Analysis of the cutting fluid behavior with a modified micro single-lip deep hole drilling tool
Deep drilling with smallest diameters is used for applications such as automotive, aerospace and medicine. Especially difficult to cut materials require an efficient tool design to realize an economical production. Therefore, combined simulation methods are used in this paper to analyze the fluid be...
Ausführliche Beschreibung
Autor*in: |
Oezkaya, Ekrem [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022transfer abstract |
---|
Schlagwörter: |
Computational Fluid Dynamics simulation Smoothed Particle Hydrodynamics / Discrete Element Method simulation |
---|
Umfang: |
12 |
---|
Übergeordnetes Werk: |
Enthalten in: Identification of genetic characterization and volatile compounds of Tricholoma matsutake from different geographical origins - 2012transfer abstract, CIRP-JMST, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:38 ; year:2022 ; pages:93-104 ; extent:12 |
Links: |
---|
DOI / URN: |
10.1016/j.cirpj.2022.04.003 |
---|
Katalog-ID: |
ELV058459715 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV058459715 | ||
003 | DE-627 | ||
005 | 20230626050916.0 | ||
007 | cr uuu---uuuuu | ||
008 | 221103s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.cirpj.2022.04.003 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001851.pica |
035 | |a (DE-627)ELV058459715 | ||
035 | |a (ELSEVIER)S1755-5817(22)00069-4 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 570 |q VZ |
082 | 0 | 4 | |a 150 |q VZ |
100 | 1 | |a Oezkaya, Ekrem |e verfasserin |4 aut | |
245 | 1 | 0 | |a Analysis of the cutting fluid behavior with a modified micro single-lip deep hole drilling tool |
264 | 1 | |c 2022transfer abstract | |
300 | |a 12 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Deep drilling with smallest diameters is used for applications such as automotive, aerospace and medicine. Especially difficult to cut materials require an efficient tool design to realize an economical production. Therefore, combined simulation methods are used in this paper to analyze the fluid behavior under consideration of the transient chip positions. To improve tool cooling by an improved cutting fluid flow, which supports chip removal also, both the cross-sectional area of the internal cooling channel and the outer and inner cutting edge angles were modified. With the modified model, cutting fluid velocity increased by 40% and chip evacuation by 60%. | ||
520 | |a Deep drilling with smallest diameters is used for applications such as automotive, aerospace and medicine. Especially difficult to cut materials require an efficient tool design to realize an economical production. Therefore, combined simulation methods are used in this paper to analyze the fluid behavior under consideration of the transient chip positions. To improve tool cooling by an improved cutting fluid flow, which supports chip removal also, both the cross-sectional area of the internal cooling channel and the outer and inner cutting edge angles were modified. With the modified model, cutting fluid velocity increased by 40% and chip evacuation by 60%. | ||
650 | 7 | |a Inconel 718 |2 Elsevier | |
650 | 7 | |a Chip formation |2 Elsevier | |
650 | 7 | |a Computational Fluid Dynamics simulation |2 Elsevier | |
650 | 7 | |a Cutting fluid |2 Elsevier | |
650 | 7 | |a Smoothed Particle Hydrodynamics / Discrete Element Method simulation |2 Elsevier | |
650 | 7 | |a Micro single lip deep hole drilling |2 Elsevier | |
700 | 1 | |a Baumann, Andreas |4 oth | |
700 | 1 | |a Eberhard, Peter |4 oth | |
700 | 1 | |a Biermann, Dirk |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |t Identification of genetic characterization and volatile compounds of Tricholoma matsutake from different geographical origins |d 2012transfer abstract |d CIRP-JMST |g Amsterdam [u.a.] |w (DE-627)ELV026452936 |
773 | 1 | 8 | |g volume:38 |g year:2022 |g pages:93-104 |g extent:12 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.cirpj.2022.04.003 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_26 | ||
912 | |a GBV_ILN_72 | ||
912 | |a GBV_ILN_252 | ||
951 | |a AR | ||
952 | |d 38 |j 2022 |h 93-104 |g 12 |
author_variant |
e o eo |
---|---|
matchkey_str |
oezkayaekrembaumannandreaseberhardpeterb:2022----:nlssfhctiglibhvowtaoiidirsnllp |
hierarchy_sort_str |
2022transfer abstract |
publishDate |
2022 |
allfields |
10.1016/j.cirpj.2022.04.003 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001851.pica (DE-627)ELV058459715 (ELSEVIER)S1755-5817(22)00069-4 DE-627 ger DE-627 rakwb eng 570 VZ 150 VZ Oezkaya, Ekrem verfasserin aut Analysis of the cutting fluid behavior with a modified micro single-lip deep hole drilling tool 2022transfer abstract 12 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Deep drilling with smallest diameters is used for applications such as automotive, aerospace and medicine. Especially difficult to cut materials require an efficient tool design to realize an economical production. Therefore, combined simulation methods are used in this paper to analyze the fluid behavior under consideration of the transient chip positions. To improve tool cooling by an improved cutting fluid flow, which supports chip removal also, both the cross-sectional area of the internal cooling channel and the outer and inner cutting edge angles were modified. With the modified model, cutting fluid velocity increased by 40% and chip evacuation by 60%. Deep drilling with smallest diameters is used for applications such as automotive, aerospace and medicine. Especially difficult to cut materials require an efficient tool design to realize an economical production. Therefore, combined simulation methods are used in this paper to analyze the fluid behavior under consideration of the transient chip positions. To improve tool cooling by an improved cutting fluid flow, which supports chip removal also, both the cross-sectional area of the internal cooling channel and the outer and inner cutting edge angles were modified. With the modified model, cutting fluid velocity increased by 40% and chip evacuation by 60%. Inconel 718 Elsevier Chip formation Elsevier Computational Fluid Dynamics simulation Elsevier Cutting fluid Elsevier Smoothed Particle Hydrodynamics / Discrete Element Method simulation Elsevier Micro single lip deep hole drilling Elsevier Baumann, Andreas oth Eberhard, Peter oth Biermann, Dirk oth Enthalten in Elsevier Identification of genetic characterization and volatile compounds of Tricholoma matsutake from different geographical origins 2012transfer abstract CIRP-JMST Amsterdam [u.a.] (DE-627)ELV026452936 volume:38 year:2022 pages:93-104 extent:12 https://doi.org/10.1016/j.cirpj.2022.04.003 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_21 GBV_ILN_26 GBV_ILN_72 GBV_ILN_252 AR 38 2022 93-104 12 |
spelling |
10.1016/j.cirpj.2022.04.003 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001851.pica (DE-627)ELV058459715 (ELSEVIER)S1755-5817(22)00069-4 DE-627 ger DE-627 rakwb eng 570 VZ 150 VZ Oezkaya, Ekrem verfasserin aut Analysis of the cutting fluid behavior with a modified micro single-lip deep hole drilling tool 2022transfer abstract 12 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Deep drilling with smallest diameters is used for applications such as automotive, aerospace and medicine. Especially difficult to cut materials require an efficient tool design to realize an economical production. Therefore, combined simulation methods are used in this paper to analyze the fluid behavior under consideration of the transient chip positions. To improve tool cooling by an improved cutting fluid flow, which supports chip removal also, both the cross-sectional area of the internal cooling channel and the outer and inner cutting edge angles were modified. With the modified model, cutting fluid velocity increased by 40% and chip evacuation by 60%. Deep drilling with smallest diameters is used for applications such as automotive, aerospace and medicine. Especially difficult to cut materials require an efficient tool design to realize an economical production. Therefore, combined simulation methods are used in this paper to analyze the fluid behavior under consideration of the transient chip positions. To improve tool cooling by an improved cutting fluid flow, which supports chip removal also, both the cross-sectional area of the internal cooling channel and the outer and inner cutting edge angles were modified. With the modified model, cutting fluid velocity increased by 40% and chip evacuation by 60%. Inconel 718 Elsevier Chip formation Elsevier Computational Fluid Dynamics simulation Elsevier Cutting fluid Elsevier Smoothed Particle Hydrodynamics / Discrete Element Method simulation Elsevier Micro single lip deep hole drilling Elsevier Baumann, Andreas oth Eberhard, Peter oth Biermann, Dirk oth Enthalten in Elsevier Identification of genetic characterization and volatile compounds of Tricholoma matsutake from different geographical origins 2012transfer abstract CIRP-JMST Amsterdam [u.a.] (DE-627)ELV026452936 volume:38 year:2022 pages:93-104 extent:12 https://doi.org/10.1016/j.cirpj.2022.04.003 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_21 GBV_ILN_26 GBV_ILN_72 GBV_ILN_252 AR 38 2022 93-104 12 |
allfields_unstemmed |
10.1016/j.cirpj.2022.04.003 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001851.pica (DE-627)ELV058459715 (ELSEVIER)S1755-5817(22)00069-4 DE-627 ger DE-627 rakwb eng 570 VZ 150 VZ Oezkaya, Ekrem verfasserin aut Analysis of the cutting fluid behavior with a modified micro single-lip deep hole drilling tool 2022transfer abstract 12 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Deep drilling with smallest diameters is used for applications such as automotive, aerospace and medicine. Especially difficult to cut materials require an efficient tool design to realize an economical production. Therefore, combined simulation methods are used in this paper to analyze the fluid behavior under consideration of the transient chip positions. To improve tool cooling by an improved cutting fluid flow, which supports chip removal also, both the cross-sectional area of the internal cooling channel and the outer and inner cutting edge angles were modified. With the modified model, cutting fluid velocity increased by 40% and chip evacuation by 60%. Deep drilling with smallest diameters is used for applications such as automotive, aerospace and medicine. Especially difficult to cut materials require an efficient tool design to realize an economical production. Therefore, combined simulation methods are used in this paper to analyze the fluid behavior under consideration of the transient chip positions. To improve tool cooling by an improved cutting fluid flow, which supports chip removal also, both the cross-sectional area of the internal cooling channel and the outer and inner cutting edge angles were modified. With the modified model, cutting fluid velocity increased by 40% and chip evacuation by 60%. Inconel 718 Elsevier Chip formation Elsevier Computational Fluid Dynamics simulation Elsevier Cutting fluid Elsevier Smoothed Particle Hydrodynamics / Discrete Element Method simulation Elsevier Micro single lip deep hole drilling Elsevier Baumann, Andreas oth Eberhard, Peter oth Biermann, Dirk oth Enthalten in Elsevier Identification of genetic characterization and volatile compounds of Tricholoma matsutake from different geographical origins 2012transfer abstract CIRP-JMST Amsterdam [u.a.] (DE-627)ELV026452936 volume:38 year:2022 pages:93-104 extent:12 https://doi.org/10.1016/j.cirpj.2022.04.003 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_21 GBV_ILN_26 GBV_ILN_72 GBV_ILN_252 AR 38 2022 93-104 12 |
allfieldsGer |
10.1016/j.cirpj.2022.04.003 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001851.pica (DE-627)ELV058459715 (ELSEVIER)S1755-5817(22)00069-4 DE-627 ger DE-627 rakwb eng 570 VZ 150 VZ Oezkaya, Ekrem verfasserin aut Analysis of the cutting fluid behavior with a modified micro single-lip deep hole drilling tool 2022transfer abstract 12 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Deep drilling with smallest diameters is used for applications such as automotive, aerospace and medicine. Especially difficult to cut materials require an efficient tool design to realize an economical production. Therefore, combined simulation methods are used in this paper to analyze the fluid behavior under consideration of the transient chip positions. To improve tool cooling by an improved cutting fluid flow, which supports chip removal also, both the cross-sectional area of the internal cooling channel and the outer and inner cutting edge angles were modified. With the modified model, cutting fluid velocity increased by 40% and chip evacuation by 60%. Deep drilling with smallest diameters is used for applications such as automotive, aerospace and medicine. Especially difficult to cut materials require an efficient tool design to realize an economical production. Therefore, combined simulation methods are used in this paper to analyze the fluid behavior under consideration of the transient chip positions. To improve tool cooling by an improved cutting fluid flow, which supports chip removal also, both the cross-sectional area of the internal cooling channel and the outer and inner cutting edge angles were modified. With the modified model, cutting fluid velocity increased by 40% and chip evacuation by 60%. Inconel 718 Elsevier Chip formation Elsevier Computational Fluid Dynamics simulation Elsevier Cutting fluid Elsevier Smoothed Particle Hydrodynamics / Discrete Element Method simulation Elsevier Micro single lip deep hole drilling Elsevier Baumann, Andreas oth Eberhard, Peter oth Biermann, Dirk oth Enthalten in Elsevier Identification of genetic characterization and volatile compounds of Tricholoma matsutake from different geographical origins 2012transfer abstract CIRP-JMST Amsterdam [u.a.] (DE-627)ELV026452936 volume:38 year:2022 pages:93-104 extent:12 https://doi.org/10.1016/j.cirpj.2022.04.003 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_21 GBV_ILN_26 GBV_ILN_72 GBV_ILN_252 AR 38 2022 93-104 12 |
allfieldsSound |
10.1016/j.cirpj.2022.04.003 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001851.pica (DE-627)ELV058459715 (ELSEVIER)S1755-5817(22)00069-4 DE-627 ger DE-627 rakwb eng 570 VZ 150 VZ Oezkaya, Ekrem verfasserin aut Analysis of the cutting fluid behavior with a modified micro single-lip deep hole drilling tool 2022transfer abstract 12 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Deep drilling with smallest diameters is used for applications such as automotive, aerospace and medicine. Especially difficult to cut materials require an efficient tool design to realize an economical production. Therefore, combined simulation methods are used in this paper to analyze the fluid behavior under consideration of the transient chip positions. To improve tool cooling by an improved cutting fluid flow, which supports chip removal also, both the cross-sectional area of the internal cooling channel and the outer and inner cutting edge angles were modified. With the modified model, cutting fluid velocity increased by 40% and chip evacuation by 60%. Deep drilling with smallest diameters is used for applications such as automotive, aerospace and medicine. Especially difficult to cut materials require an efficient tool design to realize an economical production. Therefore, combined simulation methods are used in this paper to analyze the fluid behavior under consideration of the transient chip positions. To improve tool cooling by an improved cutting fluid flow, which supports chip removal also, both the cross-sectional area of the internal cooling channel and the outer and inner cutting edge angles were modified. With the modified model, cutting fluid velocity increased by 40% and chip evacuation by 60%. Inconel 718 Elsevier Chip formation Elsevier Computational Fluid Dynamics simulation Elsevier Cutting fluid Elsevier Smoothed Particle Hydrodynamics / Discrete Element Method simulation Elsevier Micro single lip deep hole drilling Elsevier Baumann, Andreas oth Eberhard, Peter oth Biermann, Dirk oth Enthalten in Elsevier Identification of genetic characterization and volatile compounds of Tricholoma matsutake from different geographical origins 2012transfer abstract CIRP-JMST Amsterdam [u.a.] (DE-627)ELV026452936 volume:38 year:2022 pages:93-104 extent:12 https://doi.org/10.1016/j.cirpj.2022.04.003 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_21 GBV_ILN_26 GBV_ILN_72 GBV_ILN_252 AR 38 2022 93-104 12 |
language |
English |
source |
Enthalten in Identification of genetic characterization and volatile compounds of Tricholoma matsutake from different geographical origins Amsterdam [u.a.] volume:38 year:2022 pages:93-104 extent:12 |
sourceStr |
Enthalten in Identification of genetic characterization and volatile compounds of Tricholoma matsutake from different geographical origins Amsterdam [u.a.] volume:38 year:2022 pages:93-104 extent:12 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Inconel 718 Chip formation Computational Fluid Dynamics simulation Cutting fluid Smoothed Particle Hydrodynamics / Discrete Element Method simulation Micro single lip deep hole drilling |
dewey-raw |
570 |
isfreeaccess_bool |
false |
container_title |
Identification of genetic characterization and volatile compounds of Tricholoma matsutake from different geographical origins |
authorswithroles_txt_mv |
Oezkaya, Ekrem @@aut@@ Baumann, Andreas @@oth@@ Eberhard, Peter @@oth@@ Biermann, Dirk @@oth@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
ELV026452936 |
dewey-sort |
3570 |
id |
ELV058459715 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV058459715</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626050916.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">221103s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.cirpj.2022.04.003</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001851.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV058459715</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1755-5817(22)00069-4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">150</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Oezkaya, Ekrem</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Analysis of the cutting fluid behavior with a modified micro single-lip deep hole drilling tool</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">12</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Deep drilling with smallest diameters is used for applications such as automotive, aerospace and medicine. Especially difficult to cut materials require an efficient tool design to realize an economical production. Therefore, combined simulation methods are used in this paper to analyze the fluid behavior under consideration of the transient chip positions. To improve tool cooling by an improved cutting fluid flow, which supports chip removal also, both the cross-sectional area of the internal cooling channel and the outer and inner cutting edge angles were modified. With the modified model, cutting fluid velocity increased by 40% and chip evacuation by 60%.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Deep drilling with smallest diameters is used for applications such as automotive, aerospace and medicine. Especially difficult to cut materials require an efficient tool design to realize an economical production. Therefore, combined simulation methods are used in this paper to analyze the fluid behavior under consideration of the transient chip positions. To improve tool cooling by an improved cutting fluid flow, which supports chip removal also, both the cross-sectional area of the internal cooling channel and the outer and inner cutting edge angles were modified. With the modified model, cutting fluid velocity increased by 40% and chip evacuation by 60%.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Inconel 718</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Chip formation</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Computational Fluid Dynamics simulation</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Cutting fluid</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Smoothed Particle Hydrodynamics / Discrete Element Method simulation</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Micro single lip deep hole drilling</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Baumann, Andreas</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Eberhard, Peter</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Biermann, Dirk</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="t">Identification of genetic characterization and volatile compounds of Tricholoma matsutake from different geographical origins</subfield><subfield code="d">2012transfer abstract</subfield><subfield code="d">CIRP-JMST</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV026452936</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:38</subfield><subfield code="g">year:2022</subfield><subfield code="g">pages:93-104</subfield><subfield code="g">extent:12</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.cirpj.2022.04.003</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_26</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_72</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_252</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">38</subfield><subfield code="j">2022</subfield><subfield code="h">93-104</subfield><subfield code="g">12</subfield></datafield></record></collection>
|
author |
Oezkaya, Ekrem |
spellingShingle |
Oezkaya, Ekrem ddc 570 ddc 150 Elsevier Inconel 718 Elsevier Chip formation Elsevier Computational Fluid Dynamics simulation Elsevier Cutting fluid Elsevier Smoothed Particle Hydrodynamics / Discrete Element Method simulation Elsevier Micro single lip deep hole drilling Analysis of the cutting fluid behavior with a modified micro single-lip deep hole drilling tool |
authorStr |
Oezkaya, Ekrem |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV026452936 |
format |
electronic Article |
dewey-ones |
570 - Life sciences; biology 150 - Psychology |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
570 VZ 150 VZ Analysis of the cutting fluid behavior with a modified micro single-lip deep hole drilling tool Inconel 718 Elsevier Chip formation Elsevier Computational Fluid Dynamics simulation Elsevier Cutting fluid Elsevier Smoothed Particle Hydrodynamics / Discrete Element Method simulation Elsevier Micro single lip deep hole drilling Elsevier |
topic |
ddc 570 ddc 150 Elsevier Inconel 718 Elsevier Chip formation Elsevier Computational Fluid Dynamics simulation Elsevier Cutting fluid Elsevier Smoothed Particle Hydrodynamics / Discrete Element Method simulation Elsevier Micro single lip deep hole drilling |
topic_unstemmed |
ddc 570 ddc 150 Elsevier Inconel 718 Elsevier Chip formation Elsevier Computational Fluid Dynamics simulation Elsevier Cutting fluid Elsevier Smoothed Particle Hydrodynamics / Discrete Element Method simulation Elsevier Micro single lip deep hole drilling |
topic_browse |
ddc 570 ddc 150 Elsevier Inconel 718 Elsevier Chip formation Elsevier Computational Fluid Dynamics simulation Elsevier Cutting fluid Elsevier Smoothed Particle Hydrodynamics / Discrete Element Method simulation Elsevier Micro single lip deep hole drilling |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
a b ab p e pe d b db |
hierarchy_parent_title |
Identification of genetic characterization and volatile compounds of Tricholoma matsutake from different geographical origins |
hierarchy_parent_id |
ELV026452936 |
dewey-tens |
570 - Life sciences; biology 150 - Psychology |
hierarchy_top_title |
Identification of genetic characterization and volatile compounds of Tricholoma matsutake from different geographical origins |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV026452936 |
title |
Analysis of the cutting fluid behavior with a modified micro single-lip deep hole drilling tool |
ctrlnum |
(DE-627)ELV058459715 (ELSEVIER)S1755-5817(22)00069-4 |
title_full |
Analysis of the cutting fluid behavior with a modified micro single-lip deep hole drilling tool |
author_sort |
Oezkaya, Ekrem |
journal |
Identification of genetic characterization and volatile compounds of Tricholoma matsutake from different geographical origins |
journalStr |
Identification of genetic characterization and volatile compounds of Tricholoma matsutake from different geographical origins |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 100 - Philosophy & psychology |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
zzz |
container_start_page |
93 |
author_browse |
Oezkaya, Ekrem |
container_volume |
38 |
physical |
12 |
class |
570 VZ 150 VZ |
format_se |
Elektronische Aufsätze |
author-letter |
Oezkaya, Ekrem |
doi_str_mv |
10.1016/j.cirpj.2022.04.003 |
dewey-full |
570 150 |
title_sort |
analysis of the cutting fluid behavior with a modified micro single-lip deep hole drilling tool |
title_auth |
Analysis of the cutting fluid behavior with a modified micro single-lip deep hole drilling tool |
abstract |
Deep drilling with smallest diameters is used for applications such as automotive, aerospace and medicine. Especially difficult to cut materials require an efficient tool design to realize an economical production. Therefore, combined simulation methods are used in this paper to analyze the fluid behavior under consideration of the transient chip positions. To improve tool cooling by an improved cutting fluid flow, which supports chip removal also, both the cross-sectional area of the internal cooling channel and the outer and inner cutting edge angles were modified. With the modified model, cutting fluid velocity increased by 40% and chip evacuation by 60%. |
abstractGer |
Deep drilling with smallest diameters is used for applications such as automotive, aerospace and medicine. Especially difficult to cut materials require an efficient tool design to realize an economical production. Therefore, combined simulation methods are used in this paper to analyze the fluid behavior under consideration of the transient chip positions. To improve tool cooling by an improved cutting fluid flow, which supports chip removal also, both the cross-sectional area of the internal cooling channel and the outer and inner cutting edge angles were modified. With the modified model, cutting fluid velocity increased by 40% and chip evacuation by 60%. |
abstract_unstemmed |
Deep drilling with smallest diameters is used for applications such as automotive, aerospace and medicine. Especially difficult to cut materials require an efficient tool design to realize an economical production. Therefore, combined simulation methods are used in this paper to analyze the fluid behavior under consideration of the transient chip positions. To improve tool cooling by an improved cutting fluid flow, which supports chip removal also, both the cross-sectional area of the internal cooling channel and the outer and inner cutting edge angles were modified. With the modified model, cutting fluid velocity increased by 40% and chip evacuation by 60%. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_21 GBV_ILN_26 GBV_ILN_72 GBV_ILN_252 |
title_short |
Analysis of the cutting fluid behavior with a modified micro single-lip deep hole drilling tool |
url |
https://doi.org/10.1016/j.cirpj.2022.04.003 |
remote_bool |
true |
author2 |
Baumann, Andreas Eberhard, Peter Biermann, Dirk |
author2Str |
Baumann, Andreas Eberhard, Peter Biermann, Dirk |
ppnlink |
ELV026452936 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth |
doi_str |
10.1016/j.cirpj.2022.04.003 |
up_date |
2024-07-06T19:05:00.369Z |
_version_ |
1803857638583173120 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV058459715</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626050916.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">221103s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.cirpj.2022.04.003</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001851.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV058459715</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1755-5817(22)00069-4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">150</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Oezkaya, Ekrem</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Analysis of the cutting fluid behavior with a modified micro single-lip deep hole drilling tool</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">12</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Deep drilling with smallest diameters is used for applications such as automotive, aerospace and medicine. Especially difficult to cut materials require an efficient tool design to realize an economical production. Therefore, combined simulation methods are used in this paper to analyze the fluid behavior under consideration of the transient chip positions. To improve tool cooling by an improved cutting fluid flow, which supports chip removal also, both the cross-sectional area of the internal cooling channel and the outer and inner cutting edge angles were modified. With the modified model, cutting fluid velocity increased by 40% and chip evacuation by 60%.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Deep drilling with smallest diameters is used for applications such as automotive, aerospace and medicine. Especially difficult to cut materials require an efficient tool design to realize an economical production. Therefore, combined simulation methods are used in this paper to analyze the fluid behavior under consideration of the transient chip positions. To improve tool cooling by an improved cutting fluid flow, which supports chip removal also, both the cross-sectional area of the internal cooling channel and the outer and inner cutting edge angles were modified. With the modified model, cutting fluid velocity increased by 40% and chip evacuation by 60%.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Inconel 718</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Chip formation</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Computational Fluid Dynamics simulation</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Cutting fluid</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Smoothed Particle Hydrodynamics / Discrete Element Method simulation</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Micro single lip deep hole drilling</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Baumann, Andreas</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Eberhard, Peter</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Biermann, Dirk</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="t">Identification of genetic characterization and volatile compounds of Tricholoma matsutake from different geographical origins</subfield><subfield code="d">2012transfer abstract</subfield><subfield code="d">CIRP-JMST</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV026452936</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:38</subfield><subfield code="g">year:2022</subfield><subfield code="g">pages:93-104</subfield><subfield code="g">extent:12</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.cirpj.2022.04.003</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_26</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_72</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_252</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">38</subfield><subfield code="j">2022</subfield><subfield code="h">93-104</subfield><subfield code="g">12</subfield></datafield></record></collection>
|
score |
7.4002275 |