The benefits of transaction-level data: The case of NielsenIQ scanner data
This study explores whether NielsenIQ scanner data from U.S. retailers contain incremental information about the GAAP revenue of corresponding manufacturers. Using retail product/store/week data from 2006 to 2018, we construct a measure of aggregated consumer purchases at the manufacturer/quarter le...
Ausführliche Beschreibung
Autor*in: |
Dichev, Ilia D. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022transfer abstract |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Impact of a Hygiene Intervention on Virus Transmission in a Long-term Care Facility - Sifuentes, Laura Y. ELSEVIER, 2014, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:74 ; year:2022 ; number:1 ; pages:0 |
Links: |
---|
DOI / URN: |
10.1016/j.jacceco.2022.101495 |
---|
Katalog-ID: |
ELV058979980 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV058979980 | ||
003 | DE-627 | ||
005 | 20230626052002.0 | ||
007 | cr uuu---uuuuu | ||
008 | 221103s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jacceco.2022.101495 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001906.pica |
035 | |a (DE-627)ELV058979980 | ||
035 | |a (ELSEVIER)S0165-4101(22)00018-0 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 610 |q VZ |
082 | 0 | 4 | |a 540 |q VZ |
084 | |a 35.18 |2 bkl | ||
100 | 1 | |a Dichev, Ilia D. |e verfasserin |4 aut | |
245 | 1 | 4 | |a The benefits of transaction-level data: The case of NielsenIQ scanner data |
264 | 1 | |c 2022transfer abstract | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a This study explores whether NielsenIQ scanner data from U.S. retailers contain incremental information about the GAAP revenue of corresponding manufacturers. Using retail product/store/week data from 2006 to 2018, we construct a measure of aggregated consumer purchases at the manufacturer/quarter level, and find that it strongly predicts GAAP revenues. In addition, analyst forecasts of revenues have predictable errors, which implies that analysts do not fully incorporate the information in consumer purchases. Exploring investment implications, we find that hedge portfolios that buy (sell) stocks of firms with high (low) abnormal consumer purchases generate annualized returns on the magnitude of 14%–19%, depending on specification. Overall, these findings suggest that scanner data on consumer purchases provide an information edge over GAAP revenue, shedding light on the benefits of using transactional data. | ||
520 | |a This study explores whether NielsenIQ scanner data from U.S. retailers contain incremental information about the GAAP revenue of corresponding manufacturers. Using retail product/store/week data from 2006 to 2018, we construct a measure of aggregated consumer purchases at the manufacturer/quarter level, and find that it strongly predicts GAAP revenues. In addition, analyst forecasts of revenues have predictable errors, which implies that analysts do not fully incorporate the information in consumer purchases. Exploring investment implications, we find that hedge portfolios that buy (sell) stocks of firms with high (low) abnormal consumer purchases generate annualized returns on the magnitude of 14%–19%, depending on specification. Overall, these findings suggest that scanner data on consumer purchases provide an information edge over GAAP revenue, shedding light on the benefits of using transactional data. | ||
650 | 7 | |a Transactional data |2 Elsevier | |
650 | 7 | |a Consumer purchase |2 Elsevier | |
650 | 7 | |a Market efficiency |2 Elsevier | |
650 | 7 | |a Equity valuation |2 Elsevier | |
700 | 1 | |a Qian, Jingyi |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Sifuentes, Laura Y. ELSEVIER |t Impact of a Hygiene Intervention on Virus Transmission in a Long-term Care Facility |d 2014 |g Amsterdam [u.a.] |w (DE-627)ELV022562850 |
773 | 1 | 8 | |g volume:74 |g year:2022 |g number:1 |g pages:0 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.jacceco.2022.101495 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_72 | ||
912 | |a GBV_ILN_130 | ||
912 | |a GBV_ILN_2002 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2012 | ||
912 | |a GBV_ILN_2016 | ||
936 | b | k | |a 35.18 |j Kolloidchemie |j Grenzflächenchemie |q VZ |
951 | |a AR | ||
952 | |d 74 |j 2022 |e 1 |h 0 |
author_variant |
i d d id idd |
---|---|
matchkey_str |
dicheviliadqianjingyi:2022----:hbnftotascineedtteaefi |
hierarchy_sort_str |
2022transfer abstract |
bklnumber |
35.18 |
publishDate |
2022 |
allfields |
10.1016/j.jacceco.2022.101495 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001906.pica (DE-627)ELV058979980 (ELSEVIER)S0165-4101(22)00018-0 DE-627 ger DE-627 rakwb eng 610 VZ 540 VZ 35.18 bkl Dichev, Ilia D. verfasserin aut The benefits of transaction-level data: The case of NielsenIQ scanner data 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier This study explores whether NielsenIQ scanner data from U.S. retailers contain incremental information about the GAAP revenue of corresponding manufacturers. Using retail product/store/week data from 2006 to 2018, we construct a measure of aggregated consumer purchases at the manufacturer/quarter level, and find that it strongly predicts GAAP revenues. In addition, analyst forecasts of revenues have predictable errors, which implies that analysts do not fully incorporate the information in consumer purchases. Exploring investment implications, we find that hedge portfolios that buy (sell) stocks of firms with high (low) abnormal consumer purchases generate annualized returns on the magnitude of 14%–19%, depending on specification. Overall, these findings suggest that scanner data on consumer purchases provide an information edge over GAAP revenue, shedding light on the benefits of using transactional data. This study explores whether NielsenIQ scanner data from U.S. retailers contain incremental information about the GAAP revenue of corresponding manufacturers. Using retail product/store/week data from 2006 to 2018, we construct a measure of aggregated consumer purchases at the manufacturer/quarter level, and find that it strongly predicts GAAP revenues. In addition, analyst forecasts of revenues have predictable errors, which implies that analysts do not fully incorporate the information in consumer purchases. Exploring investment implications, we find that hedge portfolios that buy (sell) stocks of firms with high (low) abnormal consumer purchases generate annualized returns on the magnitude of 14%–19%, depending on specification. Overall, these findings suggest that scanner data on consumer purchases provide an information edge over GAAP revenue, shedding light on the benefits of using transactional data. Transactional data Elsevier Consumer purchase Elsevier Market efficiency Elsevier Equity valuation Elsevier Qian, Jingyi oth Enthalten in Elsevier Sifuentes, Laura Y. ELSEVIER Impact of a Hygiene Intervention on Virus Transmission in a Long-term Care Facility 2014 Amsterdam [u.a.] (DE-627)ELV022562850 volume:74 year:2022 number:1 pages:0 https://doi.org/10.1016/j.jacceco.2022.101495 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_21 GBV_ILN_72 GBV_ILN_130 GBV_ILN_2002 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2012 GBV_ILN_2016 35.18 Kolloidchemie Grenzflächenchemie VZ AR 74 2022 1 0 |
spelling |
10.1016/j.jacceco.2022.101495 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001906.pica (DE-627)ELV058979980 (ELSEVIER)S0165-4101(22)00018-0 DE-627 ger DE-627 rakwb eng 610 VZ 540 VZ 35.18 bkl Dichev, Ilia D. verfasserin aut The benefits of transaction-level data: The case of NielsenIQ scanner data 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier This study explores whether NielsenIQ scanner data from U.S. retailers contain incremental information about the GAAP revenue of corresponding manufacturers. Using retail product/store/week data from 2006 to 2018, we construct a measure of aggregated consumer purchases at the manufacturer/quarter level, and find that it strongly predicts GAAP revenues. In addition, analyst forecasts of revenues have predictable errors, which implies that analysts do not fully incorporate the information in consumer purchases. Exploring investment implications, we find that hedge portfolios that buy (sell) stocks of firms with high (low) abnormal consumer purchases generate annualized returns on the magnitude of 14%–19%, depending on specification. Overall, these findings suggest that scanner data on consumer purchases provide an information edge over GAAP revenue, shedding light on the benefits of using transactional data. This study explores whether NielsenIQ scanner data from U.S. retailers contain incremental information about the GAAP revenue of corresponding manufacturers. Using retail product/store/week data from 2006 to 2018, we construct a measure of aggregated consumer purchases at the manufacturer/quarter level, and find that it strongly predicts GAAP revenues. In addition, analyst forecasts of revenues have predictable errors, which implies that analysts do not fully incorporate the information in consumer purchases. Exploring investment implications, we find that hedge portfolios that buy (sell) stocks of firms with high (low) abnormal consumer purchases generate annualized returns on the magnitude of 14%–19%, depending on specification. Overall, these findings suggest that scanner data on consumer purchases provide an information edge over GAAP revenue, shedding light on the benefits of using transactional data. Transactional data Elsevier Consumer purchase Elsevier Market efficiency Elsevier Equity valuation Elsevier Qian, Jingyi oth Enthalten in Elsevier Sifuentes, Laura Y. ELSEVIER Impact of a Hygiene Intervention on Virus Transmission in a Long-term Care Facility 2014 Amsterdam [u.a.] (DE-627)ELV022562850 volume:74 year:2022 number:1 pages:0 https://doi.org/10.1016/j.jacceco.2022.101495 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_21 GBV_ILN_72 GBV_ILN_130 GBV_ILN_2002 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2012 GBV_ILN_2016 35.18 Kolloidchemie Grenzflächenchemie VZ AR 74 2022 1 0 |
allfields_unstemmed |
10.1016/j.jacceco.2022.101495 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001906.pica (DE-627)ELV058979980 (ELSEVIER)S0165-4101(22)00018-0 DE-627 ger DE-627 rakwb eng 610 VZ 540 VZ 35.18 bkl Dichev, Ilia D. verfasserin aut The benefits of transaction-level data: The case of NielsenIQ scanner data 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier This study explores whether NielsenIQ scanner data from U.S. retailers contain incremental information about the GAAP revenue of corresponding manufacturers. Using retail product/store/week data from 2006 to 2018, we construct a measure of aggregated consumer purchases at the manufacturer/quarter level, and find that it strongly predicts GAAP revenues. In addition, analyst forecasts of revenues have predictable errors, which implies that analysts do not fully incorporate the information in consumer purchases. Exploring investment implications, we find that hedge portfolios that buy (sell) stocks of firms with high (low) abnormal consumer purchases generate annualized returns on the magnitude of 14%–19%, depending on specification. Overall, these findings suggest that scanner data on consumer purchases provide an information edge over GAAP revenue, shedding light on the benefits of using transactional data. This study explores whether NielsenIQ scanner data from U.S. retailers contain incremental information about the GAAP revenue of corresponding manufacturers. Using retail product/store/week data from 2006 to 2018, we construct a measure of aggregated consumer purchases at the manufacturer/quarter level, and find that it strongly predicts GAAP revenues. In addition, analyst forecasts of revenues have predictable errors, which implies that analysts do not fully incorporate the information in consumer purchases. Exploring investment implications, we find that hedge portfolios that buy (sell) stocks of firms with high (low) abnormal consumer purchases generate annualized returns on the magnitude of 14%–19%, depending on specification. Overall, these findings suggest that scanner data on consumer purchases provide an information edge over GAAP revenue, shedding light on the benefits of using transactional data. Transactional data Elsevier Consumer purchase Elsevier Market efficiency Elsevier Equity valuation Elsevier Qian, Jingyi oth Enthalten in Elsevier Sifuentes, Laura Y. ELSEVIER Impact of a Hygiene Intervention on Virus Transmission in a Long-term Care Facility 2014 Amsterdam [u.a.] (DE-627)ELV022562850 volume:74 year:2022 number:1 pages:0 https://doi.org/10.1016/j.jacceco.2022.101495 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_21 GBV_ILN_72 GBV_ILN_130 GBV_ILN_2002 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2012 GBV_ILN_2016 35.18 Kolloidchemie Grenzflächenchemie VZ AR 74 2022 1 0 |
allfieldsGer |
10.1016/j.jacceco.2022.101495 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001906.pica (DE-627)ELV058979980 (ELSEVIER)S0165-4101(22)00018-0 DE-627 ger DE-627 rakwb eng 610 VZ 540 VZ 35.18 bkl Dichev, Ilia D. verfasserin aut The benefits of transaction-level data: The case of NielsenIQ scanner data 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier This study explores whether NielsenIQ scanner data from U.S. retailers contain incremental information about the GAAP revenue of corresponding manufacturers. Using retail product/store/week data from 2006 to 2018, we construct a measure of aggregated consumer purchases at the manufacturer/quarter level, and find that it strongly predicts GAAP revenues. In addition, analyst forecasts of revenues have predictable errors, which implies that analysts do not fully incorporate the information in consumer purchases. Exploring investment implications, we find that hedge portfolios that buy (sell) stocks of firms with high (low) abnormal consumer purchases generate annualized returns on the magnitude of 14%–19%, depending on specification. Overall, these findings suggest that scanner data on consumer purchases provide an information edge over GAAP revenue, shedding light on the benefits of using transactional data. This study explores whether NielsenIQ scanner data from U.S. retailers contain incremental information about the GAAP revenue of corresponding manufacturers. Using retail product/store/week data from 2006 to 2018, we construct a measure of aggregated consumer purchases at the manufacturer/quarter level, and find that it strongly predicts GAAP revenues. In addition, analyst forecasts of revenues have predictable errors, which implies that analysts do not fully incorporate the information in consumer purchases. Exploring investment implications, we find that hedge portfolios that buy (sell) stocks of firms with high (low) abnormal consumer purchases generate annualized returns on the magnitude of 14%–19%, depending on specification. Overall, these findings suggest that scanner data on consumer purchases provide an information edge over GAAP revenue, shedding light on the benefits of using transactional data. Transactional data Elsevier Consumer purchase Elsevier Market efficiency Elsevier Equity valuation Elsevier Qian, Jingyi oth Enthalten in Elsevier Sifuentes, Laura Y. ELSEVIER Impact of a Hygiene Intervention on Virus Transmission in a Long-term Care Facility 2014 Amsterdam [u.a.] (DE-627)ELV022562850 volume:74 year:2022 number:1 pages:0 https://doi.org/10.1016/j.jacceco.2022.101495 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_21 GBV_ILN_72 GBV_ILN_130 GBV_ILN_2002 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2012 GBV_ILN_2016 35.18 Kolloidchemie Grenzflächenchemie VZ AR 74 2022 1 0 |
allfieldsSound |
10.1016/j.jacceco.2022.101495 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001906.pica (DE-627)ELV058979980 (ELSEVIER)S0165-4101(22)00018-0 DE-627 ger DE-627 rakwb eng 610 VZ 540 VZ 35.18 bkl Dichev, Ilia D. verfasserin aut The benefits of transaction-level data: The case of NielsenIQ scanner data 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier This study explores whether NielsenIQ scanner data from U.S. retailers contain incremental information about the GAAP revenue of corresponding manufacturers. Using retail product/store/week data from 2006 to 2018, we construct a measure of aggregated consumer purchases at the manufacturer/quarter level, and find that it strongly predicts GAAP revenues. In addition, analyst forecasts of revenues have predictable errors, which implies that analysts do not fully incorporate the information in consumer purchases. Exploring investment implications, we find that hedge portfolios that buy (sell) stocks of firms with high (low) abnormal consumer purchases generate annualized returns on the magnitude of 14%–19%, depending on specification. Overall, these findings suggest that scanner data on consumer purchases provide an information edge over GAAP revenue, shedding light on the benefits of using transactional data. This study explores whether NielsenIQ scanner data from U.S. retailers contain incremental information about the GAAP revenue of corresponding manufacturers. Using retail product/store/week data from 2006 to 2018, we construct a measure of aggregated consumer purchases at the manufacturer/quarter level, and find that it strongly predicts GAAP revenues. In addition, analyst forecasts of revenues have predictable errors, which implies that analysts do not fully incorporate the information in consumer purchases. Exploring investment implications, we find that hedge portfolios that buy (sell) stocks of firms with high (low) abnormal consumer purchases generate annualized returns on the magnitude of 14%–19%, depending on specification. Overall, these findings suggest that scanner data on consumer purchases provide an information edge over GAAP revenue, shedding light on the benefits of using transactional data. Transactional data Elsevier Consumer purchase Elsevier Market efficiency Elsevier Equity valuation Elsevier Qian, Jingyi oth Enthalten in Elsevier Sifuentes, Laura Y. ELSEVIER Impact of a Hygiene Intervention on Virus Transmission in a Long-term Care Facility 2014 Amsterdam [u.a.] (DE-627)ELV022562850 volume:74 year:2022 number:1 pages:0 https://doi.org/10.1016/j.jacceco.2022.101495 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_21 GBV_ILN_72 GBV_ILN_130 GBV_ILN_2002 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2012 GBV_ILN_2016 35.18 Kolloidchemie Grenzflächenchemie VZ AR 74 2022 1 0 |
language |
English |
source |
Enthalten in Impact of a Hygiene Intervention on Virus Transmission in a Long-term Care Facility Amsterdam [u.a.] volume:74 year:2022 number:1 pages:0 |
sourceStr |
Enthalten in Impact of a Hygiene Intervention on Virus Transmission in a Long-term Care Facility Amsterdam [u.a.] volume:74 year:2022 number:1 pages:0 |
format_phy_str_mv |
Article |
bklname |
Kolloidchemie Grenzflächenchemie |
institution |
findex.gbv.de |
topic_facet |
Transactional data Consumer purchase Market efficiency Equity valuation |
dewey-raw |
610 |
isfreeaccess_bool |
false |
container_title |
Impact of a Hygiene Intervention on Virus Transmission in a Long-term Care Facility |
authorswithroles_txt_mv |
Dichev, Ilia D. @@aut@@ Qian, Jingyi @@oth@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
ELV022562850 |
dewey-sort |
3610 |
id |
ELV058979980 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV058979980</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626052002.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">221103s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jacceco.2022.101495</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001906.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV058979980</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0165-4101(22)00018-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.18</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dichev, Ilia D.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The benefits of transaction-level data: The case of NielsenIQ scanner data</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This study explores whether NielsenIQ scanner data from U.S. retailers contain incremental information about the GAAP revenue of corresponding manufacturers. Using retail product/store/week data from 2006 to 2018, we construct a measure of aggregated consumer purchases at the manufacturer/quarter level, and find that it strongly predicts GAAP revenues. In addition, analyst forecasts of revenues have predictable errors, which implies that analysts do not fully incorporate the information in consumer purchases. Exploring investment implications, we find that hedge portfolios that buy (sell) stocks of firms with high (low) abnormal consumer purchases generate annualized returns on the magnitude of 14%–19%, depending on specification. Overall, these findings suggest that scanner data on consumer purchases provide an information edge over GAAP revenue, shedding light on the benefits of using transactional data.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This study explores whether NielsenIQ scanner data from U.S. retailers contain incremental information about the GAAP revenue of corresponding manufacturers. Using retail product/store/week data from 2006 to 2018, we construct a measure of aggregated consumer purchases at the manufacturer/quarter level, and find that it strongly predicts GAAP revenues. In addition, analyst forecasts of revenues have predictable errors, which implies that analysts do not fully incorporate the information in consumer purchases. Exploring investment implications, we find that hedge portfolios that buy (sell) stocks of firms with high (low) abnormal consumer purchases generate annualized returns on the magnitude of 14%–19%, depending on specification. Overall, these findings suggest that scanner data on consumer purchases provide an information edge over GAAP revenue, shedding light on the benefits of using transactional data.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Transactional data</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Consumer purchase</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Market efficiency</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Equity valuation</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qian, Jingyi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Sifuentes, Laura Y. ELSEVIER</subfield><subfield code="t">Impact of a Hygiene Intervention on Virus Transmission in a Long-term Care Facility</subfield><subfield code="d">2014</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV022562850</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:74</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jacceco.2022.101495</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_72</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.18</subfield><subfield code="j">Kolloidchemie</subfield><subfield code="j">Grenzflächenchemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">74</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
author |
Dichev, Ilia D. |
spellingShingle |
Dichev, Ilia D. ddc 610 ddc 540 bkl 35.18 Elsevier Transactional data Elsevier Consumer purchase Elsevier Market efficiency Elsevier Equity valuation The benefits of transaction-level data: The case of NielsenIQ scanner data |
authorStr |
Dichev, Ilia D. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV022562850 |
format |
electronic Article |
dewey-ones |
610 - Medicine & health 540 - Chemistry & allied sciences |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
610 VZ 540 VZ 35.18 bkl The benefits of transaction-level data: The case of NielsenIQ scanner data Transactional data Elsevier Consumer purchase Elsevier Market efficiency Elsevier Equity valuation Elsevier |
topic |
ddc 610 ddc 540 bkl 35.18 Elsevier Transactional data Elsevier Consumer purchase Elsevier Market efficiency Elsevier Equity valuation |
topic_unstemmed |
ddc 610 ddc 540 bkl 35.18 Elsevier Transactional data Elsevier Consumer purchase Elsevier Market efficiency Elsevier Equity valuation |
topic_browse |
ddc 610 ddc 540 bkl 35.18 Elsevier Transactional data Elsevier Consumer purchase Elsevier Market efficiency Elsevier Equity valuation |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
j q jq |
hierarchy_parent_title |
Impact of a Hygiene Intervention on Virus Transmission in a Long-term Care Facility |
hierarchy_parent_id |
ELV022562850 |
dewey-tens |
610 - Medicine & health 540 - Chemistry |
hierarchy_top_title |
Impact of a Hygiene Intervention on Virus Transmission in a Long-term Care Facility |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV022562850 |
title |
The benefits of transaction-level data: The case of NielsenIQ scanner data |
ctrlnum |
(DE-627)ELV058979980 (ELSEVIER)S0165-4101(22)00018-0 |
title_full |
The benefits of transaction-level data: The case of NielsenIQ scanner data |
author_sort |
Dichev, Ilia D. |
journal |
Impact of a Hygiene Intervention on Virus Transmission in a Long-term Care Facility |
journalStr |
Impact of a Hygiene Intervention on Virus Transmission in a Long-term Care Facility |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 500 - Science |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
zzz |
container_start_page |
0 |
author_browse |
Dichev, Ilia D. |
container_volume |
74 |
class |
610 VZ 540 VZ 35.18 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Dichev, Ilia D. |
doi_str_mv |
10.1016/j.jacceco.2022.101495 |
dewey-full |
610 540 |
title_sort |
benefits of transaction-level data: the case of nielseniq scanner data |
title_auth |
The benefits of transaction-level data: The case of NielsenIQ scanner data |
abstract |
This study explores whether NielsenIQ scanner data from U.S. retailers contain incremental information about the GAAP revenue of corresponding manufacturers. Using retail product/store/week data from 2006 to 2018, we construct a measure of aggregated consumer purchases at the manufacturer/quarter level, and find that it strongly predicts GAAP revenues. In addition, analyst forecasts of revenues have predictable errors, which implies that analysts do not fully incorporate the information in consumer purchases. Exploring investment implications, we find that hedge portfolios that buy (sell) stocks of firms with high (low) abnormal consumer purchases generate annualized returns on the magnitude of 14%–19%, depending on specification. Overall, these findings suggest that scanner data on consumer purchases provide an information edge over GAAP revenue, shedding light on the benefits of using transactional data. |
abstractGer |
This study explores whether NielsenIQ scanner data from U.S. retailers contain incremental information about the GAAP revenue of corresponding manufacturers. Using retail product/store/week data from 2006 to 2018, we construct a measure of aggregated consumer purchases at the manufacturer/quarter level, and find that it strongly predicts GAAP revenues. In addition, analyst forecasts of revenues have predictable errors, which implies that analysts do not fully incorporate the information in consumer purchases. Exploring investment implications, we find that hedge portfolios that buy (sell) stocks of firms with high (low) abnormal consumer purchases generate annualized returns on the magnitude of 14%–19%, depending on specification. Overall, these findings suggest that scanner data on consumer purchases provide an information edge over GAAP revenue, shedding light on the benefits of using transactional data. |
abstract_unstemmed |
This study explores whether NielsenIQ scanner data from U.S. retailers contain incremental information about the GAAP revenue of corresponding manufacturers. Using retail product/store/week data from 2006 to 2018, we construct a measure of aggregated consumer purchases at the manufacturer/quarter level, and find that it strongly predicts GAAP revenues. In addition, analyst forecasts of revenues have predictable errors, which implies that analysts do not fully incorporate the information in consumer purchases. Exploring investment implications, we find that hedge portfolios that buy (sell) stocks of firms with high (low) abnormal consumer purchases generate annualized returns on the magnitude of 14%–19%, depending on specification. Overall, these findings suggest that scanner data on consumer purchases provide an information edge over GAAP revenue, shedding light on the benefits of using transactional data. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_21 GBV_ILN_72 GBV_ILN_130 GBV_ILN_2002 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2012 GBV_ILN_2016 |
container_issue |
1 |
title_short |
The benefits of transaction-level data: The case of NielsenIQ scanner data |
url |
https://doi.org/10.1016/j.jacceco.2022.101495 |
remote_bool |
true |
author2 |
Qian, Jingyi |
author2Str |
Qian, Jingyi |
ppnlink |
ELV022562850 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
doi_str |
10.1016/j.jacceco.2022.101495 |
up_date |
2024-07-06T20:37:21.366Z |
_version_ |
1803863448739643392 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV058979980</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626052002.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">221103s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jacceco.2022.101495</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001906.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV058979980</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0165-4101(22)00018-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.18</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dichev, Ilia D.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The benefits of transaction-level data: The case of NielsenIQ scanner data</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This study explores whether NielsenIQ scanner data from U.S. retailers contain incremental information about the GAAP revenue of corresponding manufacturers. Using retail product/store/week data from 2006 to 2018, we construct a measure of aggregated consumer purchases at the manufacturer/quarter level, and find that it strongly predicts GAAP revenues. In addition, analyst forecasts of revenues have predictable errors, which implies that analysts do not fully incorporate the information in consumer purchases. Exploring investment implications, we find that hedge portfolios that buy (sell) stocks of firms with high (low) abnormal consumer purchases generate annualized returns on the magnitude of 14%–19%, depending on specification. Overall, these findings suggest that scanner data on consumer purchases provide an information edge over GAAP revenue, shedding light on the benefits of using transactional data.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This study explores whether NielsenIQ scanner data from U.S. retailers contain incremental information about the GAAP revenue of corresponding manufacturers. Using retail product/store/week data from 2006 to 2018, we construct a measure of aggregated consumer purchases at the manufacturer/quarter level, and find that it strongly predicts GAAP revenues. In addition, analyst forecasts of revenues have predictable errors, which implies that analysts do not fully incorporate the information in consumer purchases. Exploring investment implications, we find that hedge portfolios that buy (sell) stocks of firms with high (low) abnormal consumer purchases generate annualized returns on the magnitude of 14%–19%, depending on specification. Overall, these findings suggest that scanner data on consumer purchases provide an information edge over GAAP revenue, shedding light on the benefits of using transactional data.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Transactional data</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Consumer purchase</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Market efficiency</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Equity valuation</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qian, Jingyi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Sifuentes, Laura Y. ELSEVIER</subfield><subfield code="t">Impact of a Hygiene Intervention on Virus Transmission in a Long-term Care Facility</subfield><subfield code="d">2014</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV022562850</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:74</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jacceco.2022.101495</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_72</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.18</subfield><subfield code="j">Kolloidchemie</subfield><subfield code="j">Grenzflächenchemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">74</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
score |
7.4021244 |