Bridge-linking interfacial engineering of triple carbons for highly efficient and binder-free electrodes toward flexible Zn-air batteries
Reasonable modulation of catalyst/substrate interface still remains great challenge for binder-free and high-performance electrodes. Herein, interfacial engineering via bridge-linking is proposed to effectively integrate powdery catalysts with flexible substrates by in situ synthesized nanocarbon. C...
Ausführliche Beschreibung
Autor*in: |
Zheng, Xiangjun [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022transfer abstract |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Comparability studies of hemin from two different origins porcine and bovine in the production of - Beri, Suresh ELSEVIER, 2020, an international journal devoted to catalytic science and its applications, Amsterdam |
---|---|
Übergeordnetes Werk: |
volume:319 ; year:2022 ; day:15 ; month:12 ; pages:0 |
Links: |
---|
DOI / URN: |
10.1016/j.apcatb.2022.121937 |
---|
Katalog-ID: |
ELV058947736 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV058947736 | ||
003 | DE-627 | ||
005 | 20230626051921.0 | ||
007 | cr uuu---uuuuu | ||
008 | 221103s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.apcatb.2022.121937 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001903.pica |
035 | |a (DE-627)ELV058947736 | ||
035 | |a (ELSEVIER)S0926-3373(22)00878-5 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 570 |q VZ |
084 | |a BIODIV |q DE-30 |2 fid | ||
084 | |a PHARM |q DE-84 |2 fid | ||
084 | |a 44.00 |2 bkl | ||
100 | 1 | |a Zheng, Xiangjun |e verfasserin |4 aut | |
245 | 1 | 0 | |a Bridge-linking interfacial engineering of triple carbons for highly efficient and binder-free electrodes toward flexible Zn-air batteries |
264 | 1 | |c 2022transfer abstract | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Reasonable modulation of catalyst/substrate interface still remains great challenge for binder-free and high-performance electrodes. Herein, interfacial engineering via bridge-linking is proposed to effectively integrate powdery catalysts with flexible substrates by in situ synthesized nanocarbon. Concretely, a binder-free CNTs on carbonized carbon cloth linked with N-doped nanocarbons (CNTs-NC-CCC) electrode is formed via self-assembly and covalent coupling. Experimental results and theoretical calculation disclose that the bridge-linking strategy not only enables the fast electron and mass transfer, but also modifies the charge distribution and optimizes the adsorption/desorption process of oxygenated intermediates. With these merits, this metal-free catalyst exhibits superb bifunctional ORR/OER electrocatalytic activity with a voltage gap of 0.78 V. Remarkably, when equipped in aqueous and flexible Zn-air batteries, high power density (288, 68 mW cm–2) and enhanced durability are obtained. This facile nanocarbon-linkage strategy opens up a new avenue for the application of powdery catalysts in wearable energy devices. | ||
520 | |a Reasonable modulation of catalyst/substrate interface still remains great challenge for binder-free and high-performance electrodes. Herein, interfacial engineering via bridge-linking is proposed to effectively integrate powdery catalysts with flexible substrates by in situ synthesized nanocarbon. Concretely, a binder-free CNTs on carbonized carbon cloth linked with N-doped nanocarbons (CNTs-NC-CCC) electrode is formed via self-assembly and covalent coupling. Experimental results and theoretical calculation disclose that the bridge-linking strategy not only enables the fast electron and mass transfer, but also modifies the charge distribution and optimizes the adsorption/desorption process of oxygenated intermediates. With these merits, this metal-free catalyst exhibits superb bifunctional ORR/OER electrocatalytic activity with a voltage gap of 0.78 V. Remarkably, when equipped in aqueous and flexible Zn-air batteries, high power density (288, 68 mW cm–2) and enhanced durability are obtained. This facile nanocarbon-linkage strategy opens up a new avenue for the application of powdery catalysts in wearable energy devices. | ||
650 | 7 | |a Binder-free electrode |2 Elsevier | |
650 | 7 | |a Flexible Zn-air batteries |2 Elsevier | |
650 | 7 | |a Interfacial engineering |2 Elsevier | |
650 | 7 | |a Nanocarbon |2 Elsevier | |
650 | 7 | |a Metal-free electrocatalysts |2 Elsevier | |
700 | 1 | |a Qian, Yuhang |4 oth | |
700 | 1 | |a Gong, Hongyu |4 oth | |
700 | 1 | |a Shi, Wenhua |4 oth | |
700 | 1 | |a Yan, Jin |4 oth | |
700 | 1 | |a Wang, Wentao |4 oth | |
700 | 1 | |a Guo, Xingmei |4 oth | |
700 | 1 | |a Zhang, Junhao |4 oth | |
700 | 1 | |a Cao, Xuecheng |4 oth | |
700 | 1 | |a Yang, Ruizhi |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Beri, Suresh ELSEVIER |t Comparability studies of hemin from two different origins porcine and bovine in the production of |d 2020 |d an international journal devoted to catalytic science and its applications |g Amsterdam |w (DE-627)ELV004775082 |
773 | 1 | 8 | |g volume:319 |g year:2022 |g day:15 |g month:12 |g pages:0 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.apcatb.2022.121937 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a FID-BIODIV | ||
912 | |a FID-PHARM | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OPC-PHA | ||
936 | b | k | |a 44.00 |j Medizin: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 319 |j 2022 |b 15 |c 1215 |h 0 |
author_variant |
x z xz |
---|---|
matchkey_str |
zhengxiangjunqianyuhanggonghongyushiwenh:2022----:rdeiknitrailniernotilcrosohglefcetnbnefeeet |
hierarchy_sort_str |
2022transfer abstract |
bklnumber |
44.00 |
publishDate |
2022 |
allfields |
10.1016/j.apcatb.2022.121937 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001903.pica (DE-627)ELV058947736 (ELSEVIER)S0926-3373(22)00878-5 DE-627 ger DE-627 rakwb eng 570 VZ BIODIV DE-30 fid PHARM DE-84 fid 44.00 bkl Zheng, Xiangjun verfasserin aut Bridge-linking interfacial engineering of triple carbons for highly efficient and binder-free electrodes toward flexible Zn-air batteries 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Reasonable modulation of catalyst/substrate interface still remains great challenge for binder-free and high-performance electrodes. Herein, interfacial engineering via bridge-linking is proposed to effectively integrate powdery catalysts with flexible substrates by in situ synthesized nanocarbon. Concretely, a binder-free CNTs on carbonized carbon cloth linked with N-doped nanocarbons (CNTs-NC-CCC) electrode is formed via self-assembly and covalent coupling. Experimental results and theoretical calculation disclose that the bridge-linking strategy not only enables the fast electron and mass transfer, but also modifies the charge distribution and optimizes the adsorption/desorption process of oxygenated intermediates. With these merits, this metal-free catalyst exhibits superb bifunctional ORR/OER electrocatalytic activity with a voltage gap of 0.78 V. Remarkably, when equipped in aqueous and flexible Zn-air batteries, high power density (288, 68 mW cm–2) and enhanced durability are obtained. This facile nanocarbon-linkage strategy opens up a new avenue for the application of powdery catalysts in wearable energy devices. Reasonable modulation of catalyst/substrate interface still remains great challenge for binder-free and high-performance electrodes. Herein, interfacial engineering via bridge-linking is proposed to effectively integrate powdery catalysts with flexible substrates by in situ synthesized nanocarbon. Concretely, a binder-free CNTs on carbonized carbon cloth linked with N-doped nanocarbons (CNTs-NC-CCC) electrode is formed via self-assembly and covalent coupling. Experimental results and theoretical calculation disclose that the bridge-linking strategy not only enables the fast electron and mass transfer, but also modifies the charge distribution and optimizes the adsorption/desorption process of oxygenated intermediates. With these merits, this metal-free catalyst exhibits superb bifunctional ORR/OER electrocatalytic activity with a voltage gap of 0.78 V. Remarkably, when equipped in aqueous and flexible Zn-air batteries, high power density (288, 68 mW cm–2) and enhanced durability are obtained. This facile nanocarbon-linkage strategy opens up a new avenue for the application of powdery catalysts in wearable energy devices. Binder-free electrode Elsevier Flexible Zn-air batteries Elsevier Interfacial engineering Elsevier Nanocarbon Elsevier Metal-free electrocatalysts Elsevier Qian, Yuhang oth Gong, Hongyu oth Shi, Wenhua oth Yan, Jin oth Wang, Wentao oth Guo, Xingmei oth Zhang, Junhao oth Cao, Xuecheng oth Yang, Ruizhi oth Enthalten in Elsevier Beri, Suresh ELSEVIER Comparability studies of hemin from two different origins porcine and bovine in the production of 2020 an international journal devoted to catalytic science and its applications Amsterdam (DE-627)ELV004775082 volume:319 year:2022 day:15 month:12 pages:0 https://doi.org/10.1016/j.apcatb.2022.121937 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV FID-PHARM SSG-OLC-PHA SSG-OPC-PHA 44.00 Medizin: Allgemeines VZ AR 319 2022 15 1215 0 |
spelling |
10.1016/j.apcatb.2022.121937 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001903.pica (DE-627)ELV058947736 (ELSEVIER)S0926-3373(22)00878-5 DE-627 ger DE-627 rakwb eng 570 VZ BIODIV DE-30 fid PHARM DE-84 fid 44.00 bkl Zheng, Xiangjun verfasserin aut Bridge-linking interfacial engineering of triple carbons for highly efficient and binder-free electrodes toward flexible Zn-air batteries 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Reasonable modulation of catalyst/substrate interface still remains great challenge for binder-free and high-performance electrodes. Herein, interfacial engineering via bridge-linking is proposed to effectively integrate powdery catalysts with flexible substrates by in situ synthesized nanocarbon. Concretely, a binder-free CNTs on carbonized carbon cloth linked with N-doped nanocarbons (CNTs-NC-CCC) electrode is formed via self-assembly and covalent coupling. Experimental results and theoretical calculation disclose that the bridge-linking strategy not only enables the fast electron and mass transfer, but also modifies the charge distribution and optimizes the adsorption/desorption process of oxygenated intermediates. With these merits, this metal-free catalyst exhibits superb bifunctional ORR/OER electrocatalytic activity with a voltage gap of 0.78 V. Remarkably, when equipped in aqueous and flexible Zn-air batteries, high power density (288, 68 mW cm–2) and enhanced durability are obtained. This facile nanocarbon-linkage strategy opens up a new avenue for the application of powdery catalysts in wearable energy devices. Reasonable modulation of catalyst/substrate interface still remains great challenge for binder-free and high-performance electrodes. Herein, interfacial engineering via bridge-linking is proposed to effectively integrate powdery catalysts with flexible substrates by in situ synthesized nanocarbon. Concretely, a binder-free CNTs on carbonized carbon cloth linked with N-doped nanocarbons (CNTs-NC-CCC) electrode is formed via self-assembly and covalent coupling. Experimental results and theoretical calculation disclose that the bridge-linking strategy not only enables the fast electron and mass transfer, but also modifies the charge distribution and optimizes the adsorption/desorption process of oxygenated intermediates. With these merits, this metal-free catalyst exhibits superb bifunctional ORR/OER electrocatalytic activity with a voltage gap of 0.78 V. Remarkably, when equipped in aqueous and flexible Zn-air batteries, high power density (288, 68 mW cm–2) and enhanced durability are obtained. This facile nanocarbon-linkage strategy opens up a new avenue for the application of powdery catalysts in wearable energy devices. Binder-free electrode Elsevier Flexible Zn-air batteries Elsevier Interfacial engineering Elsevier Nanocarbon Elsevier Metal-free electrocatalysts Elsevier Qian, Yuhang oth Gong, Hongyu oth Shi, Wenhua oth Yan, Jin oth Wang, Wentao oth Guo, Xingmei oth Zhang, Junhao oth Cao, Xuecheng oth Yang, Ruizhi oth Enthalten in Elsevier Beri, Suresh ELSEVIER Comparability studies of hemin from two different origins porcine and bovine in the production of 2020 an international journal devoted to catalytic science and its applications Amsterdam (DE-627)ELV004775082 volume:319 year:2022 day:15 month:12 pages:0 https://doi.org/10.1016/j.apcatb.2022.121937 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV FID-PHARM SSG-OLC-PHA SSG-OPC-PHA 44.00 Medizin: Allgemeines VZ AR 319 2022 15 1215 0 |
allfields_unstemmed |
10.1016/j.apcatb.2022.121937 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001903.pica (DE-627)ELV058947736 (ELSEVIER)S0926-3373(22)00878-5 DE-627 ger DE-627 rakwb eng 570 VZ BIODIV DE-30 fid PHARM DE-84 fid 44.00 bkl Zheng, Xiangjun verfasserin aut Bridge-linking interfacial engineering of triple carbons for highly efficient and binder-free electrodes toward flexible Zn-air batteries 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Reasonable modulation of catalyst/substrate interface still remains great challenge for binder-free and high-performance electrodes. Herein, interfacial engineering via bridge-linking is proposed to effectively integrate powdery catalysts with flexible substrates by in situ synthesized nanocarbon. Concretely, a binder-free CNTs on carbonized carbon cloth linked with N-doped nanocarbons (CNTs-NC-CCC) electrode is formed via self-assembly and covalent coupling. Experimental results and theoretical calculation disclose that the bridge-linking strategy not only enables the fast electron and mass transfer, but also modifies the charge distribution and optimizes the adsorption/desorption process of oxygenated intermediates. With these merits, this metal-free catalyst exhibits superb bifunctional ORR/OER electrocatalytic activity with a voltage gap of 0.78 V. Remarkably, when equipped in aqueous and flexible Zn-air batteries, high power density (288, 68 mW cm–2) and enhanced durability are obtained. This facile nanocarbon-linkage strategy opens up a new avenue for the application of powdery catalysts in wearable energy devices. Reasonable modulation of catalyst/substrate interface still remains great challenge for binder-free and high-performance electrodes. Herein, interfacial engineering via bridge-linking is proposed to effectively integrate powdery catalysts with flexible substrates by in situ synthesized nanocarbon. Concretely, a binder-free CNTs on carbonized carbon cloth linked with N-doped nanocarbons (CNTs-NC-CCC) electrode is formed via self-assembly and covalent coupling. Experimental results and theoretical calculation disclose that the bridge-linking strategy not only enables the fast electron and mass transfer, but also modifies the charge distribution and optimizes the adsorption/desorption process of oxygenated intermediates. With these merits, this metal-free catalyst exhibits superb bifunctional ORR/OER electrocatalytic activity with a voltage gap of 0.78 V. Remarkably, when equipped in aqueous and flexible Zn-air batteries, high power density (288, 68 mW cm–2) and enhanced durability are obtained. This facile nanocarbon-linkage strategy opens up a new avenue for the application of powdery catalysts in wearable energy devices. Binder-free electrode Elsevier Flexible Zn-air batteries Elsevier Interfacial engineering Elsevier Nanocarbon Elsevier Metal-free electrocatalysts Elsevier Qian, Yuhang oth Gong, Hongyu oth Shi, Wenhua oth Yan, Jin oth Wang, Wentao oth Guo, Xingmei oth Zhang, Junhao oth Cao, Xuecheng oth Yang, Ruizhi oth Enthalten in Elsevier Beri, Suresh ELSEVIER Comparability studies of hemin from two different origins porcine and bovine in the production of 2020 an international journal devoted to catalytic science and its applications Amsterdam (DE-627)ELV004775082 volume:319 year:2022 day:15 month:12 pages:0 https://doi.org/10.1016/j.apcatb.2022.121937 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV FID-PHARM SSG-OLC-PHA SSG-OPC-PHA 44.00 Medizin: Allgemeines VZ AR 319 2022 15 1215 0 |
allfieldsGer |
10.1016/j.apcatb.2022.121937 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001903.pica (DE-627)ELV058947736 (ELSEVIER)S0926-3373(22)00878-5 DE-627 ger DE-627 rakwb eng 570 VZ BIODIV DE-30 fid PHARM DE-84 fid 44.00 bkl Zheng, Xiangjun verfasserin aut Bridge-linking interfacial engineering of triple carbons for highly efficient and binder-free electrodes toward flexible Zn-air batteries 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Reasonable modulation of catalyst/substrate interface still remains great challenge for binder-free and high-performance electrodes. Herein, interfacial engineering via bridge-linking is proposed to effectively integrate powdery catalysts with flexible substrates by in situ synthesized nanocarbon. Concretely, a binder-free CNTs on carbonized carbon cloth linked with N-doped nanocarbons (CNTs-NC-CCC) electrode is formed via self-assembly and covalent coupling. Experimental results and theoretical calculation disclose that the bridge-linking strategy not only enables the fast electron and mass transfer, but also modifies the charge distribution and optimizes the adsorption/desorption process of oxygenated intermediates. With these merits, this metal-free catalyst exhibits superb bifunctional ORR/OER electrocatalytic activity with a voltage gap of 0.78 V. Remarkably, when equipped in aqueous and flexible Zn-air batteries, high power density (288, 68 mW cm–2) and enhanced durability are obtained. This facile nanocarbon-linkage strategy opens up a new avenue for the application of powdery catalysts in wearable energy devices. Reasonable modulation of catalyst/substrate interface still remains great challenge for binder-free and high-performance electrodes. Herein, interfacial engineering via bridge-linking is proposed to effectively integrate powdery catalysts with flexible substrates by in situ synthesized nanocarbon. Concretely, a binder-free CNTs on carbonized carbon cloth linked with N-doped nanocarbons (CNTs-NC-CCC) electrode is formed via self-assembly and covalent coupling. Experimental results and theoretical calculation disclose that the bridge-linking strategy not only enables the fast electron and mass transfer, but also modifies the charge distribution and optimizes the adsorption/desorption process of oxygenated intermediates. With these merits, this metal-free catalyst exhibits superb bifunctional ORR/OER electrocatalytic activity with a voltage gap of 0.78 V. Remarkably, when equipped in aqueous and flexible Zn-air batteries, high power density (288, 68 mW cm–2) and enhanced durability are obtained. This facile nanocarbon-linkage strategy opens up a new avenue for the application of powdery catalysts in wearable energy devices. Binder-free electrode Elsevier Flexible Zn-air batteries Elsevier Interfacial engineering Elsevier Nanocarbon Elsevier Metal-free electrocatalysts Elsevier Qian, Yuhang oth Gong, Hongyu oth Shi, Wenhua oth Yan, Jin oth Wang, Wentao oth Guo, Xingmei oth Zhang, Junhao oth Cao, Xuecheng oth Yang, Ruizhi oth Enthalten in Elsevier Beri, Suresh ELSEVIER Comparability studies of hemin from two different origins porcine and bovine in the production of 2020 an international journal devoted to catalytic science and its applications Amsterdam (DE-627)ELV004775082 volume:319 year:2022 day:15 month:12 pages:0 https://doi.org/10.1016/j.apcatb.2022.121937 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV FID-PHARM SSG-OLC-PHA SSG-OPC-PHA 44.00 Medizin: Allgemeines VZ AR 319 2022 15 1215 0 |
allfieldsSound |
10.1016/j.apcatb.2022.121937 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001903.pica (DE-627)ELV058947736 (ELSEVIER)S0926-3373(22)00878-5 DE-627 ger DE-627 rakwb eng 570 VZ BIODIV DE-30 fid PHARM DE-84 fid 44.00 bkl Zheng, Xiangjun verfasserin aut Bridge-linking interfacial engineering of triple carbons for highly efficient and binder-free electrodes toward flexible Zn-air batteries 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Reasonable modulation of catalyst/substrate interface still remains great challenge for binder-free and high-performance electrodes. Herein, interfacial engineering via bridge-linking is proposed to effectively integrate powdery catalysts with flexible substrates by in situ synthesized nanocarbon. Concretely, a binder-free CNTs on carbonized carbon cloth linked with N-doped nanocarbons (CNTs-NC-CCC) electrode is formed via self-assembly and covalent coupling. Experimental results and theoretical calculation disclose that the bridge-linking strategy not only enables the fast electron and mass transfer, but also modifies the charge distribution and optimizes the adsorption/desorption process of oxygenated intermediates. With these merits, this metal-free catalyst exhibits superb bifunctional ORR/OER electrocatalytic activity with a voltage gap of 0.78 V. Remarkably, when equipped in aqueous and flexible Zn-air batteries, high power density (288, 68 mW cm–2) and enhanced durability are obtained. This facile nanocarbon-linkage strategy opens up a new avenue for the application of powdery catalysts in wearable energy devices. Reasonable modulation of catalyst/substrate interface still remains great challenge for binder-free and high-performance electrodes. Herein, interfacial engineering via bridge-linking is proposed to effectively integrate powdery catalysts with flexible substrates by in situ synthesized nanocarbon. Concretely, a binder-free CNTs on carbonized carbon cloth linked with N-doped nanocarbons (CNTs-NC-CCC) electrode is formed via self-assembly and covalent coupling. Experimental results and theoretical calculation disclose that the bridge-linking strategy not only enables the fast electron and mass transfer, but also modifies the charge distribution and optimizes the adsorption/desorption process of oxygenated intermediates. With these merits, this metal-free catalyst exhibits superb bifunctional ORR/OER electrocatalytic activity with a voltage gap of 0.78 V. Remarkably, when equipped in aqueous and flexible Zn-air batteries, high power density (288, 68 mW cm–2) and enhanced durability are obtained. This facile nanocarbon-linkage strategy opens up a new avenue for the application of powdery catalysts in wearable energy devices. Binder-free electrode Elsevier Flexible Zn-air batteries Elsevier Interfacial engineering Elsevier Nanocarbon Elsevier Metal-free electrocatalysts Elsevier Qian, Yuhang oth Gong, Hongyu oth Shi, Wenhua oth Yan, Jin oth Wang, Wentao oth Guo, Xingmei oth Zhang, Junhao oth Cao, Xuecheng oth Yang, Ruizhi oth Enthalten in Elsevier Beri, Suresh ELSEVIER Comparability studies of hemin from two different origins porcine and bovine in the production of 2020 an international journal devoted to catalytic science and its applications Amsterdam (DE-627)ELV004775082 volume:319 year:2022 day:15 month:12 pages:0 https://doi.org/10.1016/j.apcatb.2022.121937 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV FID-PHARM SSG-OLC-PHA SSG-OPC-PHA 44.00 Medizin: Allgemeines VZ AR 319 2022 15 1215 0 |
language |
English |
source |
Enthalten in Comparability studies of hemin from two different origins porcine and bovine in the production of Amsterdam volume:319 year:2022 day:15 month:12 pages:0 |
sourceStr |
Enthalten in Comparability studies of hemin from two different origins porcine and bovine in the production of Amsterdam volume:319 year:2022 day:15 month:12 pages:0 |
format_phy_str_mv |
Article |
bklname |
Medizin: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Binder-free electrode Flexible Zn-air batteries Interfacial engineering Nanocarbon Metal-free electrocatalysts |
dewey-raw |
570 |
isfreeaccess_bool |
false |
container_title |
Comparability studies of hemin from two different origins porcine and bovine in the production of |
authorswithroles_txt_mv |
Zheng, Xiangjun @@aut@@ Qian, Yuhang @@oth@@ Gong, Hongyu @@oth@@ Shi, Wenhua @@oth@@ Yan, Jin @@oth@@ Wang, Wentao @@oth@@ Guo, Xingmei @@oth@@ Zhang, Junhao @@oth@@ Cao, Xuecheng @@oth@@ Yang, Ruizhi @@oth@@ |
publishDateDaySort_date |
2022-01-15T00:00:00Z |
hierarchy_top_id |
ELV004775082 |
dewey-sort |
3570 |
id |
ELV058947736 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV058947736</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626051921.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">221103s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.apcatb.2022.121937</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001903.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV058947736</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0926-3373(22)00878-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHARM</subfield><subfield code="q">DE-84</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zheng, Xiangjun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Bridge-linking interfacial engineering of triple carbons for highly efficient and binder-free electrodes toward flexible Zn-air batteries</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Reasonable modulation of catalyst/substrate interface still remains great challenge for binder-free and high-performance electrodes. Herein, interfacial engineering via bridge-linking is proposed to effectively integrate powdery catalysts with flexible substrates by in situ synthesized nanocarbon. Concretely, a binder-free CNTs on carbonized carbon cloth linked with N-doped nanocarbons (CNTs-NC-CCC) electrode is formed via self-assembly and covalent coupling. Experimental results and theoretical calculation disclose that the bridge-linking strategy not only enables the fast electron and mass transfer, but also modifies the charge distribution and optimizes the adsorption/desorption process of oxygenated intermediates. With these merits, this metal-free catalyst exhibits superb bifunctional ORR/OER electrocatalytic activity with a voltage gap of 0.78 V. Remarkably, when equipped in aqueous and flexible Zn-air batteries, high power density (288, 68 mW cm–2) and enhanced durability are obtained. This facile nanocarbon-linkage strategy opens up a new avenue for the application of powdery catalysts in wearable energy devices.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Reasonable modulation of catalyst/substrate interface still remains great challenge for binder-free and high-performance electrodes. Herein, interfacial engineering via bridge-linking is proposed to effectively integrate powdery catalysts with flexible substrates by in situ synthesized nanocarbon. Concretely, a binder-free CNTs on carbonized carbon cloth linked with N-doped nanocarbons (CNTs-NC-CCC) electrode is formed via self-assembly and covalent coupling. Experimental results and theoretical calculation disclose that the bridge-linking strategy not only enables the fast electron and mass transfer, but also modifies the charge distribution and optimizes the adsorption/desorption process of oxygenated intermediates. With these merits, this metal-free catalyst exhibits superb bifunctional ORR/OER electrocatalytic activity with a voltage gap of 0.78 V. Remarkably, when equipped in aqueous and flexible Zn-air batteries, high power density (288, 68 mW cm–2) and enhanced durability are obtained. This facile nanocarbon-linkage strategy opens up a new avenue for the application of powdery catalysts in wearable energy devices.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Binder-free electrode</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Flexible Zn-air batteries</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Interfacial engineering</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Nanocarbon</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Metal-free electrocatalysts</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qian, Yuhang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gong, Hongyu</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shi, Wenhua</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yan, Jin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Wentao</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guo, Xingmei</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Junhao</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cao, Xuecheng</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Ruizhi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Beri, Suresh ELSEVIER</subfield><subfield code="t">Comparability studies of hemin from two different origins porcine and bovine in the production of</subfield><subfield code="d">2020</subfield><subfield code="d">an international journal devoted to catalytic science and its applications</subfield><subfield code="g">Amsterdam</subfield><subfield code="w">(DE-627)ELV004775082</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:319</subfield><subfield code="g">year:2022</subfield><subfield code="g">day:15</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.apcatb.2022.121937</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-PHARM</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.00</subfield><subfield code="j">Medizin: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">319</subfield><subfield code="j">2022</subfield><subfield code="b">15</subfield><subfield code="c">1215</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
author |
Zheng, Xiangjun |
spellingShingle |
Zheng, Xiangjun ddc 570 fid BIODIV fid PHARM bkl 44.00 Elsevier Binder-free electrode Elsevier Flexible Zn-air batteries Elsevier Interfacial engineering Elsevier Nanocarbon Elsevier Metal-free electrocatalysts Bridge-linking interfacial engineering of triple carbons for highly efficient and binder-free electrodes toward flexible Zn-air batteries |
authorStr |
Zheng, Xiangjun |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV004775082 |
format |
electronic Article |
dewey-ones |
570 - Life sciences; biology |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
570 VZ BIODIV DE-30 fid PHARM DE-84 fid 44.00 bkl Bridge-linking interfacial engineering of triple carbons for highly efficient and binder-free electrodes toward flexible Zn-air batteries Binder-free electrode Elsevier Flexible Zn-air batteries Elsevier Interfacial engineering Elsevier Nanocarbon Elsevier Metal-free electrocatalysts Elsevier |
topic |
ddc 570 fid BIODIV fid PHARM bkl 44.00 Elsevier Binder-free electrode Elsevier Flexible Zn-air batteries Elsevier Interfacial engineering Elsevier Nanocarbon Elsevier Metal-free electrocatalysts |
topic_unstemmed |
ddc 570 fid BIODIV fid PHARM bkl 44.00 Elsevier Binder-free electrode Elsevier Flexible Zn-air batteries Elsevier Interfacial engineering Elsevier Nanocarbon Elsevier Metal-free electrocatalysts |
topic_browse |
ddc 570 fid BIODIV fid PHARM bkl 44.00 Elsevier Binder-free electrode Elsevier Flexible Zn-air batteries Elsevier Interfacial engineering Elsevier Nanocarbon Elsevier Metal-free electrocatalysts |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
y q yq h g hg w s ws j y jy w w ww x g xg j z jz x c xc r y ry |
hierarchy_parent_title |
Comparability studies of hemin from two different origins porcine and bovine in the production of |
hierarchy_parent_id |
ELV004775082 |
dewey-tens |
570 - Life sciences; biology |
hierarchy_top_title |
Comparability studies of hemin from two different origins porcine and bovine in the production of |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV004775082 |
title |
Bridge-linking interfacial engineering of triple carbons for highly efficient and binder-free electrodes toward flexible Zn-air batteries |
ctrlnum |
(DE-627)ELV058947736 (ELSEVIER)S0926-3373(22)00878-5 |
title_full |
Bridge-linking interfacial engineering of triple carbons for highly efficient and binder-free electrodes toward flexible Zn-air batteries |
author_sort |
Zheng, Xiangjun |
journal |
Comparability studies of hemin from two different origins porcine and bovine in the production of |
journalStr |
Comparability studies of hemin from two different origins porcine and bovine in the production of |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
zzz |
container_start_page |
0 |
author_browse |
Zheng, Xiangjun |
container_volume |
319 |
class |
570 VZ BIODIV DE-30 fid PHARM DE-84 fid 44.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Zheng, Xiangjun |
doi_str_mv |
10.1016/j.apcatb.2022.121937 |
dewey-full |
570 |
title_sort |
bridge-linking interfacial engineering of triple carbons for highly efficient and binder-free electrodes toward flexible zn-air batteries |
title_auth |
Bridge-linking interfacial engineering of triple carbons for highly efficient and binder-free electrodes toward flexible Zn-air batteries |
abstract |
Reasonable modulation of catalyst/substrate interface still remains great challenge for binder-free and high-performance electrodes. Herein, interfacial engineering via bridge-linking is proposed to effectively integrate powdery catalysts with flexible substrates by in situ synthesized nanocarbon. Concretely, a binder-free CNTs on carbonized carbon cloth linked with N-doped nanocarbons (CNTs-NC-CCC) electrode is formed via self-assembly and covalent coupling. Experimental results and theoretical calculation disclose that the bridge-linking strategy not only enables the fast electron and mass transfer, but also modifies the charge distribution and optimizes the adsorption/desorption process of oxygenated intermediates. With these merits, this metal-free catalyst exhibits superb bifunctional ORR/OER electrocatalytic activity with a voltage gap of 0.78 V. Remarkably, when equipped in aqueous and flexible Zn-air batteries, high power density (288, 68 mW cm–2) and enhanced durability are obtained. This facile nanocarbon-linkage strategy opens up a new avenue for the application of powdery catalysts in wearable energy devices. |
abstractGer |
Reasonable modulation of catalyst/substrate interface still remains great challenge for binder-free and high-performance electrodes. Herein, interfacial engineering via bridge-linking is proposed to effectively integrate powdery catalysts with flexible substrates by in situ synthesized nanocarbon. Concretely, a binder-free CNTs on carbonized carbon cloth linked with N-doped nanocarbons (CNTs-NC-CCC) electrode is formed via self-assembly and covalent coupling. Experimental results and theoretical calculation disclose that the bridge-linking strategy not only enables the fast electron and mass transfer, but also modifies the charge distribution and optimizes the adsorption/desorption process of oxygenated intermediates. With these merits, this metal-free catalyst exhibits superb bifunctional ORR/OER electrocatalytic activity with a voltage gap of 0.78 V. Remarkably, when equipped in aqueous and flexible Zn-air batteries, high power density (288, 68 mW cm–2) and enhanced durability are obtained. This facile nanocarbon-linkage strategy opens up a new avenue for the application of powdery catalysts in wearable energy devices. |
abstract_unstemmed |
Reasonable modulation of catalyst/substrate interface still remains great challenge for binder-free and high-performance electrodes. Herein, interfacial engineering via bridge-linking is proposed to effectively integrate powdery catalysts with flexible substrates by in situ synthesized nanocarbon. Concretely, a binder-free CNTs on carbonized carbon cloth linked with N-doped nanocarbons (CNTs-NC-CCC) electrode is formed via self-assembly and covalent coupling. Experimental results and theoretical calculation disclose that the bridge-linking strategy not only enables the fast electron and mass transfer, but also modifies the charge distribution and optimizes the adsorption/desorption process of oxygenated intermediates. With these merits, this metal-free catalyst exhibits superb bifunctional ORR/OER electrocatalytic activity with a voltage gap of 0.78 V. Remarkably, when equipped in aqueous and flexible Zn-air batteries, high power density (288, 68 mW cm–2) and enhanced durability are obtained. This facile nanocarbon-linkage strategy opens up a new avenue for the application of powdery catalysts in wearable energy devices. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV FID-PHARM SSG-OLC-PHA SSG-OPC-PHA |
title_short |
Bridge-linking interfacial engineering of triple carbons for highly efficient and binder-free electrodes toward flexible Zn-air batteries |
url |
https://doi.org/10.1016/j.apcatb.2022.121937 |
remote_bool |
true |
author2 |
Qian, Yuhang Gong, Hongyu Shi, Wenhua Yan, Jin Wang, Wentao Guo, Xingmei Zhang, Junhao Cao, Xuecheng Yang, Ruizhi |
author2Str |
Qian, Yuhang Gong, Hongyu Shi, Wenhua Yan, Jin Wang, Wentao Guo, Xingmei Zhang, Junhao Cao, Xuecheng Yang, Ruizhi |
ppnlink |
ELV004775082 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth oth oth oth |
doi_str |
10.1016/j.apcatb.2022.121937 |
up_date |
2024-07-06T20:31:32.864Z |
_version_ |
1803863083308810240 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV058947736</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626051921.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">221103s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.apcatb.2022.121937</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001903.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV058947736</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0926-3373(22)00878-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHARM</subfield><subfield code="q">DE-84</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zheng, Xiangjun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Bridge-linking interfacial engineering of triple carbons for highly efficient and binder-free electrodes toward flexible Zn-air batteries</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Reasonable modulation of catalyst/substrate interface still remains great challenge for binder-free and high-performance electrodes. Herein, interfacial engineering via bridge-linking is proposed to effectively integrate powdery catalysts with flexible substrates by in situ synthesized nanocarbon. Concretely, a binder-free CNTs on carbonized carbon cloth linked with N-doped nanocarbons (CNTs-NC-CCC) electrode is formed via self-assembly and covalent coupling. Experimental results and theoretical calculation disclose that the bridge-linking strategy not only enables the fast electron and mass transfer, but also modifies the charge distribution and optimizes the adsorption/desorption process of oxygenated intermediates. With these merits, this metal-free catalyst exhibits superb bifunctional ORR/OER electrocatalytic activity with a voltage gap of 0.78 V. Remarkably, when equipped in aqueous and flexible Zn-air batteries, high power density (288, 68 mW cm–2) and enhanced durability are obtained. This facile nanocarbon-linkage strategy opens up a new avenue for the application of powdery catalysts in wearable energy devices.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Reasonable modulation of catalyst/substrate interface still remains great challenge for binder-free and high-performance electrodes. Herein, interfacial engineering via bridge-linking is proposed to effectively integrate powdery catalysts with flexible substrates by in situ synthesized nanocarbon. Concretely, a binder-free CNTs on carbonized carbon cloth linked with N-doped nanocarbons (CNTs-NC-CCC) electrode is formed via self-assembly and covalent coupling. Experimental results and theoretical calculation disclose that the bridge-linking strategy not only enables the fast electron and mass transfer, but also modifies the charge distribution and optimizes the adsorption/desorption process of oxygenated intermediates. With these merits, this metal-free catalyst exhibits superb bifunctional ORR/OER electrocatalytic activity with a voltage gap of 0.78 V. Remarkably, when equipped in aqueous and flexible Zn-air batteries, high power density (288, 68 mW cm–2) and enhanced durability are obtained. This facile nanocarbon-linkage strategy opens up a new avenue for the application of powdery catalysts in wearable energy devices.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Binder-free electrode</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Flexible Zn-air batteries</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Interfacial engineering</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Nanocarbon</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Metal-free electrocatalysts</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qian, Yuhang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gong, Hongyu</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shi, Wenhua</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yan, Jin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Wentao</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guo, Xingmei</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Junhao</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cao, Xuecheng</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Ruizhi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Beri, Suresh ELSEVIER</subfield><subfield code="t">Comparability studies of hemin from two different origins porcine and bovine in the production of</subfield><subfield code="d">2020</subfield><subfield code="d">an international journal devoted to catalytic science and its applications</subfield><subfield code="g">Amsterdam</subfield><subfield code="w">(DE-627)ELV004775082</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:319</subfield><subfield code="g">year:2022</subfield><subfield code="g">day:15</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.apcatb.2022.121937</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-PHARM</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.00</subfield><subfield code="j">Medizin: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">319</subfield><subfield code="j">2022</subfield><subfield code="b">15</subfield><subfield code="c">1215</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
score |
7.4028378 |