Towards cluster duality for Lagrangian and orthogonal Grassmannians
In (), Rietsch and Williams relate cluster structures and mirror symmetry for type A Grassmannians Gr ( k , n ) , and use this interaction to construct Newton-Okounkov bodies and associated toric degenerations. In this article we define a cluster seed for the Lagrangian Grassmannian, and prove that...
Ausführliche Beschreibung
Autor*in: |
Wang, Charles [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Umfang: |
20 |
---|
Übergeordnetes Werk: |
Enthalten in: Synergistic effect of NaTi - Lee, Song Yeul ELSEVIER, 2022, an international journal, Amsterdam |
---|---|
Übergeordnetes Werk: |
volume:114 ; year:2023 ; pages:102-121 ; extent:20 |
Links: |
---|
DOI / URN: |
10.1016/j.jsc.2022.04.018 |
---|
Katalog-ID: |
ELV058356991 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV058356991 | ||
003 | DE-627 | ||
005 | 20230625005135.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220808s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jsc.2022.04.018 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001834.pica |
035 | |a (DE-627)ELV058356991 | ||
035 | |a (ELSEVIER)S0747-7171(22)00038-4 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 670 |a 530 |a 660 |q VZ |
084 | |a 33.68 |2 bkl | ||
084 | |a 35.18 |2 bkl | ||
084 | |a 52.78 |2 bkl | ||
100 | 1 | |a Wang, Charles |e verfasserin |4 aut | |
245 | 1 | 0 | |a Towards cluster duality for Lagrangian and orthogonal Grassmannians |
264 | 1 | |c 2023 | |
300 | |a 20 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a In (), Rietsch and Williams relate cluster structures and mirror symmetry for type A Grassmannians Gr ( k , n ) , and use this interaction to construct Newton-Okounkov bodies and associated toric degenerations. In this article we define a cluster seed for the Lagrangian Grassmannian, and prove that the associated Newton-Okounkov body agrees up to unimodular equivalence with a polytope obtained from the superpotential defined by Pech and Rietsch on the mirror Orthogonal Grassmannian in . | ||
650 | 7 | |a Cluster Algebra |2 Elsevier | |
650 | 7 | |a Newton-Okounkov Body |2 Elsevier | |
650 | 7 | |a Plabic Graph |2 Elsevier | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Lee, Song Yeul ELSEVIER |t Synergistic effect of NaTi |d 2022 |d an international journal |g Amsterdam |w (DE-627)ELV008973822 |
773 | 1 | 8 | |g volume:114 |g year:2023 |g pages:102-121 |g extent:20 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.jsc.2022.04.018 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
936 | b | k | |a 33.68 |j Oberflächen |j Dünne Schichten |j Grenzflächen |x Physik |q VZ |
936 | b | k | |a 35.18 |j Kolloidchemie |j Grenzflächenchemie |q VZ |
936 | b | k | |a 52.78 |j Oberflächentechnik |j Wärmebehandlung |q VZ |
951 | |a AR | ||
952 | |d 114 |j 2023 |h 102-121 |g 20 |
author_variant |
c w cw |
---|---|
matchkey_str |
wangcharles:2023----:oadcutrultfrarninnotoo |
hierarchy_sort_str |
2023 |
bklnumber |
33.68 35.18 52.78 |
publishDate |
2023 |
allfields |
10.1016/j.jsc.2022.04.018 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001834.pica (DE-627)ELV058356991 (ELSEVIER)S0747-7171(22)00038-4 DE-627 ger DE-627 rakwb eng 670 530 660 VZ 33.68 bkl 35.18 bkl 52.78 bkl Wang, Charles verfasserin aut Towards cluster duality for Lagrangian and orthogonal Grassmannians 2023 20 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In (), Rietsch and Williams relate cluster structures and mirror symmetry for type A Grassmannians Gr ( k , n ) , and use this interaction to construct Newton-Okounkov bodies and associated toric degenerations. In this article we define a cluster seed for the Lagrangian Grassmannian, and prove that the associated Newton-Okounkov body agrees up to unimodular equivalence with a polytope obtained from the superpotential defined by Pech and Rietsch on the mirror Orthogonal Grassmannian in . Cluster Algebra Elsevier Newton-Okounkov Body Elsevier Plabic Graph Elsevier Enthalten in Elsevier Lee, Song Yeul ELSEVIER Synergistic effect of NaTi 2022 an international journal Amsterdam (DE-627)ELV008973822 volume:114 year:2023 pages:102-121 extent:20 https://doi.org/10.1016/j.jsc.2022.04.018 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 33.68 Oberflächen Dünne Schichten Grenzflächen Physik VZ 35.18 Kolloidchemie Grenzflächenchemie VZ 52.78 Oberflächentechnik Wärmebehandlung VZ AR 114 2023 102-121 20 |
spelling |
10.1016/j.jsc.2022.04.018 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001834.pica (DE-627)ELV058356991 (ELSEVIER)S0747-7171(22)00038-4 DE-627 ger DE-627 rakwb eng 670 530 660 VZ 33.68 bkl 35.18 bkl 52.78 bkl Wang, Charles verfasserin aut Towards cluster duality for Lagrangian and orthogonal Grassmannians 2023 20 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In (), Rietsch and Williams relate cluster structures and mirror symmetry for type A Grassmannians Gr ( k , n ) , and use this interaction to construct Newton-Okounkov bodies and associated toric degenerations. In this article we define a cluster seed for the Lagrangian Grassmannian, and prove that the associated Newton-Okounkov body agrees up to unimodular equivalence with a polytope obtained from the superpotential defined by Pech and Rietsch on the mirror Orthogonal Grassmannian in . Cluster Algebra Elsevier Newton-Okounkov Body Elsevier Plabic Graph Elsevier Enthalten in Elsevier Lee, Song Yeul ELSEVIER Synergistic effect of NaTi 2022 an international journal Amsterdam (DE-627)ELV008973822 volume:114 year:2023 pages:102-121 extent:20 https://doi.org/10.1016/j.jsc.2022.04.018 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 33.68 Oberflächen Dünne Schichten Grenzflächen Physik VZ 35.18 Kolloidchemie Grenzflächenchemie VZ 52.78 Oberflächentechnik Wärmebehandlung VZ AR 114 2023 102-121 20 |
allfields_unstemmed |
10.1016/j.jsc.2022.04.018 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001834.pica (DE-627)ELV058356991 (ELSEVIER)S0747-7171(22)00038-4 DE-627 ger DE-627 rakwb eng 670 530 660 VZ 33.68 bkl 35.18 bkl 52.78 bkl Wang, Charles verfasserin aut Towards cluster duality for Lagrangian and orthogonal Grassmannians 2023 20 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In (), Rietsch and Williams relate cluster structures and mirror symmetry for type A Grassmannians Gr ( k , n ) , and use this interaction to construct Newton-Okounkov bodies and associated toric degenerations. In this article we define a cluster seed for the Lagrangian Grassmannian, and prove that the associated Newton-Okounkov body agrees up to unimodular equivalence with a polytope obtained from the superpotential defined by Pech and Rietsch on the mirror Orthogonal Grassmannian in . Cluster Algebra Elsevier Newton-Okounkov Body Elsevier Plabic Graph Elsevier Enthalten in Elsevier Lee, Song Yeul ELSEVIER Synergistic effect of NaTi 2022 an international journal Amsterdam (DE-627)ELV008973822 volume:114 year:2023 pages:102-121 extent:20 https://doi.org/10.1016/j.jsc.2022.04.018 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 33.68 Oberflächen Dünne Schichten Grenzflächen Physik VZ 35.18 Kolloidchemie Grenzflächenchemie VZ 52.78 Oberflächentechnik Wärmebehandlung VZ AR 114 2023 102-121 20 |
allfieldsGer |
10.1016/j.jsc.2022.04.018 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001834.pica (DE-627)ELV058356991 (ELSEVIER)S0747-7171(22)00038-4 DE-627 ger DE-627 rakwb eng 670 530 660 VZ 33.68 bkl 35.18 bkl 52.78 bkl Wang, Charles verfasserin aut Towards cluster duality for Lagrangian and orthogonal Grassmannians 2023 20 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In (), Rietsch and Williams relate cluster structures and mirror symmetry for type A Grassmannians Gr ( k , n ) , and use this interaction to construct Newton-Okounkov bodies and associated toric degenerations. In this article we define a cluster seed for the Lagrangian Grassmannian, and prove that the associated Newton-Okounkov body agrees up to unimodular equivalence with a polytope obtained from the superpotential defined by Pech and Rietsch on the mirror Orthogonal Grassmannian in . Cluster Algebra Elsevier Newton-Okounkov Body Elsevier Plabic Graph Elsevier Enthalten in Elsevier Lee, Song Yeul ELSEVIER Synergistic effect of NaTi 2022 an international journal Amsterdam (DE-627)ELV008973822 volume:114 year:2023 pages:102-121 extent:20 https://doi.org/10.1016/j.jsc.2022.04.018 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 33.68 Oberflächen Dünne Schichten Grenzflächen Physik VZ 35.18 Kolloidchemie Grenzflächenchemie VZ 52.78 Oberflächentechnik Wärmebehandlung VZ AR 114 2023 102-121 20 |
allfieldsSound |
10.1016/j.jsc.2022.04.018 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001834.pica (DE-627)ELV058356991 (ELSEVIER)S0747-7171(22)00038-4 DE-627 ger DE-627 rakwb eng 670 530 660 VZ 33.68 bkl 35.18 bkl 52.78 bkl Wang, Charles verfasserin aut Towards cluster duality for Lagrangian and orthogonal Grassmannians 2023 20 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In (), Rietsch and Williams relate cluster structures and mirror symmetry for type A Grassmannians Gr ( k , n ) , and use this interaction to construct Newton-Okounkov bodies and associated toric degenerations. In this article we define a cluster seed for the Lagrangian Grassmannian, and prove that the associated Newton-Okounkov body agrees up to unimodular equivalence with a polytope obtained from the superpotential defined by Pech and Rietsch on the mirror Orthogonal Grassmannian in . Cluster Algebra Elsevier Newton-Okounkov Body Elsevier Plabic Graph Elsevier Enthalten in Elsevier Lee, Song Yeul ELSEVIER Synergistic effect of NaTi 2022 an international journal Amsterdam (DE-627)ELV008973822 volume:114 year:2023 pages:102-121 extent:20 https://doi.org/10.1016/j.jsc.2022.04.018 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 33.68 Oberflächen Dünne Schichten Grenzflächen Physik VZ 35.18 Kolloidchemie Grenzflächenchemie VZ 52.78 Oberflächentechnik Wärmebehandlung VZ AR 114 2023 102-121 20 |
language |
English |
source |
Enthalten in Synergistic effect of NaTi Amsterdam volume:114 year:2023 pages:102-121 extent:20 |
sourceStr |
Enthalten in Synergistic effect of NaTi Amsterdam volume:114 year:2023 pages:102-121 extent:20 |
format_phy_str_mv |
Article |
bklname |
Oberflächen Dünne Schichten Grenzflächen Kolloidchemie Grenzflächenchemie Oberflächentechnik Wärmebehandlung |
institution |
findex.gbv.de |
topic_facet |
Cluster Algebra Newton-Okounkov Body Plabic Graph |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
Synergistic effect of NaTi |
authorswithroles_txt_mv |
Wang, Charles @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
ELV008973822 |
dewey-sort |
3670 |
id |
ELV058356991 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV058356991</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625005135.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220808s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jsc.2022.04.018</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001834.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV058356991</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0747-7171(22)00038-4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="a">530</subfield><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.68</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.18</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.78</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Charles</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Towards cluster duality for Lagrangian and orthogonal Grassmannians</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">20</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In (), Rietsch and Williams relate cluster structures and mirror symmetry for type A Grassmannians Gr ( k , n ) , and use this interaction to construct Newton-Okounkov bodies and associated toric degenerations. In this article we define a cluster seed for the Lagrangian Grassmannian, and prove that the associated Newton-Okounkov body agrees up to unimodular equivalence with a polytope obtained from the superpotential defined by Pech and Rietsch on the mirror Orthogonal Grassmannian in .</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Cluster Algebra</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Newton-Okounkov Body</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Plabic Graph</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Lee, Song Yeul ELSEVIER</subfield><subfield code="t">Synergistic effect of NaTi</subfield><subfield code="d">2022</subfield><subfield code="d">an international journal</subfield><subfield code="g">Amsterdam</subfield><subfield code="w">(DE-627)ELV008973822</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:114</subfield><subfield code="g">year:2023</subfield><subfield code="g">pages:102-121</subfield><subfield code="g">extent:20</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jsc.2022.04.018</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.68</subfield><subfield code="j">Oberflächen</subfield><subfield code="j">Dünne Schichten</subfield><subfield code="j">Grenzflächen</subfield><subfield code="x">Physik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.18</subfield><subfield code="j">Kolloidchemie</subfield><subfield code="j">Grenzflächenchemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.78</subfield><subfield code="j">Oberflächentechnik</subfield><subfield code="j">Wärmebehandlung</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">114</subfield><subfield code="j">2023</subfield><subfield code="h">102-121</subfield><subfield code="g">20</subfield></datafield></record></collection>
|
author |
Wang, Charles |
spellingShingle |
Wang, Charles ddc 670 bkl 33.68 bkl 35.18 bkl 52.78 Elsevier Cluster Algebra Elsevier Newton-Okounkov Body Elsevier Plabic Graph Towards cluster duality for Lagrangian and orthogonal Grassmannians |
authorStr |
Wang, Charles |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV008973822 |
format |
electronic Article |
dewey-ones |
670 - Manufacturing 530 - Physics 660 - Chemical engineering |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
670 530 660 VZ 33.68 bkl 35.18 bkl 52.78 bkl Towards cluster duality for Lagrangian and orthogonal Grassmannians Cluster Algebra Elsevier Newton-Okounkov Body Elsevier Plabic Graph Elsevier |
topic |
ddc 670 bkl 33.68 bkl 35.18 bkl 52.78 Elsevier Cluster Algebra Elsevier Newton-Okounkov Body Elsevier Plabic Graph |
topic_unstemmed |
ddc 670 bkl 33.68 bkl 35.18 bkl 52.78 Elsevier Cluster Algebra Elsevier Newton-Okounkov Body Elsevier Plabic Graph |
topic_browse |
ddc 670 bkl 33.68 bkl 35.18 bkl 52.78 Elsevier Cluster Algebra Elsevier Newton-Okounkov Body Elsevier Plabic Graph |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
hierarchy_parent_title |
Synergistic effect of NaTi |
hierarchy_parent_id |
ELV008973822 |
dewey-tens |
670 - Manufacturing 530 - Physics 660 - Chemical engineering |
hierarchy_top_title |
Synergistic effect of NaTi |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV008973822 |
title |
Towards cluster duality for Lagrangian and orthogonal Grassmannians |
ctrlnum |
(DE-627)ELV058356991 (ELSEVIER)S0747-7171(22)00038-4 |
title_full |
Towards cluster duality for Lagrangian and orthogonal Grassmannians |
author_sort |
Wang, Charles |
journal |
Synergistic effect of NaTi |
journalStr |
Synergistic effect of NaTi |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 500 - Science |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
container_start_page |
102 |
author_browse |
Wang, Charles |
container_volume |
114 |
physical |
20 |
class |
670 530 660 VZ 33.68 bkl 35.18 bkl 52.78 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Wang, Charles |
doi_str_mv |
10.1016/j.jsc.2022.04.018 |
dewey-full |
670 530 660 |
title_sort |
towards cluster duality for lagrangian and orthogonal grassmannians |
title_auth |
Towards cluster duality for Lagrangian and orthogonal Grassmannians |
abstract |
In (), Rietsch and Williams relate cluster structures and mirror symmetry for type A Grassmannians Gr ( k , n ) , and use this interaction to construct Newton-Okounkov bodies and associated toric degenerations. In this article we define a cluster seed for the Lagrangian Grassmannian, and prove that the associated Newton-Okounkov body agrees up to unimodular equivalence with a polytope obtained from the superpotential defined by Pech and Rietsch on the mirror Orthogonal Grassmannian in . |
abstractGer |
In (), Rietsch and Williams relate cluster structures and mirror symmetry for type A Grassmannians Gr ( k , n ) , and use this interaction to construct Newton-Okounkov bodies and associated toric degenerations. In this article we define a cluster seed for the Lagrangian Grassmannian, and prove that the associated Newton-Okounkov body agrees up to unimodular equivalence with a polytope obtained from the superpotential defined by Pech and Rietsch on the mirror Orthogonal Grassmannian in . |
abstract_unstemmed |
In (), Rietsch and Williams relate cluster structures and mirror symmetry for type A Grassmannians Gr ( k , n ) , and use this interaction to construct Newton-Okounkov bodies and associated toric degenerations. In this article we define a cluster seed for the Lagrangian Grassmannian, and prove that the associated Newton-Okounkov body agrees up to unimodular equivalence with a polytope obtained from the superpotential defined by Pech and Rietsch on the mirror Orthogonal Grassmannian in . |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA |
title_short |
Towards cluster duality for Lagrangian and orthogonal Grassmannians |
url |
https://doi.org/10.1016/j.jsc.2022.04.018 |
remote_bool |
true |
ppnlink |
ELV008973822 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.jsc.2022.04.018 |
up_date |
2024-07-06T18:47:03.172Z |
_version_ |
1803856509059203072 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV058356991</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625005135.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220808s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jsc.2022.04.018</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001834.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV058356991</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0747-7171(22)00038-4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="a">530</subfield><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.68</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.18</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.78</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Charles</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Towards cluster duality for Lagrangian and orthogonal Grassmannians</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">20</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In (), Rietsch and Williams relate cluster structures and mirror symmetry for type A Grassmannians Gr ( k , n ) , and use this interaction to construct Newton-Okounkov bodies and associated toric degenerations. In this article we define a cluster seed for the Lagrangian Grassmannian, and prove that the associated Newton-Okounkov body agrees up to unimodular equivalence with a polytope obtained from the superpotential defined by Pech and Rietsch on the mirror Orthogonal Grassmannian in .</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Cluster Algebra</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Newton-Okounkov Body</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Plabic Graph</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Lee, Song Yeul ELSEVIER</subfield><subfield code="t">Synergistic effect of NaTi</subfield><subfield code="d">2022</subfield><subfield code="d">an international journal</subfield><subfield code="g">Amsterdam</subfield><subfield code="w">(DE-627)ELV008973822</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:114</subfield><subfield code="g">year:2023</subfield><subfield code="g">pages:102-121</subfield><subfield code="g">extent:20</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jsc.2022.04.018</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.68</subfield><subfield code="j">Oberflächen</subfield><subfield code="j">Dünne Schichten</subfield><subfield code="j">Grenzflächen</subfield><subfield code="x">Physik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.18</subfield><subfield code="j">Kolloidchemie</subfield><subfield code="j">Grenzflächenchemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.78</subfield><subfield code="j">Oberflächentechnik</subfield><subfield code="j">Wärmebehandlung</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">114</subfield><subfield code="j">2023</subfield><subfield code="h">102-121</subfield><subfield code="g">20</subfield></datafield></record></collection>
|
score |
7.399806 |