Nonlinear elastic deformation of Mindlin torus
The nonlinear deformation and stress analysis of a circular torus is a difficult undertaking due to its complicated topology and the variation of the Gauss curvature. A nonlinear deformation (only one term in strain is omitted) of Mindlin torus was formulated in terms of the generalized displacement...
Ausführliche Beschreibung
Autor*in: |
Sun, B.H. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022transfer abstract |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Proximity-dependent protein detection based on enzyme-assisted fluorescence signal amplification - Tan, Yuyu ELSEVIER, 2014transfer abstract, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:114 ; year:2022 ; pages:0 |
Links: |
---|
DOI / URN: |
10.1016/j.cnsns.2022.106698 |
---|
Katalog-ID: |
ELV05846252X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV05846252X | ||
003 | DE-627 | ||
005 | 20230626050919.0 | ||
007 | cr uuu---uuuuu | ||
008 | 221103s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.cnsns.2022.106698 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001852.pica |
035 | |a (DE-627)ELV05846252X | ||
035 | |a (ELSEVIER)S1007-5704(22)00255-6 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 570 |q VZ |
082 | 0 | 4 | |a 610 |q VZ |
082 | 0 | 4 | |a 630 |a 640 |q VZ |
084 | |a 49.00 |2 bkl | ||
100 | 1 | |a Sun, B.H. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Nonlinear elastic deformation of Mindlin torus |
264 | 1 | |c 2022transfer abstract | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a The nonlinear deformation and stress analysis of a circular torus is a difficult undertaking due to its complicated topology and the variation of the Gauss curvature. A nonlinear deformation (only one term in strain is omitted) of Mindlin torus was formulated in terms of the generalized displacement, and a general Maple code was written for numerical simulations. Numerical investigations show that the results obtained by nonlinear Mindlin, linear Mindlin, nonlinear Kirchhoff–Love, and linear Kirchhoff–Love models are close to each other. The study further reveals that the linear Kirchhoff–Love modeling of the circular torus gives good accuracy and provides assurance that the nonlinear deformation and stress analysis (not dynamics) of a Mindlin torus can be replaced by a simpler formulation, such as a linear Kirchhoff–Love theory of the torus, which has not been reported in the literature. | ||
520 | |a The nonlinear deformation and stress analysis of a circular torus is a difficult undertaking due to its complicated topology and the variation of the Gauss curvature. A nonlinear deformation (only one term in strain is omitted) of Mindlin torus was formulated in terms of the generalized displacement, and a general Maple code was written for numerical simulations. Numerical investigations show that the results obtained by nonlinear Mindlin, linear Mindlin, nonlinear Kirchhoff–Love, and linear Kirchhoff–Love models are close to each other. The study further reveals that the linear Kirchhoff–Love modeling of the circular torus gives good accuracy and provides assurance that the nonlinear deformation and stress analysis (not dynamics) of a Mindlin torus can be replaced by a simpler formulation, such as a linear Kirchhoff–Love theory of the torus, which has not been reported in the literature. | ||
650 | 7 | |a Nonlinear deformation |2 Elsevier | |
650 | 7 | |a Circular torus |2 Elsevier | |
650 | 7 | |a Mindlin |2 Elsevier | |
650 | 7 | |a Shear deformation |2 Elsevier | |
650 | 7 | |a Gauss curvature |2 Elsevier | |
650 | 7 | |a Maple |2 Elsevier | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Tan, Yuyu ELSEVIER |t Proximity-dependent protein detection based on enzyme-assisted fluorescence signal amplification |d 2014transfer abstract |g Amsterdam [u.a.] |w (DE-627)ELV012515639 |
773 | 1 | 8 | |g volume:114 |g year:2022 |g pages:0 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.cnsns.2022.106698 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
936 | b | k | |a 49.00 |j Hauswirtschaft: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 114 |j 2022 |h 0 |
author_variant |
b s bs |
---|---|
matchkey_str |
sunbh:2022----:olnaeatceomtoom |
hierarchy_sort_str |
2022transfer abstract |
bklnumber |
49.00 |
publishDate |
2022 |
allfields |
10.1016/j.cnsns.2022.106698 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001852.pica (DE-627)ELV05846252X (ELSEVIER)S1007-5704(22)00255-6 DE-627 ger DE-627 rakwb eng 570 VZ 610 VZ 630 640 VZ 49.00 bkl Sun, B.H. verfasserin aut Nonlinear elastic deformation of Mindlin torus 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The nonlinear deformation and stress analysis of a circular torus is a difficult undertaking due to its complicated topology and the variation of the Gauss curvature. A nonlinear deformation (only one term in strain is omitted) of Mindlin torus was formulated in terms of the generalized displacement, and a general Maple code was written for numerical simulations. Numerical investigations show that the results obtained by nonlinear Mindlin, linear Mindlin, nonlinear Kirchhoff–Love, and linear Kirchhoff–Love models are close to each other. The study further reveals that the linear Kirchhoff–Love modeling of the circular torus gives good accuracy and provides assurance that the nonlinear deformation and stress analysis (not dynamics) of a Mindlin torus can be replaced by a simpler formulation, such as a linear Kirchhoff–Love theory of the torus, which has not been reported in the literature. The nonlinear deformation and stress analysis of a circular torus is a difficult undertaking due to its complicated topology and the variation of the Gauss curvature. A nonlinear deformation (only one term in strain is omitted) of Mindlin torus was formulated in terms of the generalized displacement, and a general Maple code was written for numerical simulations. Numerical investigations show that the results obtained by nonlinear Mindlin, linear Mindlin, nonlinear Kirchhoff–Love, and linear Kirchhoff–Love models are close to each other. The study further reveals that the linear Kirchhoff–Love modeling of the circular torus gives good accuracy and provides assurance that the nonlinear deformation and stress analysis (not dynamics) of a Mindlin torus can be replaced by a simpler formulation, such as a linear Kirchhoff–Love theory of the torus, which has not been reported in the literature. Nonlinear deformation Elsevier Circular torus Elsevier Mindlin Elsevier Shear deformation Elsevier Gauss curvature Elsevier Maple Elsevier Enthalten in Elsevier Tan, Yuyu ELSEVIER Proximity-dependent protein detection based on enzyme-assisted fluorescence signal amplification 2014transfer abstract Amsterdam [u.a.] (DE-627)ELV012515639 volume:114 year:2022 pages:0 https://doi.org/10.1016/j.cnsns.2022.106698 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 49.00 Hauswirtschaft: Allgemeines VZ AR 114 2022 0 |
spelling |
10.1016/j.cnsns.2022.106698 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001852.pica (DE-627)ELV05846252X (ELSEVIER)S1007-5704(22)00255-6 DE-627 ger DE-627 rakwb eng 570 VZ 610 VZ 630 640 VZ 49.00 bkl Sun, B.H. verfasserin aut Nonlinear elastic deformation of Mindlin torus 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The nonlinear deformation and stress analysis of a circular torus is a difficult undertaking due to its complicated topology and the variation of the Gauss curvature. A nonlinear deformation (only one term in strain is omitted) of Mindlin torus was formulated in terms of the generalized displacement, and a general Maple code was written for numerical simulations. Numerical investigations show that the results obtained by nonlinear Mindlin, linear Mindlin, nonlinear Kirchhoff–Love, and linear Kirchhoff–Love models are close to each other. The study further reveals that the linear Kirchhoff–Love modeling of the circular torus gives good accuracy and provides assurance that the nonlinear deformation and stress analysis (not dynamics) of a Mindlin torus can be replaced by a simpler formulation, such as a linear Kirchhoff–Love theory of the torus, which has not been reported in the literature. The nonlinear deformation and stress analysis of a circular torus is a difficult undertaking due to its complicated topology and the variation of the Gauss curvature. A nonlinear deformation (only one term in strain is omitted) of Mindlin torus was formulated in terms of the generalized displacement, and a general Maple code was written for numerical simulations. Numerical investigations show that the results obtained by nonlinear Mindlin, linear Mindlin, nonlinear Kirchhoff–Love, and linear Kirchhoff–Love models are close to each other. The study further reveals that the linear Kirchhoff–Love modeling of the circular torus gives good accuracy and provides assurance that the nonlinear deformation and stress analysis (not dynamics) of a Mindlin torus can be replaced by a simpler formulation, such as a linear Kirchhoff–Love theory of the torus, which has not been reported in the literature. Nonlinear deformation Elsevier Circular torus Elsevier Mindlin Elsevier Shear deformation Elsevier Gauss curvature Elsevier Maple Elsevier Enthalten in Elsevier Tan, Yuyu ELSEVIER Proximity-dependent protein detection based on enzyme-assisted fluorescence signal amplification 2014transfer abstract Amsterdam [u.a.] (DE-627)ELV012515639 volume:114 year:2022 pages:0 https://doi.org/10.1016/j.cnsns.2022.106698 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 49.00 Hauswirtschaft: Allgemeines VZ AR 114 2022 0 |
allfields_unstemmed |
10.1016/j.cnsns.2022.106698 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001852.pica (DE-627)ELV05846252X (ELSEVIER)S1007-5704(22)00255-6 DE-627 ger DE-627 rakwb eng 570 VZ 610 VZ 630 640 VZ 49.00 bkl Sun, B.H. verfasserin aut Nonlinear elastic deformation of Mindlin torus 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The nonlinear deformation and stress analysis of a circular torus is a difficult undertaking due to its complicated topology and the variation of the Gauss curvature. A nonlinear deformation (only one term in strain is omitted) of Mindlin torus was formulated in terms of the generalized displacement, and a general Maple code was written for numerical simulations. Numerical investigations show that the results obtained by nonlinear Mindlin, linear Mindlin, nonlinear Kirchhoff–Love, and linear Kirchhoff–Love models are close to each other. The study further reveals that the linear Kirchhoff–Love modeling of the circular torus gives good accuracy and provides assurance that the nonlinear deformation and stress analysis (not dynamics) of a Mindlin torus can be replaced by a simpler formulation, such as a linear Kirchhoff–Love theory of the torus, which has not been reported in the literature. The nonlinear deformation and stress analysis of a circular torus is a difficult undertaking due to its complicated topology and the variation of the Gauss curvature. A nonlinear deformation (only one term in strain is omitted) of Mindlin torus was formulated in terms of the generalized displacement, and a general Maple code was written for numerical simulations. Numerical investigations show that the results obtained by nonlinear Mindlin, linear Mindlin, nonlinear Kirchhoff–Love, and linear Kirchhoff–Love models are close to each other. The study further reveals that the linear Kirchhoff–Love modeling of the circular torus gives good accuracy and provides assurance that the nonlinear deformation and stress analysis (not dynamics) of a Mindlin torus can be replaced by a simpler formulation, such as a linear Kirchhoff–Love theory of the torus, which has not been reported in the literature. Nonlinear deformation Elsevier Circular torus Elsevier Mindlin Elsevier Shear deformation Elsevier Gauss curvature Elsevier Maple Elsevier Enthalten in Elsevier Tan, Yuyu ELSEVIER Proximity-dependent protein detection based on enzyme-assisted fluorescence signal amplification 2014transfer abstract Amsterdam [u.a.] (DE-627)ELV012515639 volume:114 year:2022 pages:0 https://doi.org/10.1016/j.cnsns.2022.106698 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 49.00 Hauswirtschaft: Allgemeines VZ AR 114 2022 0 |
allfieldsGer |
10.1016/j.cnsns.2022.106698 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001852.pica (DE-627)ELV05846252X (ELSEVIER)S1007-5704(22)00255-6 DE-627 ger DE-627 rakwb eng 570 VZ 610 VZ 630 640 VZ 49.00 bkl Sun, B.H. verfasserin aut Nonlinear elastic deformation of Mindlin torus 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The nonlinear deformation and stress analysis of a circular torus is a difficult undertaking due to its complicated topology and the variation of the Gauss curvature. A nonlinear deformation (only one term in strain is omitted) of Mindlin torus was formulated in terms of the generalized displacement, and a general Maple code was written for numerical simulations. Numerical investigations show that the results obtained by nonlinear Mindlin, linear Mindlin, nonlinear Kirchhoff–Love, and linear Kirchhoff–Love models are close to each other. The study further reveals that the linear Kirchhoff–Love modeling of the circular torus gives good accuracy and provides assurance that the nonlinear deformation and stress analysis (not dynamics) of a Mindlin torus can be replaced by a simpler formulation, such as a linear Kirchhoff–Love theory of the torus, which has not been reported in the literature. The nonlinear deformation and stress analysis of a circular torus is a difficult undertaking due to its complicated topology and the variation of the Gauss curvature. A nonlinear deformation (only one term in strain is omitted) of Mindlin torus was formulated in terms of the generalized displacement, and a general Maple code was written for numerical simulations. Numerical investigations show that the results obtained by nonlinear Mindlin, linear Mindlin, nonlinear Kirchhoff–Love, and linear Kirchhoff–Love models are close to each other. The study further reveals that the linear Kirchhoff–Love modeling of the circular torus gives good accuracy and provides assurance that the nonlinear deformation and stress analysis (not dynamics) of a Mindlin torus can be replaced by a simpler formulation, such as a linear Kirchhoff–Love theory of the torus, which has not been reported in the literature. Nonlinear deformation Elsevier Circular torus Elsevier Mindlin Elsevier Shear deformation Elsevier Gauss curvature Elsevier Maple Elsevier Enthalten in Elsevier Tan, Yuyu ELSEVIER Proximity-dependent protein detection based on enzyme-assisted fluorescence signal amplification 2014transfer abstract Amsterdam [u.a.] (DE-627)ELV012515639 volume:114 year:2022 pages:0 https://doi.org/10.1016/j.cnsns.2022.106698 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 49.00 Hauswirtschaft: Allgemeines VZ AR 114 2022 0 |
allfieldsSound |
10.1016/j.cnsns.2022.106698 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001852.pica (DE-627)ELV05846252X (ELSEVIER)S1007-5704(22)00255-6 DE-627 ger DE-627 rakwb eng 570 VZ 610 VZ 630 640 VZ 49.00 bkl Sun, B.H. verfasserin aut Nonlinear elastic deformation of Mindlin torus 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The nonlinear deformation and stress analysis of a circular torus is a difficult undertaking due to its complicated topology and the variation of the Gauss curvature. A nonlinear deformation (only one term in strain is omitted) of Mindlin torus was formulated in terms of the generalized displacement, and a general Maple code was written for numerical simulations. Numerical investigations show that the results obtained by nonlinear Mindlin, linear Mindlin, nonlinear Kirchhoff–Love, and linear Kirchhoff–Love models are close to each other. The study further reveals that the linear Kirchhoff–Love modeling of the circular torus gives good accuracy and provides assurance that the nonlinear deformation and stress analysis (not dynamics) of a Mindlin torus can be replaced by a simpler formulation, such as a linear Kirchhoff–Love theory of the torus, which has not been reported in the literature. The nonlinear deformation and stress analysis of a circular torus is a difficult undertaking due to its complicated topology and the variation of the Gauss curvature. A nonlinear deformation (only one term in strain is omitted) of Mindlin torus was formulated in terms of the generalized displacement, and a general Maple code was written for numerical simulations. Numerical investigations show that the results obtained by nonlinear Mindlin, linear Mindlin, nonlinear Kirchhoff–Love, and linear Kirchhoff–Love models are close to each other. The study further reveals that the linear Kirchhoff–Love modeling of the circular torus gives good accuracy and provides assurance that the nonlinear deformation and stress analysis (not dynamics) of a Mindlin torus can be replaced by a simpler formulation, such as a linear Kirchhoff–Love theory of the torus, which has not been reported in the literature. Nonlinear deformation Elsevier Circular torus Elsevier Mindlin Elsevier Shear deformation Elsevier Gauss curvature Elsevier Maple Elsevier Enthalten in Elsevier Tan, Yuyu ELSEVIER Proximity-dependent protein detection based on enzyme-assisted fluorescence signal amplification 2014transfer abstract Amsterdam [u.a.] (DE-627)ELV012515639 volume:114 year:2022 pages:0 https://doi.org/10.1016/j.cnsns.2022.106698 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 49.00 Hauswirtschaft: Allgemeines VZ AR 114 2022 0 |
language |
English |
source |
Enthalten in Proximity-dependent protein detection based on enzyme-assisted fluorescence signal amplification Amsterdam [u.a.] volume:114 year:2022 pages:0 |
sourceStr |
Enthalten in Proximity-dependent protein detection based on enzyme-assisted fluorescence signal amplification Amsterdam [u.a.] volume:114 year:2022 pages:0 |
format_phy_str_mv |
Article |
bklname |
Hauswirtschaft: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Nonlinear deformation Circular torus Mindlin Shear deformation Gauss curvature Maple |
dewey-raw |
570 |
isfreeaccess_bool |
false |
container_title |
Proximity-dependent protein detection based on enzyme-assisted fluorescence signal amplification |
authorswithroles_txt_mv |
Sun, B.H. @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
ELV012515639 |
dewey-sort |
3570 |
id |
ELV05846252X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV05846252X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626050919.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">221103s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.cnsns.2022.106698</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001852.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV05846252X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1007-5704(22)00255-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">630</subfield><subfield code="a">640</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">49.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sun, B.H.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nonlinear elastic deformation of Mindlin torus</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The nonlinear deformation and stress analysis of a circular torus is a difficult undertaking due to its complicated topology and the variation of the Gauss curvature. A nonlinear deformation (only one term in strain is omitted) of Mindlin torus was formulated in terms of the generalized displacement, and a general Maple code was written for numerical simulations. Numerical investigations show that the results obtained by nonlinear Mindlin, linear Mindlin, nonlinear Kirchhoff–Love, and linear Kirchhoff–Love models are close to each other. The study further reveals that the linear Kirchhoff–Love modeling of the circular torus gives good accuracy and provides assurance that the nonlinear deformation and stress analysis (not dynamics) of a Mindlin torus can be replaced by a simpler formulation, such as a linear Kirchhoff–Love theory of the torus, which has not been reported in the literature.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The nonlinear deformation and stress analysis of a circular torus is a difficult undertaking due to its complicated topology and the variation of the Gauss curvature. A nonlinear deformation (only one term in strain is omitted) of Mindlin torus was formulated in terms of the generalized displacement, and a general Maple code was written for numerical simulations. Numerical investigations show that the results obtained by nonlinear Mindlin, linear Mindlin, nonlinear Kirchhoff–Love, and linear Kirchhoff–Love models are close to each other. The study further reveals that the linear Kirchhoff–Love modeling of the circular torus gives good accuracy and provides assurance that the nonlinear deformation and stress analysis (not dynamics) of a Mindlin torus can be replaced by a simpler formulation, such as a linear Kirchhoff–Love theory of the torus, which has not been reported in the literature.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Nonlinear deformation</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Circular torus</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mindlin</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Shear deformation</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Gauss curvature</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Maple</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Tan, Yuyu ELSEVIER</subfield><subfield code="t">Proximity-dependent protein detection based on enzyme-assisted fluorescence signal amplification</subfield><subfield code="d">2014transfer abstract</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV012515639</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:114</subfield><subfield code="g">year:2022</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.cnsns.2022.106698</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">49.00</subfield><subfield code="j">Hauswirtschaft: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">114</subfield><subfield code="j">2022</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
author |
Sun, B.H. |
spellingShingle |
Sun, B.H. ddc 570 ddc 610 ddc 630 bkl 49.00 Elsevier Nonlinear deformation Elsevier Circular torus Elsevier Mindlin Elsevier Shear deformation Elsevier Gauss curvature Elsevier Maple Nonlinear elastic deformation of Mindlin torus |
authorStr |
Sun, B.H. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV012515639 |
format |
electronic Article |
dewey-ones |
570 - Life sciences; biology 610 - Medicine & health 630 - Agriculture & related technologies 640 - Home & family management |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
570 VZ 610 VZ 630 640 VZ 49.00 bkl Nonlinear elastic deformation of Mindlin torus Nonlinear deformation Elsevier Circular torus Elsevier Mindlin Elsevier Shear deformation Elsevier Gauss curvature Elsevier Maple Elsevier |
topic |
ddc 570 ddc 610 ddc 630 bkl 49.00 Elsevier Nonlinear deformation Elsevier Circular torus Elsevier Mindlin Elsevier Shear deformation Elsevier Gauss curvature Elsevier Maple |
topic_unstemmed |
ddc 570 ddc 610 ddc 630 bkl 49.00 Elsevier Nonlinear deformation Elsevier Circular torus Elsevier Mindlin Elsevier Shear deformation Elsevier Gauss curvature Elsevier Maple |
topic_browse |
ddc 570 ddc 610 ddc 630 bkl 49.00 Elsevier Nonlinear deformation Elsevier Circular torus Elsevier Mindlin Elsevier Shear deformation Elsevier Gauss curvature Elsevier Maple |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
hierarchy_parent_title |
Proximity-dependent protein detection based on enzyme-assisted fluorescence signal amplification |
hierarchy_parent_id |
ELV012515639 |
dewey-tens |
570 - Life sciences; biology 610 - Medicine & health 630 - Agriculture 640 - Home & family management |
hierarchy_top_title |
Proximity-dependent protein detection based on enzyme-assisted fluorescence signal amplification |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV012515639 |
title |
Nonlinear elastic deformation of Mindlin torus |
ctrlnum |
(DE-627)ELV05846252X (ELSEVIER)S1007-5704(22)00255-6 |
title_full |
Nonlinear elastic deformation of Mindlin torus |
author_sort |
Sun, B.H. |
journal |
Proximity-dependent protein detection based on enzyme-assisted fluorescence signal amplification |
journalStr |
Proximity-dependent protein detection based on enzyme-assisted fluorescence signal amplification |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
zzz |
container_start_page |
0 |
author_browse |
Sun, B.H. |
container_volume |
114 |
class |
570 VZ 610 VZ 630 640 VZ 49.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Sun, B.H. |
doi_str_mv |
10.1016/j.cnsns.2022.106698 |
dewey-full |
570 610 630 640 |
title_sort |
nonlinear elastic deformation of mindlin torus |
title_auth |
Nonlinear elastic deformation of Mindlin torus |
abstract |
The nonlinear deformation and stress analysis of a circular torus is a difficult undertaking due to its complicated topology and the variation of the Gauss curvature. A nonlinear deformation (only one term in strain is omitted) of Mindlin torus was formulated in terms of the generalized displacement, and a general Maple code was written for numerical simulations. Numerical investigations show that the results obtained by nonlinear Mindlin, linear Mindlin, nonlinear Kirchhoff–Love, and linear Kirchhoff–Love models are close to each other. The study further reveals that the linear Kirchhoff–Love modeling of the circular torus gives good accuracy and provides assurance that the nonlinear deformation and stress analysis (not dynamics) of a Mindlin torus can be replaced by a simpler formulation, such as a linear Kirchhoff–Love theory of the torus, which has not been reported in the literature. |
abstractGer |
The nonlinear deformation and stress analysis of a circular torus is a difficult undertaking due to its complicated topology and the variation of the Gauss curvature. A nonlinear deformation (only one term in strain is omitted) of Mindlin torus was formulated in terms of the generalized displacement, and a general Maple code was written for numerical simulations. Numerical investigations show that the results obtained by nonlinear Mindlin, linear Mindlin, nonlinear Kirchhoff–Love, and linear Kirchhoff–Love models are close to each other. The study further reveals that the linear Kirchhoff–Love modeling of the circular torus gives good accuracy and provides assurance that the nonlinear deformation and stress analysis (not dynamics) of a Mindlin torus can be replaced by a simpler formulation, such as a linear Kirchhoff–Love theory of the torus, which has not been reported in the literature. |
abstract_unstemmed |
The nonlinear deformation and stress analysis of a circular torus is a difficult undertaking due to its complicated topology and the variation of the Gauss curvature. A nonlinear deformation (only one term in strain is omitted) of Mindlin torus was formulated in terms of the generalized displacement, and a general Maple code was written for numerical simulations. Numerical investigations show that the results obtained by nonlinear Mindlin, linear Mindlin, nonlinear Kirchhoff–Love, and linear Kirchhoff–Love models are close to each other. The study further reveals that the linear Kirchhoff–Love modeling of the circular torus gives good accuracy and provides assurance that the nonlinear deformation and stress analysis (not dynamics) of a Mindlin torus can be replaced by a simpler formulation, such as a linear Kirchhoff–Love theory of the torus, which has not been reported in the literature. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U |
title_short |
Nonlinear elastic deformation of Mindlin torus |
url |
https://doi.org/10.1016/j.cnsns.2022.106698 |
remote_bool |
true |
ppnlink |
ELV012515639 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.cnsns.2022.106698 |
up_date |
2024-07-06T19:05:29.317Z |
_version_ |
1803857668938399744 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV05846252X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626050919.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">221103s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.cnsns.2022.106698</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001852.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV05846252X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1007-5704(22)00255-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">630</subfield><subfield code="a">640</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">49.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sun, B.H.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nonlinear elastic deformation of Mindlin torus</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The nonlinear deformation and stress analysis of a circular torus is a difficult undertaking due to its complicated topology and the variation of the Gauss curvature. A nonlinear deformation (only one term in strain is omitted) of Mindlin torus was formulated in terms of the generalized displacement, and a general Maple code was written for numerical simulations. Numerical investigations show that the results obtained by nonlinear Mindlin, linear Mindlin, nonlinear Kirchhoff–Love, and linear Kirchhoff–Love models are close to each other. The study further reveals that the linear Kirchhoff–Love modeling of the circular torus gives good accuracy and provides assurance that the nonlinear deformation and stress analysis (not dynamics) of a Mindlin torus can be replaced by a simpler formulation, such as a linear Kirchhoff–Love theory of the torus, which has not been reported in the literature.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The nonlinear deformation and stress analysis of a circular torus is a difficult undertaking due to its complicated topology and the variation of the Gauss curvature. A nonlinear deformation (only one term in strain is omitted) of Mindlin torus was formulated in terms of the generalized displacement, and a general Maple code was written for numerical simulations. Numerical investigations show that the results obtained by nonlinear Mindlin, linear Mindlin, nonlinear Kirchhoff–Love, and linear Kirchhoff–Love models are close to each other. The study further reveals that the linear Kirchhoff–Love modeling of the circular torus gives good accuracy and provides assurance that the nonlinear deformation and stress analysis (not dynamics) of a Mindlin torus can be replaced by a simpler formulation, such as a linear Kirchhoff–Love theory of the torus, which has not been reported in the literature.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Nonlinear deformation</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Circular torus</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mindlin</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Shear deformation</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Gauss curvature</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Maple</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Tan, Yuyu ELSEVIER</subfield><subfield code="t">Proximity-dependent protein detection based on enzyme-assisted fluorescence signal amplification</subfield><subfield code="d">2014transfer abstract</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV012515639</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:114</subfield><subfield code="g">year:2022</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.cnsns.2022.106698</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">49.00</subfield><subfield code="j">Hauswirtschaft: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">114</subfield><subfield code="j">2022</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
score |
7.402297 |