Neural topic-enhanced cross-lingual word embeddings for CLIR
Cross-lingual information retrieval (CLIR) methods have quickly made the transition from translation-based approaches to semantic-based approaches. In this paper, we examine the limitations of current unsupervised neural CLIR methods, especially those leveraging aligned cross-lingual word embedding...
Ausführliche Beschreibung
Autor*in: |
Zhou, Dong [verfasserIn] Qu, Wei [verfasserIn] Li, Lin [verfasserIn] Tang, Mingdong [verfasserIn] Yang, Aimin [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Information sciences - New York, NY : Elsevier Science Inc., 1968, 608, Seite 809-824 |
---|---|
Übergeordnetes Werk: |
volume:608 ; pages:809-824 |
DOI / URN: |
10.1016/j.ins.2022.06.081 |
---|
Katalog-ID: |
ELV058978208 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV058978208 | ||
003 | DE-627 | ||
005 | 20231207093229.0 | ||
007 | cr uuu---uuuuu | ||
008 | 221103s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ins.2022.06.081 |2 doi | |
035 | |a (DE-627)ELV058978208 | ||
035 | |a (ELSEVIER)S0020-0255(22)00675-2 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 070 |a 004 |q VZ |
084 | |a LING |q DE-30 |2 fid | ||
084 | |a 54.00 |2 bkl | ||
084 | |a 53.71 |2 bkl | ||
100 | 1 | |a Zhou, Dong |e verfasserin |0 (orcid)0000-0002-3310-8347 |4 aut | |
245 | 1 | 0 | |a Neural topic-enhanced cross-lingual word embeddings for CLIR |
264 | 1 | |c 2022 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Cross-lingual information retrieval (CLIR) methods have quickly made the transition from translation-based approaches to semantic-based approaches. In this paper, we examine the limitations of current unsupervised neural CLIR methods, especially those leveraging aligned cross-lingual word embedding (CLWE) spaces. At the moment, CLWEs are normally constructed on the monolingual corpus of bilingual texts through an iterative induction process. Homonymy and polysemy have become major obstacles in this process. On the other hand, contextual text representation methods often fail to outperform static CLWE methods significantly for CLIR. We propose a method utilizing a novel neural generative model with Wasserstein autoencoders to learn neural topic-enhanced CLWEs for CLIR purposes. Our method requires minimal or no supervision at all. On the CLEF test collections, we perform a comparative evaluation of the state-of-the-art semantic CLWE methods along with our proposed method for neural CLIR tasks. We demonstrate that our method outperforms the existing CLWE methods and multilingual contextual text encoders. We also show that our proposed method obtains significant improvements over the CLWE methods based upon representative topical embeddings. | ||
650 | 4 | |a Cross-Lingual Information Retrieval | |
650 | 4 | |a Cross-lingual Word Embeddings | |
650 | 4 | |a Neural Generative Models | |
650 | 4 | |a Word Embedding Models | |
700 | 1 | |a Qu, Wei |e verfasserin |4 aut | |
700 | 1 | |a Li, Lin |e verfasserin |4 aut | |
700 | 1 | |a Tang, Mingdong |e verfasserin |4 aut | |
700 | 1 | |a Yang, Aimin |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Information sciences |d New York, NY : Elsevier Science Inc., 1968 |g 608, Seite 809-824 |h Online-Ressource |w (DE-627)271175850 |w (DE-600)1478990-5 |w (DE-576)078412293 |x 0020-0255 |7 nnns |
773 | 1 | 8 | |g volume:608 |g pages:809-824 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a FID-LING | ||
912 | |a SSG-OPC-BBI | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 54.00 |j Informatik: Allgemeines |q VZ |
936 | b | k | |a 53.71 |j Theoretische Nachrichtentechnik |q VZ |
951 | |a AR | ||
952 | |d 608 |h 809-824 |
author_variant |
d z dz w q wq l l ll m t mt a y ay |
---|---|
matchkey_str |
article:00200255:2022----::erloiehnecosigawreb |
hierarchy_sort_str |
2022 |
bklnumber |
54.00 53.71 |
publishDate |
2022 |
allfields |
10.1016/j.ins.2022.06.081 doi (DE-627)ELV058978208 (ELSEVIER)S0020-0255(22)00675-2 DE-627 ger DE-627 rda eng 070 004 VZ LING DE-30 fid 54.00 bkl 53.71 bkl Zhou, Dong verfasserin (orcid)0000-0002-3310-8347 aut Neural topic-enhanced cross-lingual word embeddings for CLIR 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Cross-lingual information retrieval (CLIR) methods have quickly made the transition from translation-based approaches to semantic-based approaches. In this paper, we examine the limitations of current unsupervised neural CLIR methods, especially those leveraging aligned cross-lingual word embedding (CLWE) spaces. At the moment, CLWEs are normally constructed on the monolingual corpus of bilingual texts through an iterative induction process. Homonymy and polysemy have become major obstacles in this process. On the other hand, contextual text representation methods often fail to outperform static CLWE methods significantly for CLIR. We propose a method utilizing a novel neural generative model with Wasserstein autoencoders to learn neural topic-enhanced CLWEs for CLIR purposes. Our method requires minimal or no supervision at all. On the CLEF test collections, we perform a comparative evaluation of the state-of-the-art semantic CLWE methods along with our proposed method for neural CLIR tasks. We demonstrate that our method outperforms the existing CLWE methods and multilingual contextual text encoders. We also show that our proposed method obtains significant improvements over the CLWE methods based upon representative topical embeddings. Cross-Lingual Information Retrieval Cross-lingual Word Embeddings Neural Generative Models Word Embedding Models Qu, Wei verfasserin aut Li, Lin verfasserin aut Tang, Mingdong verfasserin aut Yang, Aimin verfasserin aut Enthalten in Information sciences New York, NY : Elsevier Science Inc., 1968 608, Seite 809-824 Online-Ressource (DE-627)271175850 (DE-600)1478990-5 (DE-576)078412293 0020-0255 nnns volume:608 pages:809-824 GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-LING SSG-OPC-BBI GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 54.00 Informatik: Allgemeines VZ 53.71 Theoretische Nachrichtentechnik VZ AR 608 809-824 |
spelling |
10.1016/j.ins.2022.06.081 doi (DE-627)ELV058978208 (ELSEVIER)S0020-0255(22)00675-2 DE-627 ger DE-627 rda eng 070 004 VZ LING DE-30 fid 54.00 bkl 53.71 bkl Zhou, Dong verfasserin (orcid)0000-0002-3310-8347 aut Neural topic-enhanced cross-lingual word embeddings for CLIR 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Cross-lingual information retrieval (CLIR) methods have quickly made the transition from translation-based approaches to semantic-based approaches. In this paper, we examine the limitations of current unsupervised neural CLIR methods, especially those leveraging aligned cross-lingual word embedding (CLWE) spaces. At the moment, CLWEs are normally constructed on the monolingual corpus of bilingual texts through an iterative induction process. Homonymy and polysemy have become major obstacles in this process. On the other hand, contextual text representation methods often fail to outperform static CLWE methods significantly for CLIR. We propose a method utilizing a novel neural generative model with Wasserstein autoencoders to learn neural topic-enhanced CLWEs for CLIR purposes. Our method requires minimal or no supervision at all. On the CLEF test collections, we perform a comparative evaluation of the state-of-the-art semantic CLWE methods along with our proposed method for neural CLIR tasks. We demonstrate that our method outperforms the existing CLWE methods and multilingual contextual text encoders. We also show that our proposed method obtains significant improvements over the CLWE methods based upon representative topical embeddings. Cross-Lingual Information Retrieval Cross-lingual Word Embeddings Neural Generative Models Word Embedding Models Qu, Wei verfasserin aut Li, Lin verfasserin aut Tang, Mingdong verfasserin aut Yang, Aimin verfasserin aut Enthalten in Information sciences New York, NY : Elsevier Science Inc., 1968 608, Seite 809-824 Online-Ressource (DE-627)271175850 (DE-600)1478990-5 (DE-576)078412293 0020-0255 nnns volume:608 pages:809-824 GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-LING SSG-OPC-BBI GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 54.00 Informatik: Allgemeines VZ 53.71 Theoretische Nachrichtentechnik VZ AR 608 809-824 |
allfields_unstemmed |
10.1016/j.ins.2022.06.081 doi (DE-627)ELV058978208 (ELSEVIER)S0020-0255(22)00675-2 DE-627 ger DE-627 rda eng 070 004 VZ LING DE-30 fid 54.00 bkl 53.71 bkl Zhou, Dong verfasserin (orcid)0000-0002-3310-8347 aut Neural topic-enhanced cross-lingual word embeddings for CLIR 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Cross-lingual information retrieval (CLIR) methods have quickly made the transition from translation-based approaches to semantic-based approaches. In this paper, we examine the limitations of current unsupervised neural CLIR methods, especially those leveraging aligned cross-lingual word embedding (CLWE) spaces. At the moment, CLWEs are normally constructed on the monolingual corpus of bilingual texts through an iterative induction process. Homonymy and polysemy have become major obstacles in this process. On the other hand, contextual text representation methods often fail to outperform static CLWE methods significantly for CLIR. We propose a method utilizing a novel neural generative model with Wasserstein autoencoders to learn neural topic-enhanced CLWEs for CLIR purposes. Our method requires minimal or no supervision at all. On the CLEF test collections, we perform a comparative evaluation of the state-of-the-art semantic CLWE methods along with our proposed method for neural CLIR tasks. We demonstrate that our method outperforms the existing CLWE methods and multilingual contextual text encoders. We also show that our proposed method obtains significant improvements over the CLWE methods based upon representative topical embeddings. Cross-Lingual Information Retrieval Cross-lingual Word Embeddings Neural Generative Models Word Embedding Models Qu, Wei verfasserin aut Li, Lin verfasserin aut Tang, Mingdong verfasserin aut Yang, Aimin verfasserin aut Enthalten in Information sciences New York, NY : Elsevier Science Inc., 1968 608, Seite 809-824 Online-Ressource (DE-627)271175850 (DE-600)1478990-5 (DE-576)078412293 0020-0255 nnns volume:608 pages:809-824 GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-LING SSG-OPC-BBI GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 54.00 Informatik: Allgemeines VZ 53.71 Theoretische Nachrichtentechnik VZ AR 608 809-824 |
allfieldsGer |
10.1016/j.ins.2022.06.081 doi (DE-627)ELV058978208 (ELSEVIER)S0020-0255(22)00675-2 DE-627 ger DE-627 rda eng 070 004 VZ LING DE-30 fid 54.00 bkl 53.71 bkl Zhou, Dong verfasserin (orcid)0000-0002-3310-8347 aut Neural topic-enhanced cross-lingual word embeddings for CLIR 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Cross-lingual information retrieval (CLIR) methods have quickly made the transition from translation-based approaches to semantic-based approaches. In this paper, we examine the limitations of current unsupervised neural CLIR methods, especially those leveraging aligned cross-lingual word embedding (CLWE) spaces. At the moment, CLWEs are normally constructed on the monolingual corpus of bilingual texts through an iterative induction process. Homonymy and polysemy have become major obstacles in this process. On the other hand, contextual text representation methods often fail to outperform static CLWE methods significantly for CLIR. We propose a method utilizing a novel neural generative model with Wasserstein autoencoders to learn neural topic-enhanced CLWEs for CLIR purposes. Our method requires minimal or no supervision at all. On the CLEF test collections, we perform a comparative evaluation of the state-of-the-art semantic CLWE methods along with our proposed method for neural CLIR tasks. We demonstrate that our method outperforms the existing CLWE methods and multilingual contextual text encoders. We also show that our proposed method obtains significant improvements over the CLWE methods based upon representative topical embeddings. Cross-Lingual Information Retrieval Cross-lingual Word Embeddings Neural Generative Models Word Embedding Models Qu, Wei verfasserin aut Li, Lin verfasserin aut Tang, Mingdong verfasserin aut Yang, Aimin verfasserin aut Enthalten in Information sciences New York, NY : Elsevier Science Inc., 1968 608, Seite 809-824 Online-Ressource (DE-627)271175850 (DE-600)1478990-5 (DE-576)078412293 0020-0255 nnns volume:608 pages:809-824 GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-LING SSG-OPC-BBI GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 54.00 Informatik: Allgemeines VZ 53.71 Theoretische Nachrichtentechnik VZ AR 608 809-824 |
allfieldsSound |
10.1016/j.ins.2022.06.081 doi (DE-627)ELV058978208 (ELSEVIER)S0020-0255(22)00675-2 DE-627 ger DE-627 rda eng 070 004 VZ LING DE-30 fid 54.00 bkl 53.71 bkl Zhou, Dong verfasserin (orcid)0000-0002-3310-8347 aut Neural topic-enhanced cross-lingual word embeddings for CLIR 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Cross-lingual information retrieval (CLIR) methods have quickly made the transition from translation-based approaches to semantic-based approaches. In this paper, we examine the limitations of current unsupervised neural CLIR methods, especially those leveraging aligned cross-lingual word embedding (CLWE) spaces. At the moment, CLWEs are normally constructed on the monolingual corpus of bilingual texts through an iterative induction process. Homonymy and polysemy have become major obstacles in this process. On the other hand, contextual text representation methods often fail to outperform static CLWE methods significantly for CLIR. We propose a method utilizing a novel neural generative model with Wasserstein autoencoders to learn neural topic-enhanced CLWEs for CLIR purposes. Our method requires minimal or no supervision at all. On the CLEF test collections, we perform a comparative evaluation of the state-of-the-art semantic CLWE methods along with our proposed method for neural CLIR tasks. We demonstrate that our method outperforms the existing CLWE methods and multilingual contextual text encoders. We also show that our proposed method obtains significant improvements over the CLWE methods based upon representative topical embeddings. Cross-Lingual Information Retrieval Cross-lingual Word Embeddings Neural Generative Models Word Embedding Models Qu, Wei verfasserin aut Li, Lin verfasserin aut Tang, Mingdong verfasserin aut Yang, Aimin verfasserin aut Enthalten in Information sciences New York, NY : Elsevier Science Inc., 1968 608, Seite 809-824 Online-Ressource (DE-627)271175850 (DE-600)1478990-5 (DE-576)078412293 0020-0255 nnns volume:608 pages:809-824 GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-LING SSG-OPC-BBI GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 54.00 Informatik: Allgemeines VZ 53.71 Theoretische Nachrichtentechnik VZ AR 608 809-824 |
language |
English |
source |
Enthalten in Information sciences 608, Seite 809-824 volume:608 pages:809-824 |
sourceStr |
Enthalten in Information sciences 608, Seite 809-824 volume:608 pages:809-824 |
format_phy_str_mv |
Article |
bklname |
Informatik: Allgemeines Theoretische Nachrichtentechnik |
institution |
findex.gbv.de |
topic_facet |
Cross-Lingual Information Retrieval Cross-lingual Word Embeddings Neural Generative Models Word Embedding Models |
dewey-raw |
070 |
isfreeaccess_bool |
false |
container_title |
Information sciences |
authorswithroles_txt_mv |
Zhou, Dong @@aut@@ Qu, Wei @@aut@@ Li, Lin @@aut@@ Tang, Mingdong @@aut@@ Yang, Aimin @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
271175850 |
dewey-sort |
270 |
id |
ELV058978208 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV058978208</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231207093229.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">221103s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ins.2022.06.081</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV058978208</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0020-0255(22)00675-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">070</subfield><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">LING</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.71</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhou, Dong</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-3310-8347</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Neural topic-enhanced cross-lingual word embeddings for CLIR</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Cross-lingual information retrieval (CLIR) methods have quickly made the transition from translation-based approaches to semantic-based approaches. In this paper, we examine the limitations of current unsupervised neural CLIR methods, especially those leveraging aligned cross-lingual word embedding (CLWE) spaces. At the moment, CLWEs are normally constructed on the monolingual corpus of bilingual texts through an iterative induction process. Homonymy and polysemy have become major obstacles in this process. On the other hand, contextual text representation methods often fail to outperform static CLWE methods significantly for CLIR. We propose a method utilizing a novel neural generative model with Wasserstein autoencoders to learn neural topic-enhanced CLWEs for CLIR purposes. Our method requires minimal or no supervision at all. On the CLEF test collections, we perform a comparative evaluation of the state-of-the-art semantic CLWE methods along with our proposed method for neural CLIR tasks. We demonstrate that our method outperforms the existing CLWE methods and multilingual contextual text encoders. We also show that our proposed method obtains significant improvements over the CLWE methods based upon representative topical embeddings.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cross-Lingual Information Retrieval</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cross-lingual Word Embeddings</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neural Generative Models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Word Embedding Models</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qu, Wei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Lin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tang, Mingdong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Aimin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Information sciences</subfield><subfield code="d">New York, NY : Elsevier Science Inc., 1968</subfield><subfield code="g">608, Seite 809-824</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)271175850</subfield><subfield code="w">(DE-600)1478990-5</subfield><subfield code="w">(DE-576)078412293</subfield><subfield code="x">0020-0255</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:608</subfield><subfield code="g">pages:809-824</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-LING</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-BBI</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.00</subfield><subfield code="j">Informatik: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.71</subfield><subfield code="j">Theoretische Nachrichtentechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">608</subfield><subfield code="h">809-824</subfield></datafield></record></collection>
|
author |
Zhou, Dong |
spellingShingle |
Zhou, Dong ddc 070 fid LING bkl 54.00 bkl 53.71 misc Cross-Lingual Information Retrieval misc Cross-lingual Word Embeddings misc Neural Generative Models misc Word Embedding Models Neural topic-enhanced cross-lingual word embeddings for CLIR |
authorStr |
Zhou, Dong |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)271175850 |
format |
electronic Article |
dewey-ones |
070 - News media, journalism & publishing 004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0020-0255 |
topic_title |
070 004 VZ LING DE-30 fid 54.00 bkl 53.71 bkl Neural topic-enhanced cross-lingual word embeddings for CLIR Cross-Lingual Information Retrieval Cross-lingual Word Embeddings Neural Generative Models Word Embedding Models |
topic |
ddc 070 fid LING bkl 54.00 bkl 53.71 misc Cross-Lingual Information Retrieval misc Cross-lingual Word Embeddings misc Neural Generative Models misc Word Embedding Models |
topic_unstemmed |
ddc 070 fid LING bkl 54.00 bkl 53.71 misc Cross-Lingual Information Retrieval misc Cross-lingual Word Embeddings misc Neural Generative Models misc Word Embedding Models |
topic_browse |
ddc 070 fid LING bkl 54.00 bkl 53.71 misc Cross-Lingual Information Retrieval misc Cross-lingual Word Embeddings misc Neural Generative Models misc Word Embedding Models |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Information sciences |
hierarchy_parent_id |
271175850 |
dewey-tens |
070 - News media, journalism & publishing 000 - Computer science, knowledge & systems |
hierarchy_top_title |
Information sciences |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)271175850 (DE-600)1478990-5 (DE-576)078412293 |
title |
Neural topic-enhanced cross-lingual word embeddings for CLIR |
ctrlnum |
(DE-627)ELV058978208 (ELSEVIER)S0020-0255(22)00675-2 |
title_full |
Neural topic-enhanced cross-lingual word embeddings for CLIR |
author_sort |
Zhou, Dong |
journal |
Information sciences |
journalStr |
Information sciences |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
zzz |
container_start_page |
809 |
author_browse |
Zhou, Dong Qu, Wei Li, Lin Tang, Mingdong Yang, Aimin |
container_volume |
608 |
class |
070 004 VZ LING DE-30 fid 54.00 bkl 53.71 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Zhou, Dong |
doi_str_mv |
10.1016/j.ins.2022.06.081 |
normlink |
(ORCID)0000-0002-3310-8347 |
normlink_prefix_str_mv |
(orcid)0000-0002-3310-8347 |
dewey-full |
070 004 |
author2-role |
verfasserin |
title_sort |
neural topic-enhanced cross-lingual word embeddings for clir |
title_auth |
Neural topic-enhanced cross-lingual word embeddings for CLIR |
abstract |
Cross-lingual information retrieval (CLIR) methods have quickly made the transition from translation-based approaches to semantic-based approaches. In this paper, we examine the limitations of current unsupervised neural CLIR methods, especially those leveraging aligned cross-lingual word embedding (CLWE) spaces. At the moment, CLWEs are normally constructed on the monolingual corpus of bilingual texts through an iterative induction process. Homonymy and polysemy have become major obstacles in this process. On the other hand, contextual text representation methods often fail to outperform static CLWE methods significantly for CLIR. We propose a method utilizing a novel neural generative model with Wasserstein autoencoders to learn neural topic-enhanced CLWEs for CLIR purposes. Our method requires minimal or no supervision at all. On the CLEF test collections, we perform a comparative evaluation of the state-of-the-art semantic CLWE methods along with our proposed method for neural CLIR tasks. We demonstrate that our method outperforms the existing CLWE methods and multilingual contextual text encoders. We also show that our proposed method obtains significant improvements over the CLWE methods based upon representative topical embeddings. |
abstractGer |
Cross-lingual information retrieval (CLIR) methods have quickly made the transition from translation-based approaches to semantic-based approaches. In this paper, we examine the limitations of current unsupervised neural CLIR methods, especially those leveraging aligned cross-lingual word embedding (CLWE) spaces. At the moment, CLWEs are normally constructed on the monolingual corpus of bilingual texts through an iterative induction process. Homonymy and polysemy have become major obstacles in this process. On the other hand, contextual text representation methods often fail to outperform static CLWE methods significantly for CLIR. We propose a method utilizing a novel neural generative model with Wasserstein autoencoders to learn neural topic-enhanced CLWEs for CLIR purposes. Our method requires minimal or no supervision at all. On the CLEF test collections, we perform a comparative evaluation of the state-of-the-art semantic CLWE methods along with our proposed method for neural CLIR tasks. We demonstrate that our method outperforms the existing CLWE methods and multilingual contextual text encoders. We also show that our proposed method obtains significant improvements over the CLWE methods based upon representative topical embeddings. |
abstract_unstemmed |
Cross-lingual information retrieval (CLIR) methods have quickly made the transition from translation-based approaches to semantic-based approaches. In this paper, we examine the limitations of current unsupervised neural CLIR methods, especially those leveraging aligned cross-lingual word embedding (CLWE) spaces. At the moment, CLWEs are normally constructed on the monolingual corpus of bilingual texts through an iterative induction process. Homonymy and polysemy have become major obstacles in this process. On the other hand, contextual text representation methods often fail to outperform static CLWE methods significantly for CLIR. We propose a method utilizing a novel neural generative model with Wasserstein autoencoders to learn neural topic-enhanced CLWEs for CLIR purposes. Our method requires minimal or no supervision at all. On the CLEF test collections, we perform a comparative evaluation of the state-of-the-art semantic CLWE methods along with our proposed method for neural CLIR tasks. We demonstrate that our method outperforms the existing CLWE methods and multilingual contextual text encoders. We also show that our proposed method obtains significant improvements over the CLWE methods based upon representative topical embeddings. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-LING SSG-OPC-BBI GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Neural topic-enhanced cross-lingual word embeddings for CLIR |
remote_bool |
true |
author2 |
Qu, Wei Li, Lin Tang, Mingdong Yang, Aimin |
author2Str |
Qu, Wei Li, Lin Tang, Mingdong Yang, Aimin |
ppnlink |
271175850 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.ins.2022.06.081 |
up_date |
2024-07-06T20:37:00.058Z |
_version_ |
1803863426398683136 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV058978208</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231207093229.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">221103s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ins.2022.06.081</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV058978208</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0020-0255(22)00675-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">070</subfield><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">LING</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.71</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhou, Dong</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-3310-8347</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Neural topic-enhanced cross-lingual word embeddings for CLIR</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Cross-lingual information retrieval (CLIR) methods have quickly made the transition from translation-based approaches to semantic-based approaches. In this paper, we examine the limitations of current unsupervised neural CLIR methods, especially those leveraging aligned cross-lingual word embedding (CLWE) spaces. At the moment, CLWEs are normally constructed on the monolingual corpus of bilingual texts through an iterative induction process. Homonymy and polysemy have become major obstacles in this process. On the other hand, contextual text representation methods often fail to outperform static CLWE methods significantly for CLIR. We propose a method utilizing a novel neural generative model with Wasserstein autoencoders to learn neural topic-enhanced CLWEs for CLIR purposes. Our method requires minimal or no supervision at all. On the CLEF test collections, we perform a comparative evaluation of the state-of-the-art semantic CLWE methods along with our proposed method for neural CLIR tasks. We demonstrate that our method outperforms the existing CLWE methods and multilingual contextual text encoders. We also show that our proposed method obtains significant improvements over the CLWE methods based upon representative topical embeddings.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cross-Lingual Information Retrieval</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cross-lingual Word Embeddings</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neural Generative Models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Word Embedding Models</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qu, Wei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Lin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tang, Mingdong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Aimin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Information sciences</subfield><subfield code="d">New York, NY : Elsevier Science Inc., 1968</subfield><subfield code="g">608, Seite 809-824</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)271175850</subfield><subfield code="w">(DE-600)1478990-5</subfield><subfield code="w">(DE-576)078412293</subfield><subfield code="x">0020-0255</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:608</subfield><subfield code="g">pages:809-824</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-LING</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-BBI</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.00</subfield><subfield code="j">Informatik: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.71</subfield><subfield code="j">Theoretische Nachrichtentechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">608</subfield><subfield code="h">809-824</subfield></datafield></record></collection>
|
score |
7.4006615 |