Atlas-based lung segmentation combined with automatic densitometry characterization in COVID-19 patients: Training, validation and first application in a longitudinal study
• Segmentation algorithms do not work well on unhealthy lungs as COVID-19 ones. • An Atlas for segmentation of COVID-19 lungs’ patients was developed and validated. • Lung histograms parameters could impact the clinical management of COVID-19 patients. • Lung densitometry characterization method int...
Ausführliche Beschreibung
Autor*in: |
Mori, Martina [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
Automatic segmentation Atlas-based |
---|
Umfang: |
11 |
---|
Übergeordnetes Werk: |
Enthalten in: An experimental study on stability and thermal conductivity of water/CNTs nanofluids using different surfactants: A comparison study - Almanassra, Ismail W. ELSEVIER, 2019, European journal of medical physics : an international journal devoted to the applications of physics to medicine and biology, Amsterdam |
---|---|
Übergeordnetes Werk: |
volume:100 ; year:2022 ; pages:142-152 ; extent:11 |
Links: |
---|
DOI / URN: |
10.1016/j.ejmp.2022.06.018 |
---|
Katalog-ID: |
ELV058500227 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV058500227 | ||
003 | DE-627 | ||
005 | 20230625005615.0 | ||
007 | cr uuu---uuuuu | ||
008 | 221103s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ejmp.2022.06.018 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001855.pica |
035 | |a (DE-627)ELV058500227 | ||
035 | |a (ELSEVIER)S1120-1797(22)02011-7 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 540 |q VZ |
084 | |a 35.21 |2 bkl | ||
100 | 1 | |a Mori, Martina |e verfasserin |4 aut | |
245 | 1 | 0 | |a Atlas-based lung segmentation combined with automatic densitometry characterization in COVID-19 patients: Training, validation and first application in a longitudinal study |
264 | 1 | |c 2022 | |
300 | |a 11 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a • Segmentation algorithms do not work well on unhealthy lungs as COVID-19 ones. • An Atlas for segmentation of COVID-19 lungs’ patients was developed and validated. • Lung histograms parameters could impact the clinical management of COVID-19 patients. • Lung densitometry characterization method integrated to segmentation was implemented. | ||
650 | 7 | |a Automatic segmentation Atlas-based |2 Elsevier | |
650 | 7 | |a Covid-19 |2 Elsevier | |
650 | 7 | |a Quantitative imaging computed tomography |2 Elsevier | |
650 | 7 | |a Lung segmentation |2 Elsevier | |
700 | 1 | |a Alborghetti, Lisa |4 oth | |
700 | 1 | |a Palumbo, Diego |4 oth | |
700 | 1 | |a Broggi, Sara |4 oth | |
700 | 1 | |a Raspanti, Davide |4 oth | |
700 | 1 | |a Rovere Querini, Patrizia |4 oth | |
700 | 1 | |a Del Vecchio, Antonella |4 oth | |
700 | 1 | |a De Cobelli, Francesco |4 oth | |
700 | 1 | |a Fiorino, Claudio |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Almanassra, Ismail W. ELSEVIER |t An experimental study on stability and thermal conductivity of water/CNTs nanofluids using different surfactants: A comparison study |d 2019 |d European journal of medical physics : an international journal devoted to the applications of physics to medicine and biology |g Amsterdam |w (DE-627)ELV003857336 |
773 | 1 | 8 | |g volume:100 |g year:2022 |g pages:142-152 |g extent:11 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.ejmp.2022.06.018 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
936 | b | k | |a 35.21 |j Lösungen |j Flüssigkeiten |x Physikalische Chemie |q VZ |
951 | |a AR | ||
952 | |d 100 |j 2022 |h 142-152 |g 11 |
author_variant |
m m mm |
---|---|
matchkey_str |
morimartinaalborghettilisapalumbodiegobr:2022----:tabsdugemnainobndihuoaidnioercaatrztoicvd9ainsriigaiain |
hierarchy_sort_str |
2022 |
bklnumber |
35.21 |
publishDate |
2022 |
allfields |
10.1016/j.ejmp.2022.06.018 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001855.pica (DE-627)ELV058500227 (ELSEVIER)S1120-1797(22)02011-7 DE-627 ger DE-627 rakwb eng 540 VZ 35.21 bkl Mori, Martina verfasserin aut Atlas-based lung segmentation combined with automatic densitometry characterization in COVID-19 patients: Training, validation and first application in a longitudinal study 2022 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • Segmentation algorithms do not work well on unhealthy lungs as COVID-19 ones. • An Atlas for segmentation of COVID-19 lungs’ patients was developed and validated. • Lung histograms parameters could impact the clinical management of COVID-19 patients. • Lung densitometry characterization method integrated to segmentation was implemented. Automatic segmentation Atlas-based Elsevier Covid-19 Elsevier Quantitative imaging computed tomography Elsevier Lung segmentation Elsevier Alborghetti, Lisa oth Palumbo, Diego oth Broggi, Sara oth Raspanti, Davide oth Rovere Querini, Patrizia oth Del Vecchio, Antonella oth De Cobelli, Francesco oth Fiorino, Claudio oth Enthalten in Elsevier Almanassra, Ismail W. ELSEVIER An experimental study on stability and thermal conductivity of water/CNTs nanofluids using different surfactants: A comparison study 2019 European journal of medical physics : an international journal devoted to the applications of physics to medicine and biology Amsterdam (DE-627)ELV003857336 volume:100 year:2022 pages:142-152 extent:11 https://doi.org/10.1016/j.ejmp.2022.06.018 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 35.21 Lösungen Flüssigkeiten Physikalische Chemie VZ AR 100 2022 142-152 11 |
spelling |
10.1016/j.ejmp.2022.06.018 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001855.pica (DE-627)ELV058500227 (ELSEVIER)S1120-1797(22)02011-7 DE-627 ger DE-627 rakwb eng 540 VZ 35.21 bkl Mori, Martina verfasserin aut Atlas-based lung segmentation combined with automatic densitometry characterization in COVID-19 patients: Training, validation and first application in a longitudinal study 2022 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • Segmentation algorithms do not work well on unhealthy lungs as COVID-19 ones. • An Atlas for segmentation of COVID-19 lungs’ patients was developed and validated. • Lung histograms parameters could impact the clinical management of COVID-19 patients. • Lung densitometry characterization method integrated to segmentation was implemented. Automatic segmentation Atlas-based Elsevier Covid-19 Elsevier Quantitative imaging computed tomography Elsevier Lung segmentation Elsevier Alborghetti, Lisa oth Palumbo, Diego oth Broggi, Sara oth Raspanti, Davide oth Rovere Querini, Patrizia oth Del Vecchio, Antonella oth De Cobelli, Francesco oth Fiorino, Claudio oth Enthalten in Elsevier Almanassra, Ismail W. ELSEVIER An experimental study on stability and thermal conductivity of water/CNTs nanofluids using different surfactants: A comparison study 2019 European journal of medical physics : an international journal devoted to the applications of physics to medicine and biology Amsterdam (DE-627)ELV003857336 volume:100 year:2022 pages:142-152 extent:11 https://doi.org/10.1016/j.ejmp.2022.06.018 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 35.21 Lösungen Flüssigkeiten Physikalische Chemie VZ AR 100 2022 142-152 11 |
allfields_unstemmed |
10.1016/j.ejmp.2022.06.018 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001855.pica (DE-627)ELV058500227 (ELSEVIER)S1120-1797(22)02011-7 DE-627 ger DE-627 rakwb eng 540 VZ 35.21 bkl Mori, Martina verfasserin aut Atlas-based lung segmentation combined with automatic densitometry characterization in COVID-19 patients: Training, validation and first application in a longitudinal study 2022 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • Segmentation algorithms do not work well on unhealthy lungs as COVID-19 ones. • An Atlas for segmentation of COVID-19 lungs’ patients was developed and validated. • Lung histograms parameters could impact the clinical management of COVID-19 patients. • Lung densitometry characterization method integrated to segmentation was implemented. Automatic segmentation Atlas-based Elsevier Covid-19 Elsevier Quantitative imaging computed tomography Elsevier Lung segmentation Elsevier Alborghetti, Lisa oth Palumbo, Diego oth Broggi, Sara oth Raspanti, Davide oth Rovere Querini, Patrizia oth Del Vecchio, Antonella oth De Cobelli, Francesco oth Fiorino, Claudio oth Enthalten in Elsevier Almanassra, Ismail W. ELSEVIER An experimental study on stability and thermal conductivity of water/CNTs nanofluids using different surfactants: A comparison study 2019 European journal of medical physics : an international journal devoted to the applications of physics to medicine and biology Amsterdam (DE-627)ELV003857336 volume:100 year:2022 pages:142-152 extent:11 https://doi.org/10.1016/j.ejmp.2022.06.018 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 35.21 Lösungen Flüssigkeiten Physikalische Chemie VZ AR 100 2022 142-152 11 |
allfieldsGer |
10.1016/j.ejmp.2022.06.018 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001855.pica (DE-627)ELV058500227 (ELSEVIER)S1120-1797(22)02011-7 DE-627 ger DE-627 rakwb eng 540 VZ 35.21 bkl Mori, Martina verfasserin aut Atlas-based lung segmentation combined with automatic densitometry characterization in COVID-19 patients: Training, validation and first application in a longitudinal study 2022 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • Segmentation algorithms do not work well on unhealthy lungs as COVID-19 ones. • An Atlas for segmentation of COVID-19 lungs’ patients was developed and validated. • Lung histograms parameters could impact the clinical management of COVID-19 patients. • Lung densitometry characterization method integrated to segmentation was implemented. Automatic segmentation Atlas-based Elsevier Covid-19 Elsevier Quantitative imaging computed tomography Elsevier Lung segmentation Elsevier Alborghetti, Lisa oth Palumbo, Diego oth Broggi, Sara oth Raspanti, Davide oth Rovere Querini, Patrizia oth Del Vecchio, Antonella oth De Cobelli, Francesco oth Fiorino, Claudio oth Enthalten in Elsevier Almanassra, Ismail W. ELSEVIER An experimental study on stability and thermal conductivity of water/CNTs nanofluids using different surfactants: A comparison study 2019 European journal of medical physics : an international journal devoted to the applications of physics to medicine and biology Amsterdam (DE-627)ELV003857336 volume:100 year:2022 pages:142-152 extent:11 https://doi.org/10.1016/j.ejmp.2022.06.018 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 35.21 Lösungen Flüssigkeiten Physikalische Chemie VZ AR 100 2022 142-152 11 |
allfieldsSound |
10.1016/j.ejmp.2022.06.018 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001855.pica (DE-627)ELV058500227 (ELSEVIER)S1120-1797(22)02011-7 DE-627 ger DE-627 rakwb eng 540 VZ 35.21 bkl Mori, Martina verfasserin aut Atlas-based lung segmentation combined with automatic densitometry characterization in COVID-19 patients: Training, validation and first application in a longitudinal study 2022 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • Segmentation algorithms do not work well on unhealthy lungs as COVID-19 ones. • An Atlas for segmentation of COVID-19 lungs’ patients was developed and validated. • Lung histograms parameters could impact the clinical management of COVID-19 patients. • Lung densitometry characterization method integrated to segmentation was implemented. Automatic segmentation Atlas-based Elsevier Covid-19 Elsevier Quantitative imaging computed tomography Elsevier Lung segmentation Elsevier Alborghetti, Lisa oth Palumbo, Diego oth Broggi, Sara oth Raspanti, Davide oth Rovere Querini, Patrizia oth Del Vecchio, Antonella oth De Cobelli, Francesco oth Fiorino, Claudio oth Enthalten in Elsevier Almanassra, Ismail W. ELSEVIER An experimental study on stability and thermal conductivity of water/CNTs nanofluids using different surfactants: A comparison study 2019 European journal of medical physics : an international journal devoted to the applications of physics to medicine and biology Amsterdam (DE-627)ELV003857336 volume:100 year:2022 pages:142-152 extent:11 https://doi.org/10.1016/j.ejmp.2022.06.018 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 35.21 Lösungen Flüssigkeiten Physikalische Chemie VZ AR 100 2022 142-152 11 |
language |
English |
source |
Enthalten in An experimental study on stability and thermal conductivity of water/CNTs nanofluids using different surfactants: A comparison study Amsterdam volume:100 year:2022 pages:142-152 extent:11 |
sourceStr |
Enthalten in An experimental study on stability and thermal conductivity of water/CNTs nanofluids using different surfactants: A comparison study Amsterdam volume:100 year:2022 pages:142-152 extent:11 |
format_phy_str_mv |
Article |
bklname |
Lösungen Flüssigkeiten |
institution |
findex.gbv.de |
topic_facet |
Automatic segmentation Atlas-based Covid-19 Quantitative imaging computed tomography Lung segmentation |
dewey-raw |
540 |
isfreeaccess_bool |
false |
container_title |
An experimental study on stability and thermal conductivity of water/CNTs nanofluids using different surfactants: A comparison study |
authorswithroles_txt_mv |
Mori, Martina @@aut@@ Alborghetti, Lisa @@oth@@ Palumbo, Diego @@oth@@ Broggi, Sara @@oth@@ Raspanti, Davide @@oth@@ Rovere Querini, Patrizia @@oth@@ Del Vecchio, Antonella @@oth@@ De Cobelli, Francesco @@oth@@ Fiorino, Claudio @@oth@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
ELV003857336 |
dewey-sort |
3540 |
id |
ELV058500227 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV058500227</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625005615.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">221103s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ejmp.2022.06.018</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001855.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV058500227</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1120-1797(22)02011-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.21</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mori, Martina</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Atlas-based lung segmentation combined with automatic densitometry characterization in COVID-19 patients: Training, validation and first application in a longitudinal study</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">11</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">• Segmentation algorithms do not work well on unhealthy lungs as COVID-19 ones. • An Atlas for segmentation of COVID-19 lungs’ patients was developed and validated. • Lung histograms parameters could impact the clinical management of COVID-19 patients. • Lung densitometry characterization method integrated to segmentation was implemented.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Automatic segmentation Atlas-based</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Covid-19</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Quantitative imaging computed tomography</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Lung segmentation</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Alborghetti, Lisa</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Palumbo, Diego</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Broggi, Sara</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Raspanti, Davide</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rovere Querini, Patrizia</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Del Vecchio, Antonella</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">De Cobelli, Francesco</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fiorino, Claudio</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Almanassra, Ismail W. ELSEVIER</subfield><subfield code="t">An experimental study on stability and thermal conductivity of water/CNTs nanofluids using different surfactants: A comparison study</subfield><subfield code="d">2019</subfield><subfield code="d">European journal of medical physics : an international journal devoted to the applications of physics to medicine and biology</subfield><subfield code="g">Amsterdam</subfield><subfield code="w">(DE-627)ELV003857336</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:100</subfield><subfield code="g">year:2022</subfield><subfield code="g">pages:142-152</subfield><subfield code="g">extent:11</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ejmp.2022.06.018</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.21</subfield><subfield code="j">Lösungen</subfield><subfield code="j">Flüssigkeiten</subfield><subfield code="x">Physikalische Chemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">100</subfield><subfield code="j">2022</subfield><subfield code="h">142-152</subfield><subfield code="g">11</subfield></datafield></record></collection>
|
author |
Mori, Martina |
spellingShingle |
Mori, Martina ddc 540 bkl 35.21 Elsevier Automatic segmentation Atlas-based Elsevier Covid-19 Elsevier Quantitative imaging computed tomography Elsevier Lung segmentation Atlas-based lung segmentation combined with automatic densitometry characterization in COVID-19 patients: Training, validation and first application in a longitudinal study |
authorStr |
Mori, Martina |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV003857336 |
format |
electronic Article |
dewey-ones |
540 - Chemistry & allied sciences |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
540 VZ 35.21 bkl Atlas-based lung segmentation combined with automatic densitometry characterization in COVID-19 patients: Training, validation and first application in a longitudinal study Automatic segmentation Atlas-based Elsevier Covid-19 Elsevier Quantitative imaging computed tomography Elsevier Lung segmentation Elsevier |
topic |
ddc 540 bkl 35.21 Elsevier Automatic segmentation Atlas-based Elsevier Covid-19 Elsevier Quantitative imaging computed tomography Elsevier Lung segmentation |
topic_unstemmed |
ddc 540 bkl 35.21 Elsevier Automatic segmentation Atlas-based Elsevier Covid-19 Elsevier Quantitative imaging computed tomography Elsevier Lung segmentation |
topic_browse |
ddc 540 bkl 35.21 Elsevier Automatic segmentation Atlas-based Elsevier Covid-19 Elsevier Quantitative imaging computed tomography Elsevier Lung segmentation |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
l a la d p dp s b sb d r dr q p r qp qpr v a d va vad c f d cf cfd c f cf |
hierarchy_parent_title |
An experimental study on stability and thermal conductivity of water/CNTs nanofluids using different surfactants: A comparison study |
hierarchy_parent_id |
ELV003857336 |
dewey-tens |
540 - Chemistry |
hierarchy_top_title |
An experimental study on stability and thermal conductivity of water/CNTs nanofluids using different surfactants: A comparison study |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV003857336 |
title |
Atlas-based lung segmentation combined with automatic densitometry characterization in COVID-19 patients: Training, validation and first application in a longitudinal study |
ctrlnum |
(DE-627)ELV058500227 (ELSEVIER)S1120-1797(22)02011-7 |
title_full |
Atlas-based lung segmentation combined with automatic densitometry characterization in COVID-19 patients: Training, validation and first application in a longitudinal study |
author_sort |
Mori, Martina |
journal |
An experimental study on stability and thermal conductivity of water/CNTs nanofluids using different surfactants: A comparison study |
journalStr |
An experimental study on stability and thermal conductivity of water/CNTs nanofluids using different surfactants: A comparison study |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
zzz |
container_start_page |
142 |
author_browse |
Mori, Martina |
container_volume |
100 |
physical |
11 |
class |
540 VZ 35.21 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Mori, Martina |
doi_str_mv |
10.1016/j.ejmp.2022.06.018 |
dewey-full |
540 |
title_sort |
atlas-based lung segmentation combined with automatic densitometry characterization in covid-19 patients: training, validation and first application in a longitudinal study |
title_auth |
Atlas-based lung segmentation combined with automatic densitometry characterization in COVID-19 patients: Training, validation and first application in a longitudinal study |
abstract |
• Segmentation algorithms do not work well on unhealthy lungs as COVID-19 ones. • An Atlas for segmentation of COVID-19 lungs’ patients was developed and validated. • Lung histograms parameters could impact the clinical management of COVID-19 patients. • Lung densitometry characterization method integrated to segmentation was implemented. |
abstractGer |
• Segmentation algorithms do not work well on unhealthy lungs as COVID-19 ones. • An Atlas for segmentation of COVID-19 lungs’ patients was developed and validated. • Lung histograms parameters could impact the clinical management of COVID-19 patients. • Lung densitometry characterization method integrated to segmentation was implemented. |
abstract_unstemmed |
• Segmentation algorithms do not work well on unhealthy lungs as COVID-19 ones. • An Atlas for segmentation of COVID-19 lungs’ patients was developed and validated. • Lung histograms parameters could impact the clinical management of COVID-19 patients. • Lung densitometry characterization method integrated to segmentation was implemented. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA |
title_short |
Atlas-based lung segmentation combined with automatic densitometry characterization in COVID-19 patients: Training, validation and first application in a longitudinal study |
url |
https://doi.org/10.1016/j.ejmp.2022.06.018 |
remote_bool |
true |
author2 |
Alborghetti, Lisa Palumbo, Diego Broggi, Sara Raspanti, Davide Rovere Querini, Patrizia Del Vecchio, Antonella De Cobelli, Francesco Fiorino, Claudio |
author2Str |
Alborghetti, Lisa Palumbo, Diego Broggi, Sara Raspanti, Davide Rovere Querini, Patrizia Del Vecchio, Antonella De Cobelli, Francesco Fiorino, Claudio |
ppnlink |
ELV003857336 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth oth oth |
doi_str |
10.1016/j.ejmp.2022.06.018 |
up_date |
2024-07-06T19:12:15.054Z |
_version_ |
1803858094383431680 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV058500227</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625005615.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">221103s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ejmp.2022.06.018</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001855.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV058500227</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1120-1797(22)02011-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.21</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mori, Martina</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Atlas-based lung segmentation combined with automatic densitometry characterization in COVID-19 patients: Training, validation and first application in a longitudinal study</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">11</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">• Segmentation algorithms do not work well on unhealthy lungs as COVID-19 ones. • An Atlas for segmentation of COVID-19 lungs’ patients was developed and validated. • Lung histograms parameters could impact the clinical management of COVID-19 patients. • Lung densitometry characterization method integrated to segmentation was implemented.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Automatic segmentation Atlas-based</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Covid-19</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Quantitative imaging computed tomography</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Lung segmentation</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Alborghetti, Lisa</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Palumbo, Diego</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Broggi, Sara</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Raspanti, Davide</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rovere Querini, Patrizia</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Del Vecchio, Antonella</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">De Cobelli, Francesco</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fiorino, Claudio</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Almanassra, Ismail W. ELSEVIER</subfield><subfield code="t">An experimental study on stability and thermal conductivity of water/CNTs nanofluids using different surfactants: A comparison study</subfield><subfield code="d">2019</subfield><subfield code="d">European journal of medical physics : an international journal devoted to the applications of physics to medicine and biology</subfield><subfield code="g">Amsterdam</subfield><subfield code="w">(DE-627)ELV003857336</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:100</subfield><subfield code="g">year:2022</subfield><subfield code="g">pages:142-152</subfield><subfield code="g">extent:11</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ejmp.2022.06.018</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.21</subfield><subfield code="j">Lösungen</subfield><subfield code="j">Flüssigkeiten</subfield><subfield code="x">Physikalische Chemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">100</subfield><subfield code="j">2022</subfield><subfield code="h">142-152</subfield><subfield code="g">11</subfield></datafield></record></collection>
|
score |
7.4014044 |