S-doping induced phase engineering of MoSe2 for hydrogen evolution reaction
MoSe2 is a promising electrocatalyst for hydrogen evolution reaction (HER). It is confirmed that 1T-MoSe2 shows better activity for HER compared with 2H-MoSe2 since of wider interlayer spacing, higher conductivity and better hydrophilicity of 1T-MoSe2. Realization of 1T-MoSe2 is still a thorny issue...
Ausführliche Beschreibung
Autor*in: |
Li, Han [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
7 |
---|
Übergeordnetes Werk: |
Enthalten in: External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs - Dedhia, Kavita ELSEVIER, 2018, official journal of the International Association for Hydrogen Energy, New York, NY [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:47 ; year:2022 ; number:71 ; day:19 ; month:08 ; pages:30371-30377 ; extent:7 |
Links: |
---|
DOI / URN: |
10.1016/j.ijhydene.2022.07.008 |
---|
Katalog-ID: |
ELV058803122 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV058803122 | ||
003 | DE-627 | ||
005 | 20230626051623.0 | ||
007 | cr uuu---uuuuu | ||
008 | 221103s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ijhydene.2022.07.008 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001889.pica |
035 | |a (DE-627)ELV058803122 | ||
035 | |a (ELSEVIER)S0360-3199(22)03022-1 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 610 |q VZ |
084 | |a 44.94 |2 bkl | ||
100 | 1 | |a Li, Han |e verfasserin |4 aut | |
245 | 1 | 0 | |a S-doping induced phase engineering of MoSe2 for hydrogen evolution reaction |
264 | 1 | |c 2022transfer abstract | |
300 | |a 7 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a MoSe2 is a promising electrocatalyst for hydrogen evolution reaction (HER). It is confirmed that 1T-MoSe2 shows better activity for HER compared with 2H-MoSe2 since of wider interlayer spacing, higher conductivity and better hydrophilicity of 1T-MoSe2. Realization of 1T-MoSe2 is still a thorny issue due to its high formation barrier and thermodynamic metastable. Herein, considering the microstrain induced by atomic size mismatch through the substitution of Se by S, the MoSe2-2xS2x is prepared via one-pot hydrothermal synthesis, resulting in 70.3% high-purity 1T phase. Additionally, the MoSe2-2xS2x shows a low overpotential of 167 mV at 10 mA cm−2, Tafel slope of 54 mV dec−1, high double layer capacitance (C dl) of 13.43 mF cm−2 and superior cycle stability. The results are ascribed to larger interlayer spacing, high conductivity and good hydrophilicity of 1T phase MoSe2-2xS2x. This study provides a simple and feasible route to achieve high-purity TMDs for promoting HER application. | ||
520 | |a MoSe2 is a promising electrocatalyst for hydrogen evolution reaction (HER). It is confirmed that 1T-MoSe2 shows better activity for HER compared with 2H-MoSe2 since of wider interlayer spacing, higher conductivity and better hydrophilicity of 1T-MoSe2. Realization of 1T-MoSe2 is still a thorny issue due to its high formation barrier and thermodynamic metastable. Herein, considering the microstrain induced by atomic size mismatch through the substitution of Se by S, the MoSe2-2xS2x is prepared via one-pot hydrothermal synthesis, resulting in 70.3% high-purity 1T phase. Additionally, the MoSe2-2xS2x shows a low overpotential of 167 mV at 10 mA cm−2, Tafel slope of 54 mV dec−1, high double layer capacitance (C dl) of 13.43 mF cm−2 and superior cycle stability. The results are ascribed to larger interlayer spacing, high conductivity and good hydrophilicity of 1T phase MoSe2-2xS2x. This study provides a simple and feasible route to achieve high-purity TMDs for promoting HER application. | ||
650 | 7 | |a Phase engineering |2 Elsevier | |
650 | 7 | |a Microstrain |2 Elsevier | |
650 | 7 | |a Hydrogen evolution reaction |2 Elsevier | |
650 | 7 | |a Hydrothermal |2 Elsevier | |
650 | 7 | |a MoSe2 |2 Elsevier | |
700 | 1 | |a Zhu, Lili |4 oth | |
700 | 1 | |a Li, Changdian |4 oth | |
700 | 1 | |a Wu, Ziqiang |4 oth | |
700 | 1 | |a Li, Hui |4 oth | |
700 | 1 | |a Chen, Qian |4 oth | |
700 | 1 | |a Huang, Yanan |4 oth | |
700 | 1 | |a Zhu, Xuebin |4 oth | |
700 | 1 | |a Sun, Yuping |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Dedhia, Kavita ELSEVIER |t External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs |d 2018 |d official journal of the International Association for Hydrogen Energy |g New York, NY [u.a.] |w (DE-627)ELV000127019 |
773 | 1 | 8 | |g volume:47 |g year:2022 |g number:71 |g day:19 |g month:08 |g pages:30371-30377 |g extent:7 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.ijhydene.2022.07.008 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
936 | b | k | |a 44.94 |j Hals-Nasen-Ohrenheilkunde |q VZ |
951 | |a AR | ||
952 | |d 47 |j 2022 |e 71 |b 19 |c 0819 |h 30371-30377 |g 7 |
author_variant |
h l hl |
---|---|
matchkey_str |
lihanzhulililichangdianwuziqianglihuiche:2022----:dpnidcdhsegneigfoefryrgn |
hierarchy_sort_str |
2022transfer abstract |
bklnumber |
44.94 |
publishDate |
2022 |
allfields |
10.1016/j.ijhydene.2022.07.008 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001889.pica (DE-627)ELV058803122 (ELSEVIER)S0360-3199(22)03022-1 DE-627 ger DE-627 rakwb eng 610 VZ 44.94 bkl Li, Han verfasserin aut S-doping induced phase engineering of MoSe2 for hydrogen evolution reaction 2022transfer abstract 7 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier MoSe2 is a promising electrocatalyst for hydrogen evolution reaction (HER). It is confirmed that 1T-MoSe2 shows better activity for HER compared with 2H-MoSe2 since of wider interlayer spacing, higher conductivity and better hydrophilicity of 1T-MoSe2. Realization of 1T-MoSe2 is still a thorny issue due to its high formation barrier and thermodynamic metastable. Herein, considering the microstrain induced by atomic size mismatch through the substitution of Se by S, the MoSe2-2xS2x is prepared via one-pot hydrothermal synthesis, resulting in 70.3% high-purity 1T phase. Additionally, the MoSe2-2xS2x shows a low overpotential of 167 mV at 10 mA cm−2, Tafel slope of 54 mV dec−1, high double layer capacitance (C dl) of 13.43 mF cm−2 and superior cycle stability. The results are ascribed to larger interlayer spacing, high conductivity and good hydrophilicity of 1T phase MoSe2-2xS2x. This study provides a simple and feasible route to achieve high-purity TMDs for promoting HER application. MoSe2 is a promising electrocatalyst for hydrogen evolution reaction (HER). It is confirmed that 1T-MoSe2 shows better activity for HER compared with 2H-MoSe2 since of wider interlayer spacing, higher conductivity and better hydrophilicity of 1T-MoSe2. Realization of 1T-MoSe2 is still a thorny issue due to its high formation barrier and thermodynamic metastable. Herein, considering the microstrain induced by atomic size mismatch through the substitution of Se by S, the MoSe2-2xS2x is prepared via one-pot hydrothermal synthesis, resulting in 70.3% high-purity 1T phase. Additionally, the MoSe2-2xS2x shows a low overpotential of 167 mV at 10 mA cm−2, Tafel slope of 54 mV dec−1, high double layer capacitance (C dl) of 13.43 mF cm−2 and superior cycle stability. The results are ascribed to larger interlayer spacing, high conductivity and good hydrophilicity of 1T phase MoSe2-2xS2x. This study provides a simple and feasible route to achieve high-purity TMDs for promoting HER application. Phase engineering Elsevier Microstrain Elsevier Hydrogen evolution reaction Elsevier Hydrothermal Elsevier MoSe2 Elsevier Zhu, Lili oth Li, Changdian oth Wu, Ziqiang oth Li, Hui oth Chen, Qian oth Huang, Yanan oth Zhu, Xuebin oth Sun, Yuping oth Enthalten in Elsevier Dedhia, Kavita ELSEVIER External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs 2018 official journal of the International Association for Hydrogen Energy New York, NY [u.a.] (DE-627)ELV000127019 volume:47 year:2022 number:71 day:19 month:08 pages:30371-30377 extent:7 https://doi.org/10.1016/j.ijhydene.2022.07.008 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.94 Hals-Nasen-Ohrenheilkunde VZ AR 47 2022 71 19 0819 30371-30377 7 |
spelling |
10.1016/j.ijhydene.2022.07.008 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001889.pica (DE-627)ELV058803122 (ELSEVIER)S0360-3199(22)03022-1 DE-627 ger DE-627 rakwb eng 610 VZ 44.94 bkl Li, Han verfasserin aut S-doping induced phase engineering of MoSe2 for hydrogen evolution reaction 2022transfer abstract 7 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier MoSe2 is a promising electrocatalyst for hydrogen evolution reaction (HER). It is confirmed that 1T-MoSe2 shows better activity for HER compared with 2H-MoSe2 since of wider interlayer spacing, higher conductivity and better hydrophilicity of 1T-MoSe2. Realization of 1T-MoSe2 is still a thorny issue due to its high formation barrier and thermodynamic metastable. Herein, considering the microstrain induced by atomic size mismatch through the substitution of Se by S, the MoSe2-2xS2x is prepared via one-pot hydrothermal synthesis, resulting in 70.3% high-purity 1T phase. Additionally, the MoSe2-2xS2x shows a low overpotential of 167 mV at 10 mA cm−2, Tafel slope of 54 mV dec−1, high double layer capacitance (C dl) of 13.43 mF cm−2 and superior cycle stability. The results are ascribed to larger interlayer spacing, high conductivity and good hydrophilicity of 1T phase MoSe2-2xS2x. This study provides a simple and feasible route to achieve high-purity TMDs for promoting HER application. MoSe2 is a promising electrocatalyst for hydrogen evolution reaction (HER). It is confirmed that 1T-MoSe2 shows better activity for HER compared with 2H-MoSe2 since of wider interlayer spacing, higher conductivity and better hydrophilicity of 1T-MoSe2. Realization of 1T-MoSe2 is still a thorny issue due to its high formation barrier and thermodynamic metastable. Herein, considering the microstrain induced by atomic size mismatch through the substitution of Se by S, the MoSe2-2xS2x is prepared via one-pot hydrothermal synthesis, resulting in 70.3% high-purity 1T phase. Additionally, the MoSe2-2xS2x shows a low overpotential of 167 mV at 10 mA cm−2, Tafel slope of 54 mV dec−1, high double layer capacitance (C dl) of 13.43 mF cm−2 and superior cycle stability. The results are ascribed to larger interlayer spacing, high conductivity and good hydrophilicity of 1T phase MoSe2-2xS2x. This study provides a simple and feasible route to achieve high-purity TMDs for promoting HER application. Phase engineering Elsevier Microstrain Elsevier Hydrogen evolution reaction Elsevier Hydrothermal Elsevier MoSe2 Elsevier Zhu, Lili oth Li, Changdian oth Wu, Ziqiang oth Li, Hui oth Chen, Qian oth Huang, Yanan oth Zhu, Xuebin oth Sun, Yuping oth Enthalten in Elsevier Dedhia, Kavita ELSEVIER External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs 2018 official journal of the International Association for Hydrogen Energy New York, NY [u.a.] (DE-627)ELV000127019 volume:47 year:2022 number:71 day:19 month:08 pages:30371-30377 extent:7 https://doi.org/10.1016/j.ijhydene.2022.07.008 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.94 Hals-Nasen-Ohrenheilkunde VZ AR 47 2022 71 19 0819 30371-30377 7 |
allfields_unstemmed |
10.1016/j.ijhydene.2022.07.008 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001889.pica (DE-627)ELV058803122 (ELSEVIER)S0360-3199(22)03022-1 DE-627 ger DE-627 rakwb eng 610 VZ 44.94 bkl Li, Han verfasserin aut S-doping induced phase engineering of MoSe2 for hydrogen evolution reaction 2022transfer abstract 7 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier MoSe2 is a promising electrocatalyst for hydrogen evolution reaction (HER). It is confirmed that 1T-MoSe2 shows better activity for HER compared with 2H-MoSe2 since of wider interlayer spacing, higher conductivity and better hydrophilicity of 1T-MoSe2. Realization of 1T-MoSe2 is still a thorny issue due to its high formation barrier and thermodynamic metastable. Herein, considering the microstrain induced by atomic size mismatch through the substitution of Se by S, the MoSe2-2xS2x is prepared via one-pot hydrothermal synthesis, resulting in 70.3% high-purity 1T phase. Additionally, the MoSe2-2xS2x shows a low overpotential of 167 mV at 10 mA cm−2, Tafel slope of 54 mV dec−1, high double layer capacitance (C dl) of 13.43 mF cm−2 and superior cycle stability. The results are ascribed to larger interlayer spacing, high conductivity and good hydrophilicity of 1T phase MoSe2-2xS2x. This study provides a simple and feasible route to achieve high-purity TMDs for promoting HER application. MoSe2 is a promising electrocatalyst for hydrogen evolution reaction (HER). It is confirmed that 1T-MoSe2 shows better activity for HER compared with 2H-MoSe2 since of wider interlayer spacing, higher conductivity and better hydrophilicity of 1T-MoSe2. Realization of 1T-MoSe2 is still a thorny issue due to its high formation barrier and thermodynamic metastable. Herein, considering the microstrain induced by atomic size mismatch through the substitution of Se by S, the MoSe2-2xS2x is prepared via one-pot hydrothermal synthesis, resulting in 70.3% high-purity 1T phase. Additionally, the MoSe2-2xS2x shows a low overpotential of 167 mV at 10 mA cm−2, Tafel slope of 54 mV dec−1, high double layer capacitance (C dl) of 13.43 mF cm−2 and superior cycle stability. The results are ascribed to larger interlayer spacing, high conductivity and good hydrophilicity of 1T phase MoSe2-2xS2x. This study provides a simple and feasible route to achieve high-purity TMDs for promoting HER application. Phase engineering Elsevier Microstrain Elsevier Hydrogen evolution reaction Elsevier Hydrothermal Elsevier MoSe2 Elsevier Zhu, Lili oth Li, Changdian oth Wu, Ziqiang oth Li, Hui oth Chen, Qian oth Huang, Yanan oth Zhu, Xuebin oth Sun, Yuping oth Enthalten in Elsevier Dedhia, Kavita ELSEVIER External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs 2018 official journal of the International Association for Hydrogen Energy New York, NY [u.a.] (DE-627)ELV000127019 volume:47 year:2022 number:71 day:19 month:08 pages:30371-30377 extent:7 https://doi.org/10.1016/j.ijhydene.2022.07.008 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.94 Hals-Nasen-Ohrenheilkunde VZ AR 47 2022 71 19 0819 30371-30377 7 |
allfieldsGer |
10.1016/j.ijhydene.2022.07.008 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001889.pica (DE-627)ELV058803122 (ELSEVIER)S0360-3199(22)03022-1 DE-627 ger DE-627 rakwb eng 610 VZ 44.94 bkl Li, Han verfasserin aut S-doping induced phase engineering of MoSe2 for hydrogen evolution reaction 2022transfer abstract 7 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier MoSe2 is a promising electrocatalyst for hydrogen evolution reaction (HER). It is confirmed that 1T-MoSe2 shows better activity for HER compared with 2H-MoSe2 since of wider interlayer spacing, higher conductivity and better hydrophilicity of 1T-MoSe2. Realization of 1T-MoSe2 is still a thorny issue due to its high formation barrier and thermodynamic metastable. Herein, considering the microstrain induced by atomic size mismatch through the substitution of Se by S, the MoSe2-2xS2x is prepared via one-pot hydrothermal synthesis, resulting in 70.3% high-purity 1T phase. Additionally, the MoSe2-2xS2x shows a low overpotential of 167 mV at 10 mA cm−2, Tafel slope of 54 mV dec−1, high double layer capacitance (C dl) of 13.43 mF cm−2 and superior cycle stability. The results are ascribed to larger interlayer spacing, high conductivity and good hydrophilicity of 1T phase MoSe2-2xS2x. This study provides a simple and feasible route to achieve high-purity TMDs for promoting HER application. MoSe2 is a promising electrocatalyst for hydrogen evolution reaction (HER). It is confirmed that 1T-MoSe2 shows better activity for HER compared with 2H-MoSe2 since of wider interlayer spacing, higher conductivity and better hydrophilicity of 1T-MoSe2. Realization of 1T-MoSe2 is still a thorny issue due to its high formation barrier and thermodynamic metastable. Herein, considering the microstrain induced by atomic size mismatch through the substitution of Se by S, the MoSe2-2xS2x is prepared via one-pot hydrothermal synthesis, resulting in 70.3% high-purity 1T phase. Additionally, the MoSe2-2xS2x shows a low overpotential of 167 mV at 10 mA cm−2, Tafel slope of 54 mV dec−1, high double layer capacitance (C dl) of 13.43 mF cm−2 and superior cycle stability. The results are ascribed to larger interlayer spacing, high conductivity and good hydrophilicity of 1T phase MoSe2-2xS2x. This study provides a simple and feasible route to achieve high-purity TMDs for promoting HER application. Phase engineering Elsevier Microstrain Elsevier Hydrogen evolution reaction Elsevier Hydrothermal Elsevier MoSe2 Elsevier Zhu, Lili oth Li, Changdian oth Wu, Ziqiang oth Li, Hui oth Chen, Qian oth Huang, Yanan oth Zhu, Xuebin oth Sun, Yuping oth Enthalten in Elsevier Dedhia, Kavita ELSEVIER External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs 2018 official journal of the International Association for Hydrogen Energy New York, NY [u.a.] (DE-627)ELV000127019 volume:47 year:2022 number:71 day:19 month:08 pages:30371-30377 extent:7 https://doi.org/10.1016/j.ijhydene.2022.07.008 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.94 Hals-Nasen-Ohrenheilkunde VZ AR 47 2022 71 19 0819 30371-30377 7 |
allfieldsSound |
10.1016/j.ijhydene.2022.07.008 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001889.pica (DE-627)ELV058803122 (ELSEVIER)S0360-3199(22)03022-1 DE-627 ger DE-627 rakwb eng 610 VZ 44.94 bkl Li, Han verfasserin aut S-doping induced phase engineering of MoSe2 for hydrogen evolution reaction 2022transfer abstract 7 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier MoSe2 is a promising electrocatalyst for hydrogen evolution reaction (HER). It is confirmed that 1T-MoSe2 shows better activity for HER compared with 2H-MoSe2 since of wider interlayer spacing, higher conductivity and better hydrophilicity of 1T-MoSe2. Realization of 1T-MoSe2 is still a thorny issue due to its high formation barrier and thermodynamic metastable. Herein, considering the microstrain induced by atomic size mismatch through the substitution of Se by S, the MoSe2-2xS2x is prepared via one-pot hydrothermal synthesis, resulting in 70.3% high-purity 1T phase. Additionally, the MoSe2-2xS2x shows a low overpotential of 167 mV at 10 mA cm−2, Tafel slope of 54 mV dec−1, high double layer capacitance (C dl) of 13.43 mF cm−2 and superior cycle stability. The results are ascribed to larger interlayer spacing, high conductivity and good hydrophilicity of 1T phase MoSe2-2xS2x. This study provides a simple and feasible route to achieve high-purity TMDs for promoting HER application. MoSe2 is a promising electrocatalyst for hydrogen evolution reaction (HER). It is confirmed that 1T-MoSe2 shows better activity for HER compared with 2H-MoSe2 since of wider interlayer spacing, higher conductivity and better hydrophilicity of 1T-MoSe2. Realization of 1T-MoSe2 is still a thorny issue due to its high formation barrier and thermodynamic metastable. Herein, considering the microstrain induced by atomic size mismatch through the substitution of Se by S, the MoSe2-2xS2x is prepared via one-pot hydrothermal synthesis, resulting in 70.3% high-purity 1T phase. Additionally, the MoSe2-2xS2x shows a low overpotential of 167 mV at 10 mA cm−2, Tafel slope of 54 mV dec−1, high double layer capacitance (C dl) of 13.43 mF cm−2 and superior cycle stability. The results are ascribed to larger interlayer spacing, high conductivity and good hydrophilicity of 1T phase MoSe2-2xS2x. This study provides a simple and feasible route to achieve high-purity TMDs for promoting HER application. Phase engineering Elsevier Microstrain Elsevier Hydrogen evolution reaction Elsevier Hydrothermal Elsevier MoSe2 Elsevier Zhu, Lili oth Li, Changdian oth Wu, Ziqiang oth Li, Hui oth Chen, Qian oth Huang, Yanan oth Zhu, Xuebin oth Sun, Yuping oth Enthalten in Elsevier Dedhia, Kavita ELSEVIER External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs 2018 official journal of the International Association for Hydrogen Energy New York, NY [u.a.] (DE-627)ELV000127019 volume:47 year:2022 number:71 day:19 month:08 pages:30371-30377 extent:7 https://doi.org/10.1016/j.ijhydene.2022.07.008 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.94 Hals-Nasen-Ohrenheilkunde VZ AR 47 2022 71 19 0819 30371-30377 7 |
language |
English |
source |
Enthalten in External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs New York, NY [u.a.] volume:47 year:2022 number:71 day:19 month:08 pages:30371-30377 extent:7 |
sourceStr |
Enthalten in External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs New York, NY [u.a.] volume:47 year:2022 number:71 day:19 month:08 pages:30371-30377 extent:7 |
format_phy_str_mv |
Article |
bklname |
Hals-Nasen-Ohrenheilkunde |
institution |
findex.gbv.de |
topic_facet |
Phase engineering Microstrain Hydrogen evolution reaction Hydrothermal MoSe2 |
dewey-raw |
610 |
isfreeaccess_bool |
false |
container_title |
External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs |
authorswithroles_txt_mv |
Li, Han @@aut@@ Zhu, Lili @@oth@@ Li, Changdian @@oth@@ Wu, Ziqiang @@oth@@ Li, Hui @@oth@@ Chen, Qian @@oth@@ Huang, Yanan @@oth@@ Zhu, Xuebin @@oth@@ Sun, Yuping @@oth@@ |
publishDateDaySort_date |
2022-01-19T00:00:00Z |
hierarchy_top_id |
ELV000127019 |
dewey-sort |
3610 |
id |
ELV058803122 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV058803122</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626051623.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">221103s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijhydene.2022.07.008</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001889.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV058803122</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0360-3199(22)03022-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.94</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Han</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">S-doping induced phase engineering of MoSe2 for hydrogen evolution reaction</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">7</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">MoSe2 is a promising electrocatalyst for hydrogen evolution reaction (HER). It is confirmed that 1T-MoSe2 shows better activity for HER compared with 2H-MoSe2 since of wider interlayer spacing, higher conductivity and better hydrophilicity of 1T-MoSe2. Realization of 1T-MoSe2 is still a thorny issue due to its high formation barrier and thermodynamic metastable. Herein, considering the microstrain induced by atomic size mismatch through the substitution of Se by S, the MoSe2-2xS2x is prepared via one-pot hydrothermal synthesis, resulting in 70.3% high-purity 1T phase. Additionally, the MoSe2-2xS2x shows a low overpotential of 167 mV at 10 mA cm−2, Tafel slope of 54 mV dec−1, high double layer capacitance (C dl) of 13.43 mF cm−2 and superior cycle stability. The results are ascribed to larger interlayer spacing, high conductivity and good hydrophilicity of 1T phase MoSe2-2xS2x. This study provides a simple and feasible route to achieve high-purity TMDs for promoting HER application.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">MoSe2 is a promising electrocatalyst for hydrogen evolution reaction (HER). It is confirmed that 1T-MoSe2 shows better activity for HER compared with 2H-MoSe2 since of wider interlayer spacing, higher conductivity and better hydrophilicity of 1T-MoSe2. Realization of 1T-MoSe2 is still a thorny issue due to its high formation barrier and thermodynamic metastable. Herein, considering the microstrain induced by atomic size mismatch through the substitution of Se by S, the MoSe2-2xS2x is prepared via one-pot hydrothermal synthesis, resulting in 70.3% high-purity 1T phase. Additionally, the MoSe2-2xS2x shows a low overpotential of 167 mV at 10 mA cm−2, Tafel slope of 54 mV dec−1, high double layer capacitance (C dl) of 13.43 mF cm−2 and superior cycle stability. The results are ascribed to larger interlayer spacing, high conductivity and good hydrophilicity of 1T phase MoSe2-2xS2x. This study provides a simple and feasible route to achieve high-purity TMDs for promoting HER application.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Phase engineering</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Microstrain</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Hydrogen evolution reaction</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Hydrothermal</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MoSe2</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhu, Lili</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Changdian</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Ziqiang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Hui</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Qian</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Yanan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhu, Xuebin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Yuping</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Dedhia, Kavita ELSEVIER</subfield><subfield code="t">External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs</subfield><subfield code="d">2018</subfield><subfield code="d">official journal of the International Association for Hydrogen Energy</subfield><subfield code="g">New York, NY [u.a.]</subfield><subfield code="w">(DE-627)ELV000127019</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:47</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:71</subfield><subfield code="g">day:19</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:30371-30377</subfield><subfield code="g">extent:7</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ijhydene.2022.07.008</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.94</subfield><subfield code="j">Hals-Nasen-Ohrenheilkunde</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">47</subfield><subfield code="j">2022</subfield><subfield code="e">71</subfield><subfield code="b">19</subfield><subfield code="c">0819</subfield><subfield code="h">30371-30377</subfield><subfield code="g">7</subfield></datafield></record></collection>
|
author |
Li, Han |
spellingShingle |
Li, Han ddc 610 bkl 44.94 Elsevier Phase engineering Elsevier Microstrain Elsevier Hydrogen evolution reaction Elsevier Hydrothermal Elsevier MoSe2 S-doping induced phase engineering of MoSe2 for hydrogen evolution reaction |
authorStr |
Li, Han |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV000127019 |
format |
electronic Article |
dewey-ones |
610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
610 VZ 44.94 bkl S-doping induced phase engineering of MoSe2 for hydrogen evolution reaction Phase engineering Elsevier Microstrain Elsevier Hydrogen evolution reaction Elsevier Hydrothermal Elsevier MoSe2 Elsevier |
topic |
ddc 610 bkl 44.94 Elsevier Phase engineering Elsevier Microstrain Elsevier Hydrogen evolution reaction Elsevier Hydrothermal Elsevier MoSe2 |
topic_unstemmed |
ddc 610 bkl 44.94 Elsevier Phase engineering Elsevier Microstrain Elsevier Hydrogen evolution reaction Elsevier Hydrothermal Elsevier MoSe2 |
topic_browse |
ddc 610 bkl 44.94 Elsevier Phase engineering Elsevier Microstrain Elsevier Hydrogen evolution reaction Elsevier Hydrothermal Elsevier MoSe2 |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
l z lz c l cl z w zw h l hl q c qc y h yh x z xz y s ys |
hierarchy_parent_title |
External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs |
hierarchy_parent_id |
ELV000127019 |
dewey-tens |
610 - Medicine & health |
hierarchy_top_title |
External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV000127019 |
title |
S-doping induced phase engineering of MoSe2 for hydrogen evolution reaction |
ctrlnum |
(DE-627)ELV058803122 (ELSEVIER)S0360-3199(22)03022-1 |
title_full |
S-doping induced phase engineering of MoSe2 for hydrogen evolution reaction |
author_sort |
Li, Han |
journal |
External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs |
journalStr |
External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
zzz |
container_start_page |
30371 |
author_browse |
Li, Han |
container_volume |
47 |
physical |
7 |
class |
610 VZ 44.94 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Li, Han |
doi_str_mv |
10.1016/j.ijhydene.2022.07.008 |
dewey-full |
610 |
title_sort |
s-doping induced phase engineering of mose2 for hydrogen evolution reaction |
title_auth |
S-doping induced phase engineering of MoSe2 for hydrogen evolution reaction |
abstract |
MoSe2 is a promising electrocatalyst for hydrogen evolution reaction (HER). It is confirmed that 1T-MoSe2 shows better activity for HER compared with 2H-MoSe2 since of wider interlayer spacing, higher conductivity and better hydrophilicity of 1T-MoSe2. Realization of 1T-MoSe2 is still a thorny issue due to its high formation barrier and thermodynamic metastable. Herein, considering the microstrain induced by atomic size mismatch through the substitution of Se by S, the MoSe2-2xS2x is prepared via one-pot hydrothermal synthesis, resulting in 70.3% high-purity 1T phase. Additionally, the MoSe2-2xS2x shows a low overpotential of 167 mV at 10 mA cm−2, Tafel slope of 54 mV dec−1, high double layer capacitance (C dl) of 13.43 mF cm−2 and superior cycle stability. The results are ascribed to larger interlayer spacing, high conductivity and good hydrophilicity of 1T phase MoSe2-2xS2x. This study provides a simple and feasible route to achieve high-purity TMDs for promoting HER application. |
abstractGer |
MoSe2 is a promising electrocatalyst for hydrogen evolution reaction (HER). It is confirmed that 1T-MoSe2 shows better activity for HER compared with 2H-MoSe2 since of wider interlayer spacing, higher conductivity and better hydrophilicity of 1T-MoSe2. Realization of 1T-MoSe2 is still a thorny issue due to its high formation barrier and thermodynamic metastable. Herein, considering the microstrain induced by atomic size mismatch through the substitution of Se by S, the MoSe2-2xS2x is prepared via one-pot hydrothermal synthesis, resulting in 70.3% high-purity 1T phase. Additionally, the MoSe2-2xS2x shows a low overpotential of 167 mV at 10 mA cm−2, Tafel slope of 54 mV dec−1, high double layer capacitance (C dl) of 13.43 mF cm−2 and superior cycle stability. The results are ascribed to larger interlayer spacing, high conductivity and good hydrophilicity of 1T phase MoSe2-2xS2x. This study provides a simple and feasible route to achieve high-purity TMDs for promoting HER application. |
abstract_unstemmed |
MoSe2 is a promising electrocatalyst for hydrogen evolution reaction (HER). It is confirmed that 1T-MoSe2 shows better activity for HER compared with 2H-MoSe2 since of wider interlayer spacing, higher conductivity and better hydrophilicity of 1T-MoSe2. Realization of 1T-MoSe2 is still a thorny issue due to its high formation barrier and thermodynamic metastable. Herein, considering the microstrain induced by atomic size mismatch through the substitution of Se by S, the MoSe2-2xS2x is prepared via one-pot hydrothermal synthesis, resulting in 70.3% high-purity 1T phase. Additionally, the MoSe2-2xS2x shows a low overpotential of 167 mV at 10 mA cm−2, Tafel slope of 54 mV dec−1, high double layer capacitance (C dl) of 13.43 mF cm−2 and superior cycle stability. The results are ascribed to larger interlayer spacing, high conductivity and good hydrophilicity of 1T phase MoSe2-2xS2x. This study provides a simple and feasible route to achieve high-purity TMDs for promoting HER application. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA |
container_issue |
71 |
title_short |
S-doping induced phase engineering of MoSe2 for hydrogen evolution reaction |
url |
https://doi.org/10.1016/j.ijhydene.2022.07.008 |
remote_bool |
true |
author2 |
Zhu, Lili Li, Changdian Wu, Ziqiang Li, Hui Chen, Qian Huang, Yanan Zhu, Xuebin Sun, Yuping |
author2Str |
Zhu, Lili Li, Changdian Wu, Ziqiang Li, Hui Chen, Qian Huang, Yanan Zhu, Xuebin Sun, Yuping |
ppnlink |
ELV000127019 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth oth oth |
doi_str |
10.1016/j.ijhydene.2022.07.008 |
up_date |
2024-07-06T20:06:08.187Z |
_version_ |
1803861484570148864 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV058803122</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626051623.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">221103s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijhydene.2022.07.008</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001889.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV058803122</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0360-3199(22)03022-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.94</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Han</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">S-doping induced phase engineering of MoSe2 for hydrogen evolution reaction</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">7</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">MoSe2 is a promising electrocatalyst for hydrogen evolution reaction (HER). It is confirmed that 1T-MoSe2 shows better activity for HER compared with 2H-MoSe2 since of wider interlayer spacing, higher conductivity and better hydrophilicity of 1T-MoSe2. Realization of 1T-MoSe2 is still a thorny issue due to its high formation barrier and thermodynamic metastable. Herein, considering the microstrain induced by atomic size mismatch through the substitution of Se by S, the MoSe2-2xS2x is prepared via one-pot hydrothermal synthesis, resulting in 70.3% high-purity 1T phase. Additionally, the MoSe2-2xS2x shows a low overpotential of 167 mV at 10 mA cm−2, Tafel slope of 54 mV dec−1, high double layer capacitance (C dl) of 13.43 mF cm−2 and superior cycle stability. The results are ascribed to larger interlayer spacing, high conductivity and good hydrophilicity of 1T phase MoSe2-2xS2x. This study provides a simple and feasible route to achieve high-purity TMDs for promoting HER application.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">MoSe2 is a promising electrocatalyst for hydrogen evolution reaction (HER). It is confirmed that 1T-MoSe2 shows better activity for HER compared with 2H-MoSe2 since of wider interlayer spacing, higher conductivity and better hydrophilicity of 1T-MoSe2. Realization of 1T-MoSe2 is still a thorny issue due to its high formation barrier and thermodynamic metastable. Herein, considering the microstrain induced by atomic size mismatch through the substitution of Se by S, the MoSe2-2xS2x is prepared via one-pot hydrothermal synthesis, resulting in 70.3% high-purity 1T phase. Additionally, the MoSe2-2xS2x shows a low overpotential of 167 mV at 10 mA cm−2, Tafel slope of 54 mV dec−1, high double layer capacitance (C dl) of 13.43 mF cm−2 and superior cycle stability. The results are ascribed to larger interlayer spacing, high conductivity and good hydrophilicity of 1T phase MoSe2-2xS2x. This study provides a simple and feasible route to achieve high-purity TMDs for promoting HER application.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Phase engineering</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Microstrain</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Hydrogen evolution reaction</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Hydrothermal</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MoSe2</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhu, Lili</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Changdian</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Ziqiang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Hui</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Qian</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Yanan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhu, Xuebin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Yuping</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Dedhia, Kavita ELSEVIER</subfield><subfield code="t">External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs</subfield><subfield code="d">2018</subfield><subfield code="d">official journal of the International Association for Hydrogen Energy</subfield><subfield code="g">New York, NY [u.a.]</subfield><subfield code="w">(DE-627)ELV000127019</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:47</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:71</subfield><subfield code="g">day:19</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:30371-30377</subfield><subfield code="g">extent:7</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ijhydene.2022.07.008</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.94</subfield><subfield code="j">Hals-Nasen-Ohrenheilkunde</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">47</subfield><subfield code="j">2022</subfield><subfield code="e">71</subfield><subfield code="b">19</subfield><subfield code="c">0819</subfield><subfield code="h">30371-30377</subfield><subfield code="g">7</subfield></datafield></record></collection>
|
score |
7.401394 |