas Se was inversely associated with Hcy levels in both single- and multiple-metal models. We also observed that the genetic predisposition to Hcy significantly modified the association between plasma Se and serum Hcy levels (P for interaction = 0.003), while no significant gene-metal interactions were found for Mo, Sr, and Zn (all P for interactions > 0.05). These findings provide novel insight into the associations of the plasma concentrations of Mo, Se, Sr and Zn with Hcy levels and address the importance of Se as a potential upstream modifiable factor for the personalized prevention of elevated Hcy levels and CVD. Limited studies have evaluated the associations of multiple metal exposures with homocysteine (Hcy) levels, which were independent risk factor for cardiovascular disease (CVD). Furthermore, the interactions between genetic variants and plasma metals in relation to Hcy levels were largely unknown. We aimed to explore the associations of multiple plasma metals (including metalloids arsenic [As] and selenium [Se]) with Hcy levels and whether their associations were modified by genetic susceptibility. We included 2989 participants from the baseline of the Dongfeng-Tongji cohort (DFTJ cohort) and conducted a cross-sectional study to explore the associations of 17 plasma metals with serum Hcy levels. Both multi-variable linear regression model (single-metal model) and LASSO penalized regression model (multiple-metal model) were used to identify the Hcy-associated metals. The weighted genetic risk score (GRS) was calculated based on 18 established Hcy-associated genetic variants. For metals that were associated with Hcy, we further assessed the gene-metal interactions on Hcy levels. Among 17 metals, plasma molybdenum (Mo), strontium (Sr), and Zinc (Zn) were positively associated with Hcy levels, whereas Se was inversely associated with Hcy levels in both single- and multiple-metal models. We also observed that the genetic predisposition to Hcy significantly modified the association between plasma Se and serum Hcy levels (P for interaction = 0.003), while no significant gene-metal interactions were found for Mo, Sr, and Zn (all P for interactions > 0.05). These findings provide novel insight into the associations of the plasma concentrations of Mo, Se, Sr and Zn with Hcy levels and address the importance of Se as a potential upstream modifiable factor for the personalized prevention of elevated Hcy levels and CVD. Cd Elsevier GWAS Elsevier MTR Elsevier Co Elsevier Cr Elsevier HDL-C Elsevier DNMT Elsevier Cu Elsevier Pb Elsevier Ti Elsevier HWE Elsevier Tl Elsevier LOD Elsevier HNF1A Elsevier IQR Elsevier PCA Elsevier CVD Elsevier RCTs Elsevier DPEP1 Elsevier ICP-MS Elsevier SAH Elsevier SAM Elsevier Hcy Elsevier Mn Elsevier Mo Elsevier GRS Elsevier Al Elsevier Rb Elsevier SD Elsevier As Elsevier SNP Elsevier Zn Elsevier CBS Elsevier U Elsevier V Elsevier W Elsevier DMC Elsevier Ni Elsevier GSH Elsevier Ba Elsevier BMI Elsevier Fe Elsevier NDNS Elsevier eGFR Elsevier CVs Elsevier VB12 Elsevier CI Elsevier ECG Elsevier MTHFR Elsevier Sb Elsevier Se Elsevier DFTJ cohort Elsevier NOX4 Elsevier Sn Elsevier CHD Elsevier Sr Elsevier Wang, Hao oth Zhang, Zirui oth Li, Wending oth Zhang, Yizhi oth He, Shiqi oth Yu, Kuai oth Jiang, Haijing oth Liu, Xuezhen oth Guo, Huan oth He, Meian oth Zhang, Xiaomin oth Wu, Tangchun oth Yuan, Yu oth Enthalten in Elsevier Fetters, Lisa ELSEVIER Erysipelas, the “Other” Cellulitis: A Practical Guide for Nurse Practitioners 2021 EES : official journal of the International Society of Ecotoxicology and Environmental safety Amsterdam (DE-627)ELV006765629 volume:241 year:2022 pages:0 https://doi.org/10.1016/j.ecoenv.2022.113705 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 44.63 Krankenpflege VZ AR 241 2022 0 |
allfields_unstemmed |
10.1016/j.ecoenv.2022.113705 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001889.pica (DE-627)ELV058340432 (ELSEVIER)S0147-6513(22)00545-0 DE-627 ger DE-627 rakwb eng 610 VZ 44.63 bkl Long, Pinpin verfasserin aut Plasma metal concentrations and their interactions with genetic susceptibility on homocysteine levels 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Limited studies have evaluated the associations of multiple metal exposures with homocysteine (Hcy) levels, which were independent risk factor for cardiovascular disease (CVD). Furthermore, the interactions between genetic variants and plasma metals in relation to Hcy levels were largely unknown. We aimed to explore the associations of multiple plasma metals (including metalloids arsenic [As] and selenium [Se]) with Hcy levels and whether their associations were modified by genetic susceptibility. We included 2989 participants from the baseline of the Dongfeng-Tongji cohort (DFTJ cohort) and conducted a cross-sectional study to explore the associations of 17 plasma metals with serum Hcy levels. Both multi-variable linear regression model (single-metal model) and LASSO penalized regression model (multiple-metal model) were used to identify the Hcy-associated metals. The weighted genetic risk score (GRS) was calculated based on 18 established Hcy-associated genetic variants. For metals that were associated with Hcy, we further assessed the gene-metal interactions on Hcy levels. Among 17 metals, plasma molybdenum (Mo), strontium (Sr), and Zinc (Zn) were positively associated with Hcy levels, whereas Se was inversely associated with Hcy levels in both single- and multiple-metal models. We also observed that the genetic predisposition to Hcy significantly modified the association between plasma Se and serum Hcy levels (P for interaction = 0.003), while no significant gene-metal interactions were found for Mo, Sr, and Zn (all P for interactions > 0.05). These findings provide novel insight into the associations of the plasma concentrations of Mo, Se, Sr and Zn with Hcy levels and address the importance of Se as a potential upstream modifiable factor for the personalized prevention of elevated Hcy levels and CVD. Limited studies have evaluated the associations of multiple metal exposures with homocysteine (Hcy) levels, which were independent risk factor for cardiovascular disease (CVD). Furthermore, the interactions between genetic variants and plasma metals in relation to Hcy levels were largely unknown. We aimed to explore the associations of multiple plasma metals (including metalloids arsenic [As] and selenium [Se]) with Hcy levels and whether their associations were modified by genetic susceptibility. We included 2989 participants from the baseline of the Dongfeng-Tongji cohort (DFTJ cohort) and conducted a cross-sectional study to explore the associations of 17 plasma metals with serum Hcy levels. Both multi-variable linear regression model (single-metal model) and LASSO penalized regression model (multiple-metal model) were used to identify the Hcy-associated metals. The weighted genetic risk score (GRS) was calculated based on 18 established Hcy-associated genetic variants. For metals that were associated with Hcy, we further assessed the gene-metal interactions on Hcy levels. Among 17 metals, plasma molybdenum (Mo), strontium (Sr), and Zinc (Zn) were positively associated with Hcy levels, whereas Se was inversely associated with Hcy levels in both single- and multiple-metal models. We also observed that the genetic predisposition to Hcy significantly modified the association between plasma Se and serum Hcy levels (P for interaction = 0.003), while no significant gene-metal interactions were found for Mo, Sr, and Zn (all P for interactions > 0.05). These findings provide novel insight into the associations of the plasma concentrations of Mo, Se, Sr and Zn with Hcy levels and address the importance of Se as a potential upstream modifiable factor for the personalized prevention of elevated Hcy levels and CVD. Cd Elsevier GWAS Elsevier MTR Elsevier Co Elsevier Cr Elsevier HDL-C Elsevier DNMT Elsevier Cu Elsevier Pb Elsevier Ti Elsevier HWE Elsevier Tl Elsevier LOD Elsevier HNF1A Elsevier IQR Elsevier PCA Elsevier CVD Elsevier RCTs Elsevier DPEP1 Elsevier ICP-MS Elsevier SAH Elsevier SAM Elsevier Hcy Elsevier Mn Elsevier Mo Elsevier GRS Elsevier Al Elsevier Rb Elsevier SD Elsevier As Elsevier SNP Elsevier Zn Elsevier CBS Elsevier U Elsevier V Elsevier W Elsevier DMC Elsevier Ni Elsevier GSH Elsevier Ba Elsevier BMI Elsevier Fe Elsevier NDNS Elsevier eGFR Elsevier CVs Elsevier VB12 Elsevier CI Elsevier ECG Elsevier MTHFR Elsevier Sb Elsevier Se Elsevier DFTJ cohort Elsevier NOX4 Elsevier Sn Elsevier CHD Elsevier Sr Elsevier Wang, Hao oth Zhang, Zirui oth Li, Wending oth Zhang, Yizhi oth He, Shiqi oth Yu, Kuai oth Jiang, Haijing oth Liu, Xuezhen oth Guo, Huan oth He, Meian oth Zhang, Xiaomin oth Wu, Tangchun oth Yuan, Yu oth Enthalten in Elsevier Fetters, Lisa ELSEVIER Erysipelas, the “Other” Cellulitis: A Practical Guide for Nurse Practitioners 2021 EES : official journal of the International Society of Ecotoxicology and Environmental safety Amsterdam (DE-627)ELV006765629 volume:241 year:2022 pages:0 https://doi.org/10.1016/j.ecoenv.2022.113705 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 44.63 Krankenpflege VZ AR 241 2022 0 |
allfieldsGer |
10.1016/j.ecoenv.2022.113705 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001889.pica (DE-627)ELV058340432 (ELSEVIER)S0147-6513(22)00545-0 DE-627 ger DE-627 rakwb eng 610 VZ 44.63 bkl Long, Pinpin verfasserin aut Plasma metal concentrations and their interactions with genetic susceptibility on homocysteine levels 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Limited studies have evaluated the associations of multiple metal exposures with homocysteine (Hcy) levels, which were independent risk factor for cardiovascular disease (CVD). Furthermore, the interactions between genetic variants and plasma metals in relation to Hcy levels were largely unknown. We aimed to explore the associations of multiple plasma metals (including metalloids arsenic [As] and selenium [Se]) with Hcy levels and whether their associations were modified by genetic susceptibility. We included 2989 participants from the baseline of the Dongfeng-Tongji cohort (DFTJ cohort) and conducted a cross-sectional study to explore the associations of 17 plasma metals with serum Hcy levels. Both multi-variable linear regression model (single-metal model) and LASSO penalized regression model (multiple-metal model) were used to identify the Hcy-associated metals. The weighted genetic risk score (GRS) was calculated based on 18 established Hcy-associated genetic variants. For metals that were associated with Hcy, we further assessed the gene-metal interactions on Hcy levels. Among 17 metals, plasma molybdenum (Mo), strontium (Sr), and Zinc (Zn) were positively associated with Hcy levels, whereas Se was inversely associated with Hcy levels in both single- and multiple-metal models. We also observed that the genetic predisposition to Hcy significantly modified the association between plasma Se and serum Hcy levels (P for interaction = 0.003), while no significant gene-metal interactions were found for Mo, Sr, and Zn (all P for interactions > 0.05). These findings provide novel insight into the associations of the plasma concentrations of Mo, Se, Sr and Zn with Hcy levels and address the importance of Se as a potential upstream modifiable factor for the personalized prevention of elevated Hcy levels and CVD. Limited studies have evaluated the associations of multiple metal exposures with homocysteine (Hcy) levels, which were independent risk factor for cardiovascular disease (CVD). Furthermore, the interactions between genetic variants and plasma metals in relation to Hcy levels were largely unknown. We aimed to explore the associations of multiple plasma metals (including metalloids arsenic [As] and selenium [Se]) with Hcy levels and whether their associations were modified by genetic susceptibility. We included 2989 participants from the baseline of the Dongfeng-Tongji cohort (DFTJ cohort) and conducted a cross-sectional study to explore the associations of 17 plasma metals with serum Hcy levels. Both multi-variable linear regression model (single-metal model) and LASSO penalized regression model (multiple-metal model) were used to identify the Hcy-associated metals. The weighted genetic risk score (GRS) was calculated based on 18 established Hcy-associated genetic variants. For metals that were associated with Hcy, we further assessed the gene-metal interactions on Hcy levels. Among 17 metals, plasma molybdenum (Mo), strontium (Sr), and Zinc (Zn) were positively associated with Hcy levels, whereas Se was inversely associated with Hcy levels in both single- and multiple-metal models. We also observed that the genetic predisposition to Hcy significantly modified the association between plasma Se and serum Hcy levels (P for interaction = 0.003), while no significant gene-metal interactions were found for Mo, Sr, and Zn (all P for interactions > 0.05). These findings provide novel insight into the associations of the plasma concentrations of Mo, Se, Sr and Zn with Hcy levels and address the importance of Se as a potential upstream modifiable factor for the personalized prevention of elevated Hcy levels and CVD. Cd Elsevier GWAS Elsevier MTR Elsevier Co Elsevier Cr Elsevier HDL-C Elsevier DNMT Elsevier Cu Elsevier Pb Elsevier Ti Elsevier HWE Elsevier Tl Elsevier LOD Elsevier HNF1A Elsevier IQR Elsevier PCA Elsevier CVD Elsevier RCTs Elsevier DPEP1 Elsevier ICP-MS Elsevier SAH Elsevier SAM Elsevier Hcy Elsevier Mn Elsevier Mo Elsevier GRS Elsevier Al Elsevier Rb Elsevier SD Elsevier As Elsevier SNP Elsevier Zn Elsevier CBS Elsevier U Elsevier V Elsevier W Elsevier DMC Elsevier Ni Elsevier GSH Elsevier Ba Elsevier BMI Elsevier Fe Elsevier NDNS Elsevier eGFR Elsevier CVs Elsevier VB12 Elsevier CI Elsevier ECG Elsevier MTHFR Elsevier Sb Elsevier Se Elsevier DFTJ cohort Elsevier NOX4 Elsevier Sn Elsevier CHD Elsevier Sr Elsevier Wang, Hao oth Zhang, Zirui oth Li, Wending oth Zhang, Yizhi oth He, Shiqi oth Yu, Kuai oth Jiang, Haijing oth Liu, Xuezhen oth Guo, Huan oth He, Meian oth Zhang, Xiaomin oth Wu, Tangchun oth Yuan, Yu oth Enthalten in Elsevier Fetters, Lisa ELSEVIER Erysipelas, the “Other” Cellulitis: A Practical Guide for Nurse Practitioners 2021 EES : official journal of the International Society of Ecotoxicology and Environmental safety Amsterdam (DE-627)ELV006765629 volume:241 year:2022 pages:0 https://doi.org/10.1016/j.ecoenv.2022.113705 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 44.63 Krankenpflege VZ AR 241 2022 0 |
allfieldsSound |
10.1016/j.ecoenv.2022.113705 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001889.pica (DE-627)ELV058340432 (ELSEVIER)S0147-6513(22)00545-0 DE-627 ger DE-627 rakwb eng 610 VZ 44.63 bkl Long, Pinpin verfasserin aut Plasma metal concentrations and their interactions with genetic susceptibility on homocysteine levels 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Limited studies have evaluated the associations of multiple metal exposures with homocysteine (Hcy) levels, which were independent risk factor for cardiovascular disease (CVD). Furthermore, the interactions between genetic variants and plasma metals in relation to Hcy levels were largely unknown. We aimed to explore the associations of multiple plasma metals (including metalloids arsenic [As] and selenium [Se]) with Hcy levels and whether their associations were modified by genetic susceptibility. We included 2989 participants from the baseline of the Dongfeng-Tongji cohort (DFTJ cohort) and conducted a cross-sectional study to explore the associations of 17 plasma metals with serum Hcy levels. Both multi-variable linear regression model (single-metal model) and LASSO penalized regression model (multiple-metal model) were used to identify the Hcy-associated metals. The weighted genetic risk score (GRS) was calculated based on 18 established Hcy-associated genetic variants. For metals that were associated with Hcy, we further assessed the gene-metal interactions on Hcy levels. Among 17 metals, plasma molybdenum (Mo), strontium (Sr), and Zinc (Zn) were positively associated with Hcy levels, whereas Se was inversely associated with Hcy levels in both single- and multiple-metal models. We also observed that the genetic predisposition to Hcy significantly modified the association between plasma Se and serum Hcy levels (P for interaction = 0.003), while no significant gene-metal interactions were found for Mo, Sr, and Zn (all P for interactions > 0.05). These findings provide novel insight into the associations of the plasma concentrations of Mo, Se, Sr and Zn with Hcy levels and address the importance of Se as a potential upstream modifiable factor for the personalized prevention of elevated Hcy levels and CVD. Limited studies have evaluated the associations of multiple metal exposures with homocysteine (Hcy) levels, which were independent risk factor for cardiovascular disease (CVD). Furthermore, the interactions between genetic variants and plasma metals in relation to Hcy levels were largely unknown. We aimed to explore the associations of multiple plasma metals (including metalloids arsenic [As] and selenium [Se]) with Hcy levels and whether their associations were modified by genetic susceptibility. We included 2989 participants from the baseline of the Dongfeng-Tongji cohort (DFTJ cohort) and conducted a cross-sectional study to explore the associations of 17 plasma metals with serum Hcy levels. Both multi-variable linear regression model (single-metal model) and LASSO penalized regression model (multiple-metal model) were used to identify the Hcy-associated metals. The weighted genetic risk score (GRS) was calculated based on 18 established Hcy-associated genetic variants. For metals that were associated with Hcy, we further assessed the gene-metal interactions on Hcy levels. Among 17 metals, plasma molybdenum (Mo), strontium (Sr), and Zinc (Zn) were positively associated with Hcy levels, whereas Se was inversely associated with Hcy levels in both single- and multiple-metal models. We also observed that the genetic predisposition to Hcy significantly modified the association between plasma Se and serum Hcy levels (P for interaction = 0.003), while no significant gene-metal interactions were found for Mo, Sr, and Zn (all P for interactions > 0.05). These findings provide novel insight into the associations of the plasma concentrations of Mo, Se, Sr and Zn with Hcy levels and address the importance of Se as a potential upstream modifiable factor for the personalized prevention of elevated Hcy levels and CVD. Cd Elsevier GWAS Elsevier MTR Elsevier Co Elsevier Cr Elsevier HDL-C Elsevier DNMT Elsevier Cu Elsevier Pb Elsevier Ti Elsevier HWE Elsevier Tl Elsevier LOD Elsevier HNF1A Elsevier IQR Elsevier PCA Elsevier CVD Elsevier RCTs Elsevier DPEP1 Elsevier ICP-MS Elsevier SAH Elsevier SAM Elsevier Hcy Elsevier Mn Elsevier Mo Elsevier GRS Elsevier Al Elsevier Rb Elsevier SD Elsevier As Elsevier SNP Elsevier Zn Elsevier CBS Elsevier U Elsevier V Elsevier W Elsevier DMC Elsevier Ni Elsevier GSH Elsevier Ba Elsevier BMI Elsevier Fe Elsevier NDNS Elsevier eGFR Elsevier CVs Elsevier VB12 Elsevier CI Elsevier ECG Elsevier MTHFR Elsevier Sb Elsevier Se Elsevier DFTJ cohort Elsevier NOX4 Elsevier Sn Elsevier CHD Elsevier Sr Elsevier Wang, Hao oth Zhang, Zirui oth Li, Wending oth Zhang, Yizhi oth He, Shiqi oth Yu, Kuai oth Jiang, Haijing oth Liu, Xuezhen oth Guo, Huan oth He, Meian oth Zhang, Xiaomin oth Wu, Tangchun oth Yuan, Yu oth Enthalten in Elsevier Fetters, Lisa ELSEVIER Erysipelas, the “Other” Cellulitis: A Practical Guide for Nurse Practitioners 2021 EES : official journal of the International Society of Ecotoxicology and Environmental safety Amsterdam (DE-627)ELV006765629 volume:241 year:2022 pages:0 https://doi.org/10.1016/j.ecoenv.2022.113705 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 44.63 Krankenpflege VZ AR 241 2022 0 |
language |
English |
source |
Enthalten in Erysipelas, the “Other” Cellulitis: A Practical Guide for Nurse Practitioners Amsterdam volume:241 year:2022 pages:0 |
sourceStr |
Enthalten in Erysipelas, the “Other” Cellulitis: A Practical Guide for Nurse Practitioners Amsterdam volume:241 year:2022 pages:0 |
format_phy_str_mv |
Article |
bklname |
Krankenpflege |
institution |
findex.gbv.de |
topic_facet |
Cd GWAS MTR Co Cr HDL-C DNMT Cu Pb Ti HWE Tl LOD HNF1A IQR PCA CVD RCTs DPEP1 ICP-MS SAH SAM Hcy Mn Mo GRS Al Rb SD As SNP Zn CBS U V W DMC Ni GSH Ba BMI Fe NDNS eGFR CVs VB12 CI ECG MTHFR Sb Se DFTJ cohort NOX4 Sn CHD Sr |
dewey-raw |
610 |
isfreeaccess_bool |
false |
container_title |
Erysipelas, the “Other” Cellulitis: A Practical Guide for Nurse Practitioners |
authorswithroles_txt_mv |
Long, Pinpin @@aut@@ Wang, Hao @@oth@@ Zhang, Zirui @@oth@@ Li, Wending @@oth@@ Zhang, Yizhi @@oth@@ He, Shiqi @@oth@@ Yu, Kuai @@oth@@ Jiang, Haijing @@oth@@ Liu, Xuezhen @@oth@@ Guo, Huan @@oth@@ He, Meian @@oth@@ Zhang, Xiaomin @@oth@@ Wu, Tangchun @@oth@@ Yuan, Yu @@oth@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
ELV006765629 |
dewey-sort |
3610 |
id |
ELV058340432 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV058340432</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626050702.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220808s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ecoenv.2022.113705</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001889.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV058340432</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0147-6513(22)00545-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.63</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Long, Pinpin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Plasma metal concentrations and their interactions with genetic susceptibility on homocysteine levels</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Limited studies have evaluated the associations of multiple metal exposures with homocysteine (Hcy) levels, which were independent risk factor for cardiovascular disease (CVD). Furthermore, the interactions between genetic variants and plasma metals in relation to Hcy levels were largely unknown. We aimed to explore the associations of multiple plasma metals (including metalloids arsenic [As] and selenium [Se]) with Hcy levels and whether their associations were modified by genetic susceptibility. We included 2989 participants from the baseline of the Dongfeng-Tongji cohort (DFTJ cohort) and conducted a cross-sectional study to explore the associations of 17 plasma metals with serum Hcy levels. Both multi-variable linear regression model (single-metal model) and LASSO penalized regression model (multiple-metal model) were used to identify the Hcy-associated metals. The weighted genetic risk score (GRS) was calculated based on 18 established Hcy-associated genetic variants. For metals that were associated with Hcy, we further assessed the gene-metal interactions on Hcy levels. Among 17 metals, plasma molybdenum (Mo), strontium (Sr), and Zinc (Zn) were positively associated with Hcy levels, whereas Se was inversely associated with Hcy levels in both single- and multiple-metal models. We also observed that the genetic predisposition to Hcy significantly modified the association between plasma Se and serum Hcy levels (P for interaction = 0.003), while no significant gene-metal interactions were found for Mo, Sr, and Zn (all P for interactions > 0.05). These findings provide novel insight into the associations of the plasma concentrations of Mo, Se, Sr and Zn with Hcy levels and address the importance of Se as a potential upstream modifiable factor for the personalized prevention of elevated Hcy levels and CVD.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Limited studies have evaluated the associations of multiple metal exposures with homocysteine (Hcy) levels, which were independent risk factor for cardiovascular disease (CVD). Furthermore, the interactions between genetic variants and plasma metals in relation to Hcy levels were largely unknown. We aimed to explore the associations of multiple plasma metals (including metalloids arsenic [As] and selenium [Se]) with Hcy levels and whether their associations were modified by genetic susceptibility. We included 2989 participants from the baseline of the Dongfeng-Tongji cohort (DFTJ cohort) and conducted a cross-sectional study to explore the associations of 17 plasma metals with serum Hcy levels. Both multi-variable linear regression model (single-metal model) and LASSO penalized regression model (multiple-metal model) were used to identify the Hcy-associated metals. The weighted genetic risk score (GRS) was calculated based on 18 established Hcy-associated genetic variants. For metals that were associated with Hcy, we further assessed the gene-metal interactions on Hcy levels. Among 17 metals, plasma molybdenum (Mo), strontium (Sr), and Zinc (Zn) were positively associated with Hcy levels, whereas Se was inversely associated with Hcy levels in both single- and multiple-metal models. We also observed that the genetic predisposition to Hcy significantly modified the association between plasma Se and serum Hcy levels (P for interaction = 0.003), while no significant gene-metal interactions were found for Mo, Sr, and Zn (all P for interactions > 0.05). These findings provide novel insight into the associations of the plasma concentrations of Mo, Se, Sr and Zn with Hcy levels and address the importance of Se as a potential upstream modifiable factor for the personalized prevention of elevated Hcy levels and CVD.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Cd</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">GWAS</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MTR</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Co</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Cr</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">HDL-C</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">DNMT</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Cu</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Pb</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Ti</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">HWE</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Tl</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">LOD</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">HNF1A</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">IQR</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">PCA</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">CVD</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">RCTs</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">DPEP1</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">ICP-MS</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SAH</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SAM</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Hcy</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mn</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mo</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">GRS</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Al</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Rb</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SD</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">As</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SNP</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Zn</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">CBS</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">U</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">V</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">W</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">DMC</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Ni</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">GSH</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Ba</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">BMI</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fe</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">NDNS</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">eGFR</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">CVs</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">VB12</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">CI</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">ECG</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MTHFR</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Sb</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Se</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">DFTJ cohort</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">NOX4</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Sn</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">CHD</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Sr</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Hao</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Zirui</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Wending</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Yizhi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">He, Shiqi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yu, Kuai</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jiang, Haijing</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Xuezhen</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guo, Huan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">He, Meian</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Xiaomin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Tangchun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yuan, Yu</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Fetters, Lisa ELSEVIER</subfield><subfield code="t">Erysipelas, the “Other” Cellulitis: A Practical Guide for Nurse Practitioners</subfield><subfield code="d">2021</subfield><subfield code="d">EES : official journal of the International Society of Ecotoxicology and Environmental safety</subfield><subfield code="g">Amsterdam</subfield><subfield code="w">(DE-627)ELV006765629</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:241</subfield><subfield code="g">year:2022</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ecoenv.2022.113705</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.63</subfield><subfield code="j">Krankenpflege</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">241</subfield><subfield code="j">2022</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
author |
Long, Pinpin |
spellingShingle |
Long, Pinpin ddc 610 bkl 44.63 Elsevier Cd Elsevier GWAS Elsevier MTR Elsevier Co Elsevier Cr Elsevier HDL-C Elsevier DNMT Elsevier Cu Elsevier Pb Elsevier Ti Elsevier HWE Elsevier Tl Elsevier LOD Elsevier HNF1A Elsevier IQR Elsevier PCA Elsevier CVD Elsevier RCTs Elsevier DPEP1 Elsevier ICP-MS Elsevier SAH Elsevier SAM Elsevier Hcy Elsevier Mn Elsevier Mo Elsevier GRS Elsevier Al Elsevier Rb Elsevier SD Elsevier As Elsevier SNP Elsevier Zn Elsevier CBS Elsevier U Elsevier V Elsevier W Elsevier DMC Elsevier Ni Elsevier GSH Elsevier Ba Elsevier BMI Elsevier Fe Elsevier NDNS Elsevier eGFR Elsevier CVs Elsevier VB12 Elsevier CI Elsevier ECG Elsevier MTHFR Elsevier Sb Elsevier Se Elsevier DFTJ cohort Elsevier NOX4 Elsevier Sn Elsevier CHD Elsevier Sr Plasma metal concentrations and their interactions with genetic susceptibility on homocysteine levels |
authorStr |
Long, Pinpin |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV006765629 |
format |
electronic Article |
dewey-ones |
610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
610 VZ 44.63 bkl Plasma metal concentrations and their interactions with genetic susceptibility on homocysteine levels Cd Elsevier GWAS Elsevier MTR Elsevier Co Elsevier Cr Elsevier HDL-C Elsevier DNMT Elsevier Cu Elsevier Pb Elsevier Ti Elsevier HWE Elsevier Tl Elsevier LOD Elsevier HNF1A Elsevier IQR Elsevier PCA Elsevier CVD Elsevier RCTs Elsevier DPEP1 Elsevier ICP-MS Elsevier SAH Elsevier SAM Elsevier Hcy Elsevier Mn Elsevier Mo Elsevier GRS Elsevier Al Elsevier Rb Elsevier SD Elsevier As Elsevier SNP Elsevier Zn Elsevier CBS Elsevier U Elsevier V Elsevier W Elsevier DMC Elsevier Ni Elsevier GSH Elsevier Ba Elsevier BMI Elsevier Fe Elsevier NDNS Elsevier eGFR Elsevier CVs Elsevier VB12 Elsevier CI Elsevier ECG Elsevier MTHFR Elsevier Sb Elsevier Se Elsevier DFTJ cohort Elsevier NOX4 Elsevier Sn Elsevier CHD Elsevier Sr Elsevier |
topic |
ddc 610 bkl 44.63 Elsevier Cd Elsevier GWAS Elsevier MTR Elsevier Co Elsevier Cr Elsevier HDL-C Elsevier DNMT Elsevier Cu Elsevier Pb Elsevier Ti Elsevier HWE Elsevier Tl Elsevier LOD Elsevier HNF1A Elsevier IQR Elsevier PCA Elsevier CVD Elsevier RCTs Elsevier DPEP1 Elsevier ICP-MS Elsevier SAH Elsevier SAM Elsevier Hcy Elsevier Mn Elsevier Mo Elsevier GRS Elsevier Al Elsevier Rb Elsevier SD Elsevier As Elsevier SNP Elsevier Zn Elsevier CBS Elsevier U Elsevier V Elsevier W Elsevier DMC Elsevier Ni Elsevier GSH Elsevier Ba Elsevier BMI Elsevier Fe Elsevier NDNS Elsevier eGFR Elsevier CVs Elsevier VB12 Elsevier CI Elsevier ECG Elsevier MTHFR Elsevier Sb Elsevier Se Elsevier DFTJ cohort Elsevier NOX4 Elsevier Sn Elsevier CHD Elsevier Sr |
topic_unstemmed |
ddc 610 bkl 44.63 Elsevier Cd Elsevier GWAS Elsevier MTR Elsevier Co Elsevier Cr Elsevier HDL-C Elsevier DNMT Elsevier Cu Elsevier Pb Elsevier Ti Elsevier HWE Elsevier Tl Elsevier LOD Elsevier HNF1A Elsevier IQR Elsevier PCA Elsevier CVD Elsevier RCTs Elsevier DPEP1 Elsevier ICP-MS Elsevier SAH Elsevier SAM Elsevier Hcy Elsevier Mn Elsevier Mo Elsevier GRS Elsevier Al Elsevier Rb Elsevier SD Elsevier As Elsevier SNP Elsevier Zn Elsevier CBS Elsevier U Elsevier V Elsevier W Elsevier DMC Elsevier Ni Elsevier GSH Elsevier Ba Elsevier BMI Elsevier Fe Elsevier NDNS Elsevier eGFR Elsevier CVs Elsevier VB12 Elsevier CI Elsevier ECG Elsevier MTHFR Elsevier Sb Elsevier Se Elsevier DFTJ cohort Elsevier NOX4 Elsevier Sn Elsevier CHD Elsevier Sr |
topic_browse |
ddc 610 bkl 44.63 Elsevier Cd Elsevier GWAS Elsevier MTR Elsevier Co Elsevier Cr Elsevier HDL-C Elsevier DNMT Elsevier Cu Elsevier Pb Elsevier Ti Elsevier HWE Elsevier Tl Elsevier LOD Elsevier HNF1A Elsevier IQR Elsevier PCA Elsevier CVD Elsevier RCTs Elsevier DPEP1 Elsevier ICP-MS Elsevier SAH Elsevier SAM Elsevier Hcy Elsevier Mn Elsevier Mo Elsevier GRS Elsevier Al Elsevier Rb Elsevier SD Elsevier As Elsevier SNP Elsevier Zn Elsevier CBS Elsevier U Elsevier V Elsevier W Elsevier DMC Elsevier Ni Elsevier GSH Elsevier Ba Elsevier BMI Elsevier Fe Elsevier NDNS Elsevier eGFR Elsevier CVs Elsevier VB12 Elsevier CI Elsevier ECG Elsevier MTHFR Elsevier Sb Elsevier Se Elsevier DFTJ cohort Elsevier NOX4 Elsevier Sn Elsevier CHD Elsevier Sr |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
h w hw z z zz w l wl y z yz s h sh k y ky h j hj x l xl h g hg m h mh x z xz t w tw y y yy |
hierarchy_parent_title |
Erysipelas, the “Other” Cellulitis: A Practical Guide for Nurse Practitioners |
hierarchy_parent_id |
ELV006765629 |
dewey-tens |
610 - Medicine & health |
hierarchy_top_title |
Erysipelas, the “Other” Cellulitis: A Practical Guide for Nurse Practitioners |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV006765629 |
title |
Plasma metal concentrations and their interactions with genetic susceptibility on homocysteine levels |
ctrlnum |
(DE-627)ELV058340432 (ELSEVIER)S0147-6513(22)00545-0 |
title_full |
Plasma metal concentrations and their interactions with genetic susceptibility on homocysteine levels |
author_sort |
Long, Pinpin |
journal |
Erysipelas, the “Other” Cellulitis: A Practical Guide for Nurse Practitioners |
journalStr |
Erysipelas, the “Other” Cellulitis: A Practical Guide for Nurse Practitioners |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
zzz |
container_start_page |
0 |
author_browse |
Long, Pinpin |
container_volume |
241 |
class |
610 VZ 44.63 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Long, Pinpin |
doi_str_mv |
10.1016/j.ecoenv.2022.113705 |
dewey-full |
610 |
title_sort |
plasma metal concentrations and their interactions with genetic susceptibility on homocysteine levels |
title_auth |
Plasma metal concentrations and their interactions with genetic susceptibility on homocysteine levels |
abstract |
Limited studies have evaluated the associations of multiple metal exposures with homocysteine (Hcy) levels, which were independent risk factor for cardiovascular disease (CVD). Furthermore, the interactions between genetic variants and plasma metals in relation to Hcy levels were largely unknown. We aimed to explore the associations of multiple plasma metals (including metalloids arsenic [As] and selenium [Se]) with Hcy levels and whether their associations were modified by genetic susceptibility. We included 2989 participants from the baseline of the Dongfeng-Tongji cohort (DFTJ cohort) and conducted a cross-sectional study to explore the associations of 17 plasma metals with serum Hcy levels. Both multi-variable linear regression model (single-metal model) and LASSO penalized regression model (multiple-metal model) were used to identify the Hcy-associated metals. The weighted genetic risk score (GRS) was calculated based on 18 established Hcy-associated genetic variants. For metals that were associated with Hcy, we further assessed the gene-metal interactions on Hcy levels. Among 17 metals, plasma molybdenum (Mo), strontium (Sr), and Zinc (Zn) were positively associated with Hcy levels, whereas Se was inversely associated with Hcy levels in both single- and multiple-metal models. We also observed that the genetic predisposition to Hcy significantly modified the association between plasma Se and serum Hcy levels (P for interaction = 0.003), while no significant gene-metal interactions were found for Mo, Sr, and Zn (all P for interactions > 0.05). These findings provide novel insight into the associations of the plasma concentrations of Mo, Se, Sr and Zn with Hcy levels and address the importance of Se as a potential upstream modifiable factor for the personalized prevention of elevated Hcy levels and CVD. |
abstractGer |
Limited studies have evaluated the associations of multiple metal exposures with homocysteine (Hcy) levels, which were independent risk factor for cardiovascular disease (CVD). Furthermore, the interactions between genetic variants and plasma metals in relation to Hcy levels were largely unknown. We aimed to explore the associations of multiple plasma metals (including metalloids arsenic [As] and selenium [Se]) with Hcy levels and whether their associations were modified by genetic susceptibility. We included 2989 participants from the baseline of the Dongfeng-Tongji cohort (DFTJ cohort) and conducted a cross-sectional study to explore the associations of 17 plasma metals with serum Hcy levels. Both multi-variable linear regression model (single-metal model) and LASSO penalized regression model (multiple-metal model) were used to identify the Hcy-associated metals. The weighted genetic risk score (GRS) was calculated based on 18 established Hcy-associated genetic variants. For metals that were associated with Hcy, we further assessed the gene-metal interactions on Hcy levels. Among 17 metals, plasma molybdenum (Mo), strontium (Sr), and Zinc (Zn) were positively associated with Hcy levels, whereas Se was inversely associated with Hcy levels in both single- and multiple-metal models. We also observed that the genetic predisposition to Hcy significantly modified the association between plasma Se and serum Hcy levels (P for interaction = 0.003), while no significant gene-metal interactions were found for Mo, Sr, and Zn (all P for interactions > 0.05). These findings provide novel insight into the associations of the plasma concentrations of Mo, Se, Sr and Zn with Hcy levels and address the importance of Se as a potential upstream modifiable factor for the personalized prevention of elevated Hcy levels and CVD. |
abstract_unstemmed |
Limited studies have evaluated the associations of multiple metal exposures with homocysteine (Hcy) levels, which were independent risk factor for cardiovascular disease (CVD). Furthermore, the interactions between genetic variants and plasma metals in relation to Hcy levels were largely unknown. We aimed to explore the associations of multiple plasma metals (including metalloids arsenic [As] and selenium [Se]) with Hcy levels and whether their associations were modified by genetic susceptibility. We included 2989 participants from the baseline of the Dongfeng-Tongji cohort (DFTJ cohort) and conducted a cross-sectional study to explore the associations of 17 plasma metals with serum Hcy levels. Both multi-variable linear regression model (single-metal model) and LASSO penalized regression model (multiple-metal model) were used to identify the Hcy-associated metals. The weighted genetic risk score (GRS) was calculated based on 18 established Hcy-associated genetic variants. For metals that were associated with Hcy, we further assessed the gene-metal interactions on Hcy levels. Among 17 metals, plasma molybdenum (Mo), strontium (Sr), and Zinc (Zn) were positively associated with Hcy levels, whereas Se was inversely associated with Hcy levels in both single- and multiple-metal models. We also observed that the genetic predisposition to Hcy significantly modified the association between plasma Se and serum Hcy levels (P for interaction = 0.003), while no significant gene-metal interactions were found for Mo, Sr, and Zn (all P for interactions > 0.05). These findings provide novel insight into the associations of the plasma concentrations of Mo, Se, Sr and Zn with Hcy levels and address the importance of Se as a potential upstream modifiable factor for the personalized prevention of elevated Hcy levels and CVD. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U |
title_short |
Plasma metal concentrations and their interactions with genetic susceptibility on homocysteine levels |
url |
https://doi.org/10.1016/j.ecoenv.2022.113705 |
remote_bool |
true |
author2 |
Wang, Hao Zhang, Zirui Li, Wending Zhang, Yizhi He, Shiqi Yu, Kuai Jiang, Haijing Liu, Xuezhen Guo, Huan He, Meian Zhang, Xiaomin Wu, Tangchun Yuan, Yu |
author2Str |
Wang, Hao Zhang, Zirui Li, Wending Zhang, Yizhi He, Shiqi Yu, Kuai Jiang, Haijing Liu, Xuezhen Guo, Huan He, Meian Zhang, Xiaomin Wu, Tangchun Yuan, Yu |
ppnlink |
ELV006765629 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth oth oth oth oth oth oth oth |
doi_str |
10.1016/j.ecoenv.2022.113705 |
up_date |
2024-07-06T18:44:11.192Z |
_version_ |
1803856328727199744 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV058340432</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626050702.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220808s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ecoenv.2022.113705</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001889.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV058340432</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0147-6513(22)00545-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.63</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Long, Pinpin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Plasma metal concentrations and their interactions with genetic susceptibility on homocysteine levels</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Limited studies have evaluated the associations of multiple metal exposures with homocysteine (Hcy) levels, which were independent risk factor for cardiovascular disease (CVD). Furthermore, the interactions between genetic variants and plasma metals in relation to Hcy levels were largely unknown. We aimed to explore the associations of multiple plasma metals (including metalloids arsenic [As] and selenium [Se]) with Hcy levels and whether their associations were modified by genetic susceptibility. We included 2989 participants from the baseline of the Dongfeng-Tongji cohort (DFTJ cohort) and conducted a cross-sectional study to explore the associations of 17 plasma metals with serum Hcy levels. Both multi-variable linear regression model (single-metal model) and LASSO penalized regression model (multiple-metal model) were used to identify the Hcy-associated metals. The weighted genetic risk score (GRS) was calculated based on 18 established Hcy-associated genetic variants. For metals that were associated with Hcy, we further assessed the gene-metal interactions on Hcy levels. Among 17 metals, plasma molybdenum (Mo), strontium (Sr), and Zinc (Zn) were positively associated with Hcy levels, whereas Se was inversely associated with Hcy levels in both single- and multiple-metal models. We also observed that the genetic predisposition to Hcy significantly modified the association between plasma Se and serum Hcy levels (P for interaction = 0.003), while no significant gene-metal interactions were found for Mo, Sr, and Zn (all P for interactions > 0.05). These findings provide novel insight into the associations of the plasma concentrations of Mo, Se, Sr and Zn with Hcy levels and address the importance of Se as a potential upstream modifiable factor for the personalized prevention of elevated Hcy levels and CVD.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Limited studies have evaluated the associations of multiple metal exposures with homocysteine (Hcy) levels, which were independent risk factor for cardiovascular disease (CVD). Furthermore, the interactions between genetic variants and plasma metals in relation to Hcy levels were largely unknown. We aimed to explore the associations of multiple plasma metals (including metalloids arsenic [As] and selenium [Se]) with Hcy levels and whether their associations were modified by genetic susceptibility. We included 2989 participants from the baseline of the Dongfeng-Tongji cohort (DFTJ cohort) and conducted a cross-sectional study to explore the associations of 17 plasma metals with serum Hcy levels. Both multi-variable linear regression model (single-metal model) and LASSO penalized regression model (multiple-metal model) were used to identify the Hcy-associated metals. The weighted genetic risk score (GRS) was calculated based on 18 established Hcy-associated genetic variants. For metals that were associated with Hcy, we further assessed the gene-metal interactions on Hcy levels. Among 17 metals, plasma molybdenum (Mo), strontium (Sr), and Zinc (Zn) were positively associated with Hcy levels, whereas Se was inversely associated with Hcy levels in both single- and multiple-metal models. We also observed that the genetic predisposition to Hcy significantly modified the association between plasma Se and serum Hcy levels (P for interaction = 0.003), while no significant gene-metal interactions were found for Mo, Sr, and Zn (all P for interactions > 0.05). These findings provide novel insight into the associations of the plasma concentrations of Mo, Se, Sr and Zn with Hcy levels and address the importance of Se as a potential upstream modifiable factor for the personalized prevention of elevated Hcy levels and CVD.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Cd</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">GWAS</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MTR</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Co</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Cr</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">HDL-C</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">DNMT</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Cu</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Pb</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Ti</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">HWE</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Tl</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">LOD</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">HNF1A</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">IQR</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">PCA</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">CVD</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">RCTs</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">DPEP1</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">ICP-MS</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SAH</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SAM</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Hcy</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mn</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mo</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">GRS</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Al</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Rb</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SD</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">As</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SNP</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Zn</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">CBS</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">U</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">V</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">W</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">DMC</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Ni</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">GSH</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Ba</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">BMI</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fe</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">NDNS</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">eGFR</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">CVs</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">VB12</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">CI</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">ECG</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MTHFR</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Sb</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Se</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">DFTJ cohort</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">NOX4</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Sn</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">CHD</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Sr</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Hao</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Zirui</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Wending</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Yizhi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">He, Shiqi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yu, Kuai</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jiang, Haijing</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Xuezhen</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guo, Huan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">He, Meian</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Xiaomin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Tangchun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yuan, Yu</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Fetters, Lisa ELSEVIER</subfield><subfield code="t">Erysipelas, the “Other” Cellulitis: A Practical Guide for Nurse Practitioners</subfield><subfield code="d">2021</subfield><subfield code="d">EES : official journal of the International Society of Ecotoxicology and Environmental safety</subfield><subfield code="g">Amsterdam</subfield><subfield code="w">(DE-627)ELV006765629</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:241</subfield><subfield code="g">year:2022</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ecoenv.2022.113705</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.63</subfield><subfield code="j">Krankenpflege</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">241</subfield><subfield code="j">2022</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
score |
7.4003077 |