Explicit exponential lower bounds for exact hyperplane covers
We describe an explicit and simple subset of the discrete hypercube which cannot be exactly covered by fewer than exponentially many hyperplanes. The proof exploits a connection to communication complexity, and relies heavily on Razborov's lower bound for disjointness.
Autor*in: |
Diamond, Benjamin E. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: A robust and lightweight deep attention multiple instance learning algorithm for predicting genetic alterations - Guo, Bangwei ELSEVIER, 2023, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:345 ; year:2022 ; number:11 ; pages:0 |
Links: |
---|
DOI / URN: |
10.1016/j.disc.2022.113114 |
---|
Katalog-ID: |
ELV058658238 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV058658238 | ||
003 | DE-627 | ||
005 | 20230625010222.0 | ||
007 | cr uuu---uuuuu | ||
008 | 221103s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.disc.2022.113114 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001874.pica |
035 | |a (DE-627)ELV058658238 | ||
035 | |a (ELSEVIER)S0012-365X(22)00320-X | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 610 |q VZ |
084 | |a 44.64 |2 bkl | ||
084 | |a 44.32 |2 bkl | ||
100 | 1 | |a Diamond, Benjamin E. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Explicit exponential lower bounds for exact hyperplane covers |
264 | 1 | |c 2022 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a We describe an explicit and simple subset of the discrete hypercube which cannot be exactly covered by fewer than exponentially many hyperplanes. The proof exploits a connection to communication complexity, and relies heavily on Razborov's lower bound for disjointness. | ||
650 | 7 | |a Lower bounds |2 Elsevier | |
650 | 7 | |a Communication complexity |2 Elsevier | |
650 | 7 | |a Exact hyperplane covers |2 Elsevier | |
700 | 1 | |a Yehudayoff, Amir |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Guo, Bangwei ELSEVIER |t A robust and lightweight deep attention multiple instance learning algorithm for predicting genetic alterations |d 2023 |g Amsterdam [u.a.] |w (DE-627)ELV009312048 |
773 | 1 | 8 | |g volume:345 |g year:2022 |g number:11 |g pages:0 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.disc.2022.113114 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
936 | b | k | |a 44.64 |j Radiologie |q VZ |
936 | b | k | |a 44.32 |j Medizinische Mathematik |j medizinische Statistik |q VZ |
951 | |a AR | ||
952 | |d 345 |j 2022 |e 11 |h 0 |
author_variant |
b e d be bed |
---|---|
matchkey_str |
diamondbenjamineyehudayoffamir:2022----:xlctxoetalwronsoeat |
hierarchy_sort_str |
2022 |
bklnumber |
44.64 44.32 |
publishDate |
2022 |
allfields |
10.1016/j.disc.2022.113114 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001874.pica (DE-627)ELV058658238 (ELSEVIER)S0012-365X(22)00320-X DE-627 ger DE-627 rakwb eng 610 VZ 44.64 bkl 44.32 bkl Diamond, Benjamin E. verfasserin aut Explicit exponential lower bounds for exact hyperplane covers 2022 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier We describe an explicit and simple subset of the discrete hypercube which cannot be exactly covered by fewer than exponentially many hyperplanes. The proof exploits a connection to communication complexity, and relies heavily on Razborov's lower bound for disjointness. Lower bounds Elsevier Communication complexity Elsevier Exact hyperplane covers Elsevier Yehudayoff, Amir oth Enthalten in Elsevier Guo, Bangwei ELSEVIER A robust and lightweight deep attention multiple instance learning algorithm for predicting genetic alterations 2023 Amsterdam [u.a.] (DE-627)ELV009312048 volume:345 year:2022 number:11 pages:0 https://doi.org/10.1016/j.disc.2022.113114 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.64 Radiologie VZ 44.32 Medizinische Mathematik medizinische Statistik VZ AR 345 2022 11 0 |
spelling |
10.1016/j.disc.2022.113114 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001874.pica (DE-627)ELV058658238 (ELSEVIER)S0012-365X(22)00320-X DE-627 ger DE-627 rakwb eng 610 VZ 44.64 bkl 44.32 bkl Diamond, Benjamin E. verfasserin aut Explicit exponential lower bounds for exact hyperplane covers 2022 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier We describe an explicit and simple subset of the discrete hypercube which cannot be exactly covered by fewer than exponentially many hyperplanes. The proof exploits a connection to communication complexity, and relies heavily on Razborov's lower bound for disjointness. Lower bounds Elsevier Communication complexity Elsevier Exact hyperplane covers Elsevier Yehudayoff, Amir oth Enthalten in Elsevier Guo, Bangwei ELSEVIER A robust and lightweight deep attention multiple instance learning algorithm for predicting genetic alterations 2023 Amsterdam [u.a.] (DE-627)ELV009312048 volume:345 year:2022 number:11 pages:0 https://doi.org/10.1016/j.disc.2022.113114 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.64 Radiologie VZ 44.32 Medizinische Mathematik medizinische Statistik VZ AR 345 2022 11 0 |
allfields_unstemmed |
10.1016/j.disc.2022.113114 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001874.pica (DE-627)ELV058658238 (ELSEVIER)S0012-365X(22)00320-X DE-627 ger DE-627 rakwb eng 610 VZ 44.64 bkl 44.32 bkl Diamond, Benjamin E. verfasserin aut Explicit exponential lower bounds for exact hyperplane covers 2022 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier We describe an explicit and simple subset of the discrete hypercube which cannot be exactly covered by fewer than exponentially many hyperplanes. The proof exploits a connection to communication complexity, and relies heavily on Razborov's lower bound for disjointness. Lower bounds Elsevier Communication complexity Elsevier Exact hyperplane covers Elsevier Yehudayoff, Amir oth Enthalten in Elsevier Guo, Bangwei ELSEVIER A robust and lightweight deep attention multiple instance learning algorithm for predicting genetic alterations 2023 Amsterdam [u.a.] (DE-627)ELV009312048 volume:345 year:2022 number:11 pages:0 https://doi.org/10.1016/j.disc.2022.113114 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.64 Radiologie VZ 44.32 Medizinische Mathematik medizinische Statistik VZ AR 345 2022 11 0 |
allfieldsGer |
10.1016/j.disc.2022.113114 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001874.pica (DE-627)ELV058658238 (ELSEVIER)S0012-365X(22)00320-X DE-627 ger DE-627 rakwb eng 610 VZ 44.64 bkl 44.32 bkl Diamond, Benjamin E. verfasserin aut Explicit exponential lower bounds for exact hyperplane covers 2022 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier We describe an explicit and simple subset of the discrete hypercube which cannot be exactly covered by fewer than exponentially many hyperplanes. The proof exploits a connection to communication complexity, and relies heavily on Razborov's lower bound for disjointness. Lower bounds Elsevier Communication complexity Elsevier Exact hyperplane covers Elsevier Yehudayoff, Amir oth Enthalten in Elsevier Guo, Bangwei ELSEVIER A robust and lightweight deep attention multiple instance learning algorithm for predicting genetic alterations 2023 Amsterdam [u.a.] (DE-627)ELV009312048 volume:345 year:2022 number:11 pages:0 https://doi.org/10.1016/j.disc.2022.113114 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.64 Radiologie VZ 44.32 Medizinische Mathematik medizinische Statistik VZ AR 345 2022 11 0 |
allfieldsSound |
10.1016/j.disc.2022.113114 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001874.pica (DE-627)ELV058658238 (ELSEVIER)S0012-365X(22)00320-X DE-627 ger DE-627 rakwb eng 610 VZ 44.64 bkl 44.32 bkl Diamond, Benjamin E. verfasserin aut Explicit exponential lower bounds for exact hyperplane covers 2022 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier We describe an explicit and simple subset of the discrete hypercube which cannot be exactly covered by fewer than exponentially many hyperplanes. The proof exploits a connection to communication complexity, and relies heavily on Razborov's lower bound for disjointness. Lower bounds Elsevier Communication complexity Elsevier Exact hyperplane covers Elsevier Yehudayoff, Amir oth Enthalten in Elsevier Guo, Bangwei ELSEVIER A robust and lightweight deep attention multiple instance learning algorithm for predicting genetic alterations 2023 Amsterdam [u.a.] (DE-627)ELV009312048 volume:345 year:2022 number:11 pages:0 https://doi.org/10.1016/j.disc.2022.113114 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.64 Radiologie VZ 44.32 Medizinische Mathematik medizinische Statistik VZ AR 345 2022 11 0 |
language |
English |
source |
Enthalten in A robust and lightweight deep attention multiple instance learning algorithm for predicting genetic alterations Amsterdam [u.a.] volume:345 year:2022 number:11 pages:0 |
sourceStr |
Enthalten in A robust and lightweight deep attention multiple instance learning algorithm for predicting genetic alterations Amsterdam [u.a.] volume:345 year:2022 number:11 pages:0 |
format_phy_str_mv |
Article |
bklname |
Radiologie Medizinische Mathematik medizinische Statistik |
institution |
findex.gbv.de |
topic_facet |
Lower bounds Communication complexity Exact hyperplane covers |
dewey-raw |
610 |
isfreeaccess_bool |
false |
container_title |
A robust and lightweight deep attention multiple instance learning algorithm for predicting genetic alterations |
authorswithroles_txt_mv |
Diamond, Benjamin E. @@aut@@ Yehudayoff, Amir @@oth@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
ELV009312048 |
dewey-sort |
3610 |
id |
ELV058658238 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV058658238</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625010222.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">221103s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.disc.2022.113114</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001874.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV058658238</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0012-365X(22)00320-X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.64</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.32</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Diamond, Benjamin E.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Explicit exponential lower bounds for exact hyperplane covers</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We describe an explicit and simple subset of the discrete hypercube which cannot be exactly covered by fewer than exponentially many hyperplanes. The proof exploits a connection to communication complexity, and relies heavily on Razborov's lower bound for disjointness.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Lower bounds</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Communication complexity</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Exact hyperplane covers</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yehudayoff, Amir</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Guo, Bangwei ELSEVIER</subfield><subfield code="t">A robust and lightweight deep attention multiple instance learning algorithm for predicting genetic alterations</subfield><subfield code="d">2023</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV009312048</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:345</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:11</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.disc.2022.113114</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.64</subfield><subfield code="j">Radiologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.32</subfield><subfield code="j">Medizinische Mathematik</subfield><subfield code="j">medizinische Statistik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">345</subfield><subfield code="j">2022</subfield><subfield code="e">11</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
author |
Diamond, Benjamin E. |
spellingShingle |
Diamond, Benjamin E. ddc 610 bkl 44.64 bkl 44.32 Elsevier Lower bounds Elsevier Communication complexity Elsevier Exact hyperplane covers Explicit exponential lower bounds for exact hyperplane covers |
authorStr |
Diamond, Benjamin E. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV009312048 |
format |
electronic Article |
dewey-ones |
610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
610 VZ 44.64 bkl 44.32 bkl Explicit exponential lower bounds for exact hyperplane covers Lower bounds Elsevier Communication complexity Elsevier Exact hyperplane covers Elsevier |
topic |
ddc 610 bkl 44.64 bkl 44.32 Elsevier Lower bounds Elsevier Communication complexity Elsevier Exact hyperplane covers |
topic_unstemmed |
ddc 610 bkl 44.64 bkl 44.32 Elsevier Lower bounds Elsevier Communication complexity Elsevier Exact hyperplane covers |
topic_browse |
ddc 610 bkl 44.64 bkl 44.32 Elsevier Lower bounds Elsevier Communication complexity Elsevier Exact hyperplane covers |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
a y ay |
hierarchy_parent_title |
A robust and lightweight deep attention multiple instance learning algorithm for predicting genetic alterations |
hierarchy_parent_id |
ELV009312048 |
dewey-tens |
610 - Medicine & health |
hierarchy_top_title |
A robust and lightweight deep attention multiple instance learning algorithm for predicting genetic alterations |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV009312048 |
title |
Explicit exponential lower bounds for exact hyperplane covers |
ctrlnum |
(DE-627)ELV058658238 (ELSEVIER)S0012-365X(22)00320-X |
title_full |
Explicit exponential lower bounds for exact hyperplane covers |
author_sort |
Diamond, Benjamin E. |
journal |
A robust and lightweight deep attention multiple instance learning algorithm for predicting genetic alterations |
journalStr |
A robust and lightweight deep attention multiple instance learning algorithm for predicting genetic alterations |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
zzz |
container_start_page |
0 |
author_browse |
Diamond, Benjamin E. |
container_volume |
345 |
class |
610 VZ 44.64 bkl 44.32 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Diamond, Benjamin E. |
doi_str_mv |
10.1016/j.disc.2022.113114 |
dewey-full |
610 |
title_sort |
explicit exponential lower bounds for exact hyperplane covers |
title_auth |
Explicit exponential lower bounds for exact hyperplane covers |
abstract |
We describe an explicit and simple subset of the discrete hypercube which cannot be exactly covered by fewer than exponentially many hyperplanes. The proof exploits a connection to communication complexity, and relies heavily on Razborov's lower bound for disjointness. |
abstractGer |
We describe an explicit and simple subset of the discrete hypercube which cannot be exactly covered by fewer than exponentially many hyperplanes. The proof exploits a connection to communication complexity, and relies heavily on Razborov's lower bound for disjointness. |
abstract_unstemmed |
We describe an explicit and simple subset of the discrete hypercube which cannot be exactly covered by fewer than exponentially many hyperplanes. The proof exploits a connection to communication complexity, and relies heavily on Razborov's lower bound for disjointness. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA |
container_issue |
11 |
title_short |
Explicit exponential lower bounds for exact hyperplane covers |
url |
https://doi.org/10.1016/j.disc.2022.113114 |
remote_bool |
true |
author2 |
Yehudayoff, Amir |
author2Str |
Yehudayoff, Amir |
ppnlink |
ELV009312048 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
doi_str |
10.1016/j.disc.2022.113114 |
up_date |
2024-07-06T19:40:28.512Z |
_version_ |
1803859870101798912 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV058658238</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230625010222.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">221103s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.disc.2022.113114</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001874.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV058658238</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0012-365X(22)00320-X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.64</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.32</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Diamond, Benjamin E.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Explicit exponential lower bounds for exact hyperplane covers</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We describe an explicit and simple subset of the discrete hypercube which cannot be exactly covered by fewer than exponentially many hyperplanes. The proof exploits a connection to communication complexity, and relies heavily on Razborov's lower bound for disjointness.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Lower bounds</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Communication complexity</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Exact hyperplane covers</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yehudayoff, Amir</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Guo, Bangwei ELSEVIER</subfield><subfield code="t">A robust and lightweight deep attention multiple instance learning algorithm for predicting genetic alterations</subfield><subfield code="d">2023</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV009312048</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:345</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:11</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.disc.2022.113114</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.64</subfield><subfield code="j">Radiologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.32</subfield><subfield code="j">Medizinische Mathematik</subfield><subfield code="j">medizinische Statistik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">345</subfield><subfield code="j">2022</subfield><subfield code="e">11</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
score |
7.4018345 |