Model predictive control of portable electronic devices under skin temperature constraints
Thermal management is becoming a major challenge for electronics, and a better temperature control algorithm that could maximize the system performance will play a greater role in fully utilizing the existing cooling capacity. Unfortunately, the simplest look-up table method is still widely used as...
Ausführliche Beschreibung
Autor*in: |
Liu, Haoran [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022transfer abstract |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Rheological analysis of itraconazole-polymer mixtures to determine optimal melt extrusion temperature for development of amorphous solid dispersion - Solanki, Nayan ELSEVIER, 2017, the international journal, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:260 ; year:2022 ; day:1 ; month:12 ; pages:0 |
Links: |
---|
DOI / URN: |
10.1016/j.energy.2022.125185 |
---|
Katalog-ID: |
ELV059268298 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV059268298 | ||
003 | DE-627 | ||
005 | 20230626052540.0 | ||
007 | cr uuu---uuuuu | ||
008 | 221103s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.energy.2022.125185 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001938.pica |
035 | |a (DE-627)ELV059268298 | ||
035 | |a (ELSEVIER)S0360-5442(22)02076-X | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 610 |q VZ |
084 | |a 15,3 |2 ssgn | ||
084 | |a PHARM |q DE-84 |2 fid | ||
084 | |a 44.40 |2 bkl | ||
100 | 1 | |a Liu, Haoran |e verfasserin |4 aut | |
245 | 1 | 0 | |a Model predictive control of portable electronic devices under skin temperature constraints |
264 | 1 | |c 2022transfer abstract | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Thermal management is becoming a major challenge for electronics, and a better temperature control algorithm that could maximize the system performance will play a greater role in fully utilizing the existing cooling capacity. Unfortunately, the simplest look-up table method is still widely used as the temperature control algorithm in current portable electronic devices, especially laptops, resulting in a significant performance loss of devices. In this paper, a general temperature control framework for a commercial laptop that considers the skin temperature constraints is proposed based on the model predictive control algorithm. In specific, a high-accuracy compact thermal model is first generated through the model order reduction method and validated by abundant experimental data. Then the proposed MPC is numerically evaluated in three test scenarios, covering different workloads and performance indexes. The results show that the proposed MPC outperforms the baseline look-up table method by achieving about 10–20% higher performance index in different test scenarios. The open-loop optimal control method is also considered to estimate the optimality of the proposed MPC. Moreover, a parametric study is conducted to analyze the influence of different control parameters, indicating broad prospects for the future application of the proposed MPC algorithm. | ||
520 | |a Thermal management is becoming a major challenge for electronics, and a better temperature control algorithm that could maximize the system performance will play a greater role in fully utilizing the existing cooling capacity. Unfortunately, the simplest look-up table method is still widely used as the temperature control algorithm in current portable electronic devices, especially laptops, resulting in a significant performance loss of devices. In this paper, a general temperature control framework for a commercial laptop that considers the skin temperature constraints is proposed based on the model predictive control algorithm. In specific, a high-accuracy compact thermal model is first generated through the model order reduction method and validated by abundant experimental data. Then the proposed MPC is numerically evaluated in three test scenarios, covering different workloads and performance indexes. The results show that the proposed MPC outperforms the baseline look-up table method by achieving about 10–20% higher performance index in different test scenarios. The open-loop optimal control method is also considered to estimate the optimality of the proposed MPC. Moreover, a parametric study is conducted to analyze the influence of different control parameters, indicating broad prospects for the future application of the proposed MPC algorithm. | ||
650 | 7 | |a Model predictive control |2 Elsevier | |
650 | 7 | |a Skin temperature |2 Elsevier | |
650 | 7 | |a Thermal management |2 Elsevier | |
650 | 7 | |a Electronic device |2 Elsevier | |
650 | 7 | |a Compact thermal model |2 Elsevier | |
700 | 1 | |a Yu, Jiaqi |4 oth | |
700 | 1 | |a Wang, Ruzhu |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Solanki, Nayan ELSEVIER |t Rheological analysis of itraconazole-polymer mixtures to determine optimal melt extrusion temperature for development of amorphous solid dispersion |d 2017 |d the international journal |g Amsterdam [u.a.] |w (DE-627)ELV000529575 |
773 | 1 | 8 | |g volume:260 |g year:2022 |g day:1 |g month:12 |g pages:0 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.energy.2022.125185 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a FID-PHARM | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OPC-PHA | ||
936 | b | k | |a 44.40 |j Pharmazie |j Pharmazeutika |q VZ |
951 | |a AR | ||
952 | |d 260 |j 2022 |b 1 |c 1201 |h 0 |
author_variant |
h l hl |
---|---|
matchkey_str |
liuhaoranyujiaqiwangruzhu:2022----:oepeitvcnrlfotbelcrnceieudrkne |
hierarchy_sort_str |
2022transfer abstract |
bklnumber |
44.40 |
publishDate |
2022 |
allfields |
10.1016/j.energy.2022.125185 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001938.pica (DE-627)ELV059268298 (ELSEVIER)S0360-5442(22)02076-X DE-627 ger DE-627 rakwb eng 610 VZ 15,3 ssgn PHARM DE-84 fid 44.40 bkl Liu, Haoran verfasserin aut Model predictive control of portable electronic devices under skin temperature constraints 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Thermal management is becoming a major challenge for electronics, and a better temperature control algorithm that could maximize the system performance will play a greater role in fully utilizing the existing cooling capacity. Unfortunately, the simplest look-up table method is still widely used as the temperature control algorithm in current portable electronic devices, especially laptops, resulting in a significant performance loss of devices. In this paper, a general temperature control framework for a commercial laptop that considers the skin temperature constraints is proposed based on the model predictive control algorithm. In specific, a high-accuracy compact thermal model is first generated through the model order reduction method and validated by abundant experimental data. Then the proposed MPC is numerically evaluated in three test scenarios, covering different workloads and performance indexes. The results show that the proposed MPC outperforms the baseline look-up table method by achieving about 10–20% higher performance index in different test scenarios. The open-loop optimal control method is also considered to estimate the optimality of the proposed MPC. Moreover, a parametric study is conducted to analyze the influence of different control parameters, indicating broad prospects for the future application of the proposed MPC algorithm. Thermal management is becoming a major challenge for electronics, and a better temperature control algorithm that could maximize the system performance will play a greater role in fully utilizing the existing cooling capacity. Unfortunately, the simplest look-up table method is still widely used as the temperature control algorithm in current portable electronic devices, especially laptops, resulting in a significant performance loss of devices. In this paper, a general temperature control framework for a commercial laptop that considers the skin temperature constraints is proposed based on the model predictive control algorithm. In specific, a high-accuracy compact thermal model is first generated through the model order reduction method and validated by abundant experimental data. Then the proposed MPC is numerically evaluated in three test scenarios, covering different workloads and performance indexes. The results show that the proposed MPC outperforms the baseline look-up table method by achieving about 10–20% higher performance index in different test scenarios. The open-loop optimal control method is also considered to estimate the optimality of the proposed MPC. Moreover, a parametric study is conducted to analyze the influence of different control parameters, indicating broad prospects for the future application of the proposed MPC algorithm. Model predictive control Elsevier Skin temperature Elsevier Thermal management Elsevier Electronic device Elsevier Compact thermal model Elsevier Yu, Jiaqi oth Wang, Ruzhu oth Enthalten in Elsevier Science Solanki, Nayan ELSEVIER Rheological analysis of itraconazole-polymer mixtures to determine optimal melt extrusion temperature for development of amorphous solid dispersion 2017 the international journal Amsterdam [u.a.] (DE-627)ELV000529575 volume:260 year:2022 day:1 month:12 pages:0 https://doi.org/10.1016/j.energy.2022.125185 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-PHARM SSG-OLC-PHA SSG-OPC-PHA 44.40 Pharmazie Pharmazeutika VZ AR 260 2022 1 1201 0 |
spelling |
10.1016/j.energy.2022.125185 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001938.pica (DE-627)ELV059268298 (ELSEVIER)S0360-5442(22)02076-X DE-627 ger DE-627 rakwb eng 610 VZ 15,3 ssgn PHARM DE-84 fid 44.40 bkl Liu, Haoran verfasserin aut Model predictive control of portable electronic devices under skin temperature constraints 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Thermal management is becoming a major challenge for electronics, and a better temperature control algorithm that could maximize the system performance will play a greater role in fully utilizing the existing cooling capacity. Unfortunately, the simplest look-up table method is still widely used as the temperature control algorithm in current portable electronic devices, especially laptops, resulting in a significant performance loss of devices. In this paper, a general temperature control framework for a commercial laptop that considers the skin temperature constraints is proposed based on the model predictive control algorithm. In specific, a high-accuracy compact thermal model is first generated through the model order reduction method and validated by abundant experimental data. Then the proposed MPC is numerically evaluated in three test scenarios, covering different workloads and performance indexes. The results show that the proposed MPC outperforms the baseline look-up table method by achieving about 10–20% higher performance index in different test scenarios. The open-loop optimal control method is also considered to estimate the optimality of the proposed MPC. Moreover, a parametric study is conducted to analyze the influence of different control parameters, indicating broad prospects for the future application of the proposed MPC algorithm. Thermal management is becoming a major challenge for electronics, and a better temperature control algorithm that could maximize the system performance will play a greater role in fully utilizing the existing cooling capacity. Unfortunately, the simplest look-up table method is still widely used as the temperature control algorithm in current portable electronic devices, especially laptops, resulting in a significant performance loss of devices. In this paper, a general temperature control framework for a commercial laptop that considers the skin temperature constraints is proposed based on the model predictive control algorithm. In specific, a high-accuracy compact thermal model is first generated through the model order reduction method and validated by abundant experimental data. Then the proposed MPC is numerically evaluated in three test scenarios, covering different workloads and performance indexes. The results show that the proposed MPC outperforms the baseline look-up table method by achieving about 10–20% higher performance index in different test scenarios. The open-loop optimal control method is also considered to estimate the optimality of the proposed MPC. Moreover, a parametric study is conducted to analyze the influence of different control parameters, indicating broad prospects for the future application of the proposed MPC algorithm. Model predictive control Elsevier Skin temperature Elsevier Thermal management Elsevier Electronic device Elsevier Compact thermal model Elsevier Yu, Jiaqi oth Wang, Ruzhu oth Enthalten in Elsevier Science Solanki, Nayan ELSEVIER Rheological analysis of itraconazole-polymer mixtures to determine optimal melt extrusion temperature for development of amorphous solid dispersion 2017 the international journal Amsterdam [u.a.] (DE-627)ELV000529575 volume:260 year:2022 day:1 month:12 pages:0 https://doi.org/10.1016/j.energy.2022.125185 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-PHARM SSG-OLC-PHA SSG-OPC-PHA 44.40 Pharmazie Pharmazeutika VZ AR 260 2022 1 1201 0 |
allfields_unstemmed |
10.1016/j.energy.2022.125185 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001938.pica (DE-627)ELV059268298 (ELSEVIER)S0360-5442(22)02076-X DE-627 ger DE-627 rakwb eng 610 VZ 15,3 ssgn PHARM DE-84 fid 44.40 bkl Liu, Haoran verfasserin aut Model predictive control of portable electronic devices under skin temperature constraints 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Thermal management is becoming a major challenge for electronics, and a better temperature control algorithm that could maximize the system performance will play a greater role in fully utilizing the existing cooling capacity. Unfortunately, the simplest look-up table method is still widely used as the temperature control algorithm in current portable electronic devices, especially laptops, resulting in a significant performance loss of devices. In this paper, a general temperature control framework for a commercial laptop that considers the skin temperature constraints is proposed based on the model predictive control algorithm. In specific, a high-accuracy compact thermal model is first generated through the model order reduction method and validated by abundant experimental data. Then the proposed MPC is numerically evaluated in three test scenarios, covering different workloads and performance indexes. The results show that the proposed MPC outperforms the baseline look-up table method by achieving about 10–20% higher performance index in different test scenarios. The open-loop optimal control method is also considered to estimate the optimality of the proposed MPC. Moreover, a parametric study is conducted to analyze the influence of different control parameters, indicating broad prospects for the future application of the proposed MPC algorithm. Thermal management is becoming a major challenge for electronics, and a better temperature control algorithm that could maximize the system performance will play a greater role in fully utilizing the existing cooling capacity. Unfortunately, the simplest look-up table method is still widely used as the temperature control algorithm in current portable electronic devices, especially laptops, resulting in a significant performance loss of devices. In this paper, a general temperature control framework for a commercial laptop that considers the skin temperature constraints is proposed based on the model predictive control algorithm. In specific, a high-accuracy compact thermal model is first generated through the model order reduction method and validated by abundant experimental data. Then the proposed MPC is numerically evaluated in three test scenarios, covering different workloads and performance indexes. The results show that the proposed MPC outperforms the baseline look-up table method by achieving about 10–20% higher performance index in different test scenarios. The open-loop optimal control method is also considered to estimate the optimality of the proposed MPC. Moreover, a parametric study is conducted to analyze the influence of different control parameters, indicating broad prospects for the future application of the proposed MPC algorithm. Model predictive control Elsevier Skin temperature Elsevier Thermal management Elsevier Electronic device Elsevier Compact thermal model Elsevier Yu, Jiaqi oth Wang, Ruzhu oth Enthalten in Elsevier Science Solanki, Nayan ELSEVIER Rheological analysis of itraconazole-polymer mixtures to determine optimal melt extrusion temperature for development of amorphous solid dispersion 2017 the international journal Amsterdam [u.a.] (DE-627)ELV000529575 volume:260 year:2022 day:1 month:12 pages:0 https://doi.org/10.1016/j.energy.2022.125185 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-PHARM SSG-OLC-PHA SSG-OPC-PHA 44.40 Pharmazie Pharmazeutika VZ AR 260 2022 1 1201 0 |
allfieldsGer |
10.1016/j.energy.2022.125185 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001938.pica (DE-627)ELV059268298 (ELSEVIER)S0360-5442(22)02076-X DE-627 ger DE-627 rakwb eng 610 VZ 15,3 ssgn PHARM DE-84 fid 44.40 bkl Liu, Haoran verfasserin aut Model predictive control of portable electronic devices under skin temperature constraints 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Thermal management is becoming a major challenge for electronics, and a better temperature control algorithm that could maximize the system performance will play a greater role in fully utilizing the existing cooling capacity. Unfortunately, the simplest look-up table method is still widely used as the temperature control algorithm in current portable electronic devices, especially laptops, resulting in a significant performance loss of devices. In this paper, a general temperature control framework for a commercial laptop that considers the skin temperature constraints is proposed based on the model predictive control algorithm. In specific, a high-accuracy compact thermal model is first generated through the model order reduction method and validated by abundant experimental data. Then the proposed MPC is numerically evaluated in three test scenarios, covering different workloads and performance indexes. The results show that the proposed MPC outperforms the baseline look-up table method by achieving about 10–20% higher performance index in different test scenarios. The open-loop optimal control method is also considered to estimate the optimality of the proposed MPC. Moreover, a parametric study is conducted to analyze the influence of different control parameters, indicating broad prospects for the future application of the proposed MPC algorithm. Thermal management is becoming a major challenge for electronics, and a better temperature control algorithm that could maximize the system performance will play a greater role in fully utilizing the existing cooling capacity. Unfortunately, the simplest look-up table method is still widely used as the temperature control algorithm in current portable electronic devices, especially laptops, resulting in a significant performance loss of devices. In this paper, a general temperature control framework for a commercial laptop that considers the skin temperature constraints is proposed based on the model predictive control algorithm. In specific, a high-accuracy compact thermal model is first generated through the model order reduction method and validated by abundant experimental data. Then the proposed MPC is numerically evaluated in three test scenarios, covering different workloads and performance indexes. The results show that the proposed MPC outperforms the baseline look-up table method by achieving about 10–20% higher performance index in different test scenarios. The open-loop optimal control method is also considered to estimate the optimality of the proposed MPC. Moreover, a parametric study is conducted to analyze the influence of different control parameters, indicating broad prospects for the future application of the proposed MPC algorithm. Model predictive control Elsevier Skin temperature Elsevier Thermal management Elsevier Electronic device Elsevier Compact thermal model Elsevier Yu, Jiaqi oth Wang, Ruzhu oth Enthalten in Elsevier Science Solanki, Nayan ELSEVIER Rheological analysis of itraconazole-polymer mixtures to determine optimal melt extrusion temperature for development of amorphous solid dispersion 2017 the international journal Amsterdam [u.a.] (DE-627)ELV000529575 volume:260 year:2022 day:1 month:12 pages:0 https://doi.org/10.1016/j.energy.2022.125185 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-PHARM SSG-OLC-PHA SSG-OPC-PHA 44.40 Pharmazie Pharmazeutika VZ AR 260 2022 1 1201 0 |
allfieldsSound |
10.1016/j.energy.2022.125185 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001938.pica (DE-627)ELV059268298 (ELSEVIER)S0360-5442(22)02076-X DE-627 ger DE-627 rakwb eng 610 VZ 15,3 ssgn PHARM DE-84 fid 44.40 bkl Liu, Haoran verfasserin aut Model predictive control of portable electronic devices under skin temperature constraints 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Thermal management is becoming a major challenge for electronics, and a better temperature control algorithm that could maximize the system performance will play a greater role in fully utilizing the existing cooling capacity. Unfortunately, the simplest look-up table method is still widely used as the temperature control algorithm in current portable electronic devices, especially laptops, resulting in a significant performance loss of devices. In this paper, a general temperature control framework for a commercial laptop that considers the skin temperature constraints is proposed based on the model predictive control algorithm. In specific, a high-accuracy compact thermal model is first generated through the model order reduction method and validated by abundant experimental data. Then the proposed MPC is numerically evaluated in three test scenarios, covering different workloads and performance indexes. The results show that the proposed MPC outperforms the baseline look-up table method by achieving about 10–20% higher performance index in different test scenarios. The open-loop optimal control method is also considered to estimate the optimality of the proposed MPC. Moreover, a parametric study is conducted to analyze the influence of different control parameters, indicating broad prospects for the future application of the proposed MPC algorithm. Thermal management is becoming a major challenge for electronics, and a better temperature control algorithm that could maximize the system performance will play a greater role in fully utilizing the existing cooling capacity. Unfortunately, the simplest look-up table method is still widely used as the temperature control algorithm in current portable electronic devices, especially laptops, resulting in a significant performance loss of devices. In this paper, a general temperature control framework for a commercial laptop that considers the skin temperature constraints is proposed based on the model predictive control algorithm. In specific, a high-accuracy compact thermal model is first generated through the model order reduction method and validated by abundant experimental data. Then the proposed MPC is numerically evaluated in three test scenarios, covering different workloads and performance indexes. The results show that the proposed MPC outperforms the baseline look-up table method by achieving about 10–20% higher performance index in different test scenarios. The open-loop optimal control method is also considered to estimate the optimality of the proposed MPC. Moreover, a parametric study is conducted to analyze the influence of different control parameters, indicating broad prospects for the future application of the proposed MPC algorithm. Model predictive control Elsevier Skin temperature Elsevier Thermal management Elsevier Electronic device Elsevier Compact thermal model Elsevier Yu, Jiaqi oth Wang, Ruzhu oth Enthalten in Elsevier Science Solanki, Nayan ELSEVIER Rheological analysis of itraconazole-polymer mixtures to determine optimal melt extrusion temperature for development of amorphous solid dispersion 2017 the international journal Amsterdam [u.a.] (DE-627)ELV000529575 volume:260 year:2022 day:1 month:12 pages:0 https://doi.org/10.1016/j.energy.2022.125185 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-PHARM SSG-OLC-PHA SSG-OPC-PHA 44.40 Pharmazie Pharmazeutika VZ AR 260 2022 1 1201 0 |
language |
English |
source |
Enthalten in Rheological analysis of itraconazole-polymer mixtures to determine optimal melt extrusion temperature for development of amorphous solid dispersion Amsterdam [u.a.] volume:260 year:2022 day:1 month:12 pages:0 |
sourceStr |
Enthalten in Rheological analysis of itraconazole-polymer mixtures to determine optimal melt extrusion temperature for development of amorphous solid dispersion Amsterdam [u.a.] volume:260 year:2022 day:1 month:12 pages:0 |
format_phy_str_mv |
Article |
bklname |
Pharmazie Pharmazeutika |
institution |
findex.gbv.de |
topic_facet |
Model predictive control Skin temperature Thermal management Electronic device Compact thermal model |
dewey-raw |
610 |
isfreeaccess_bool |
false |
container_title |
Rheological analysis of itraconazole-polymer mixtures to determine optimal melt extrusion temperature for development of amorphous solid dispersion |
authorswithroles_txt_mv |
Liu, Haoran @@aut@@ Yu, Jiaqi @@oth@@ Wang, Ruzhu @@oth@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
ELV000529575 |
dewey-sort |
3610 |
id |
ELV059268298 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV059268298</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626052540.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">221103s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.energy.2022.125185</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001938.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV059268298</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0360-5442(22)02076-X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">15,3</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHARM</subfield><subfield code="q">DE-84</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.40</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liu, Haoran</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Model predictive control of portable electronic devices under skin temperature constraints</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Thermal management is becoming a major challenge for electronics, and a better temperature control algorithm that could maximize the system performance will play a greater role in fully utilizing the existing cooling capacity. Unfortunately, the simplest look-up table method is still widely used as the temperature control algorithm in current portable electronic devices, especially laptops, resulting in a significant performance loss of devices. In this paper, a general temperature control framework for a commercial laptop that considers the skin temperature constraints is proposed based on the model predictive control algorithm. In specific, a high-accuracy compact thermal model is first generated through the model order reduction method and validated by abundant experimental data. Then the proposed MPC is numerically evaluated in three test scenarios, covering different workloads and performance indexes. The results show that the proposed MPC outperforms the baseline look-up table method by achieving about 10–20% higher performance index in different test scenarios. The open-loop optimal control method is also considered to estimate the optimality of the proposed MPC. Moreover, a parametric study is conducted to analyze the influence of different control parameters, indicating broad prospects for the future application of the proposed MPC algorithm.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Thermal management is becoming a major challenge for electronics, and a better temperature control algorithm that could maximize the system performance will play a greater role in fully utilizing the existing cooling capacity. Unfortunately, the simplest look-up table method is still widely used as the temperature control algorithm in current portable electronic devices, especially laptops, resulting in a significant performance loss of devices. In this paper, a general temperature control framework for a commercial laptop that considers the skin temperature constraints is proposed based on the model predictive control algorithm. In specific, a high-accuracy compact thermal model is first generated through the model order reduction method and validated by abundant experimental data. Then the proposed MPC is numerically evaluated in three test scenarios, covering different workloads and performance indexes. The results show that the proposed MPC outperforms the baseline look-up table method by achieving about 10–20% higher performance index in different test scenarios. The open-loop optimal control method is also considered to estimate the optimality of the proposed MPC. Moreover, a parametric study is conducted to analyze the influence of different control parameters, indicating broad prospects for the future application of the proposed MPC algorithm.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Model predictive control</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Skin temperature</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Thermal management</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Electronic device</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Compact thermal model</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yu, Jiaqi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Ruzhu</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Solanki, Nayan ELSEVIER</subfield><subfield code="t">Rheological analysis of itraconazole-polymer mixtures to determine optimal melt extrusion temperature for development of amorphous solid dispersion</subfield><subfield code="d">2017</subfield><subfield code="d">the international journal</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV000529575</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:260</subfield><subfield code="g">year:2022</subfield><subfield code="g">day:1</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.energy.2022.125185</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-PHARM</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.40</subfield><subfield code="j">Pharmazie</subfield><subfield code="j">Pharmazeutika</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">260</subfield><subfield code="j">2022</subfield><subfield code="b">1</subfield><subfield code="c">1201</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
author |
Liu, Haoran |
spellingShingle |
Liu, Haoran ddc 610 ssgn 15,3 fid PHARM bkl 44.40 Elsevier Model predictive control Elsevier Skin temperature Elsevier Thermal management Elsevier Electronic device Elsevier Compact thermal model Model predictive control of portable electronic devices under skin temperature constraints |
authorStr |
Liu, Haoran |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV000529575 |
format |
electronic Article |
dewey-ones |
610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
610 VZ 15,3 ssgn PHARM DE-84 fid 44.40 bkl Model predictive control of portable electronic devices under skin temperature constraints Model predictive control Elsevier Skin temperature Elsevier Thermal management Elsevier Electronic device Elsevier Compact thermal model Elsevier |
topic |
ddc 610 ssgn 15,3 fid PHARM bkl 44.40 Elsevier Model predictive control Elsevier Skin temperature Elsevier Thermal management Elsevier Electronic device Elsevier Compact thermal model |
topic_unstemmed |
ddc 610 ssgn 15,3 fid PHARM bkl 44.40 Elsevier Model predictive control Elsevier Skin temperature Elsevier Thermal management Elsevier Electronic device Elsevier Compact thermal model |
topic_browse |
ddc 610 ssgn 15,3 fid PHARM bkl 44.40 Elsevier Model predictive control Elsevier Skin temperature Elsevier Thermal management Elsevier Electronic device Elsevier Compact thermal model |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
j y jy r w rw |
hierarchy_parent_title |
Rheological analysis of itraconazole-polymer mixtures to determine optimal melt extrusion temperature for development of amorphous solid dispersion |
hierarchy_parent_id |
ELV000529575 |
dewey-tens |
610 - Medicine & health |
hierarchy_top_title |
Rheological analysis of itraconazole-polymer mixtures to determine optimal melt extrusion temperature for development of amorphous solid dispersion |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV000529575 |
title |
Model predictive control of portable electronic devices under skin temperature constraints |
ctrlnum |
(DE-627)ELV059268298 (ELSEVIER)S0360-5442(22)02076-X |
title_full |
Model predictive control of portable electronic devices under skin temperature constraints |
author_sort |
Liu, Haoran |
journal |
Rheological analysis of itraconazole-polymer mixtures to determine optimal melt extrusion temperature for development of amorphous solid dispersion |
journalStr |
Rheological analysis of itraconazole-polymer mixtures to determine optimal melt extrusion temperature for development of amorphous solid dispersion |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
zzz |
container_start_page |
0 |
author_browse |
Liu, Haoran |
container_volume |
260 |
class |
610 VZ 15,3 ssgn PHARM DE-84 fid 44.40 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Liu, Haoran |
doi_str_mv |
10.1016/j.energy.2022.125185 |
dewey-full |
610 |
title_sort |
model predictive control of portable electronic devices under skin temperature constraints |
title_auth |
Model predictive control of portable electronic devices under skin temperature constraints |
abstract |
Thermal management is becoming a major challenge for electronics, and a better temperature control algorithm that could maximize the system performance will play a greater role in fully utilizing the existing cooling capacity. Unfortunately, the simplest look-up table method is still widely used as the temperature control algorithm in current portable electronic devices, especially laptops, resulting in a significant performance loss of devices. In this paper, a general temperature control framework for a commercial laptop that considers the skin temperature constraints is proposed based on the model predictive control algorithm. In specific, a high-accuracy compact thermal model is first generated through the model order reduction method and validated by abundant experimental data. Then the proposed MPC is numerically evaluated in three test scenarios, covering different workloads and performance indexes. The results show that the proposed MPC outperforms the baseline look-up table method by achieving about 10–20% higher performance index in different test scenarios. The open-loop optimal control method is also considered to estimate the optimality of the proposed MPC. Moreover, a parametric study is conducted to analyze the influence of different control parameters, indicating broad prospects for the future application of the proposed MPC algorithm. |
abstractGer |
Thermal management is becoming a major challenge for electronics, and a better temperature control algorithm that could maximize the system performance will play a greater role in fully utilizing the existing cooling capacity. Unfortunately, the simplest look-up table method is still widely used as the temperature control algorithm in current portable electronic devices, especially laptops, resulting in a significant performance loss of devices. In this paper, a general temperature control framework for a commercial laptop that considers the skin temperature constraints is proposed based on the model predictive control algorithm. In specific, a high-accuracy compact thermal model is first generated through the model order reduction method and validated by abundant experimental data. Then the proposed MPC is numerically evaluated in three test scenarios, covering different workloads and performance indexes. The results show that the proposed MPC outperforms the baseline look-up table method by achieving about 10–20% higher performance index in different test scenarios. The open-loop optimal control method is also considered to estimate the optimality of the proposed MPC. Moreover, a parametric study is conducted to analyze the influence of different control parameters, indicating broad prospects for the future application of the proposed MPC algorithm. |
abstract_unstemmed |
Thermal management is becoming a major challenge for electronics, and a better temperature control algorithm that could maximize the system performance will play a greater role in fully utilizing the existing cooling capacity. Unfortunately, the simplest look-up table method is still widely used as the temperature control algorithm in current portable electronic devices, especially laptops, resulting in a significant performance loss of devices. In this paper, a general temperature control framework for a commercial laptop that considers the skin temperature constraints is proposed based on the model predictive control algorithm. In specific, a high-accuracy compact thermal model is first generated through the model order reduction method and validated by abundant experimental data. Then the proposed MPC is numerically evaluated in three test scenarios, covering different workloads and performance indexes. The results show that the proposed MPC outperforms the baseline look-up table method by achieving about 10–20% higher performance index in different test scenarios. The open-loop optimal control method is also considered to estimate the optimality of the proposed MPC. Moreover, a parametric study is conducted to analyze the influence of different control parameters, indicating broad prospects for the future application of the proposed MPC algorithm. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-PHARM SSG-OLC-PHA SSG-OPC-PHA |
title_short |
Model predictive control of portable electronic devices under skin temperature constraints |
url |
https://doi.org/10.1016/j.energy.2022.125185 |
remote_bool |
true |
author2 |
Yu, Jiaqi Wang, Ruzhu |
author2Str |
Yu, Jiaqi Wang, Ruzhu |
ppnlink |
ELV000529575 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
doi_str |
10.1016/j.energy.2022.125185 |
up_date |
2024-07-06T21:28:58.679Z |
_version_ |
1803866696507719680 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV059268298</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626052540.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">221103s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.energy.2022.125185</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001938.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV059268298</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0360-5442(22)02076-X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">15,3</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHARM</subfield><subfield code="q">DE-84</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.40</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liu, Haoran</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Model predictive control of portable electronic devices under skin temperature constraints</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Thermal management is becoming a major challenge for electronics, and a better temperature control algorithm that could maximize the system performance will play a greater role in fully utilizing the existing cooling capacity. Unfortunately, the simplest look-up table method is still widely used as the temperature control algorithm in current portable electronic devices, especially laptops, resulting in a significant performance loss of devices. In this paper, a general temperature control framework for a commercial laptop that considers the skin temperature constraints is proposed based on the model predictive control algorithm. In specific, a high-accuracy compact thermal model is first generated through the model order reduction method and validated by abundant experimental data. Then the proposed MPC is numerically evaluated in three test scenarios, covering different workloads and performance indexes. The results show that the proposed MPC outperforms the baseline look-up table method by achieving about 10–20% higher performance index in different test scenarios. The open-loop optimal control method is also considered to estimate the optimality of the proposed MPC. Moreover, a parametric study is conducted to analyze the influence of different control parameters, indicating broad prospects for the future application of the proposed MPC algorithm.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Thermal management is becoming a major challenge for electronics, and a better temperature control algorithm that could maximize the system performance will play a greater role in fully utilizing the existing cooling capacity. Unfortunately, the simplest look-up table method is still widely used as the temperature control algorithm in current portable electronic devices, especially laptops, resulting in a significant performance loss of devices. In this paper, a general temperature control framework for a commercial laptop that considers the skin temperature constraints is proposed based on the model predictive control algorithm. In specific, a high-accuracy compact thermal model is first generated through the model order reduction method and validated by abundant experimental data. Then the proposed MPC is numerically evaluated in three test scenarios, covering different workloads and performance indexes. The results show that the proposed MPC outperforms the baseline look-up table method by achieving about 10–20% higher performance index in different test scenarios. The open-loop optimal control method is also considered to estimate the optimality of the proposed MPC. Moreover, a parametric study is conducted to analyze the influence of different control parameters, indicating broad prospects for the future application of the proposed MPC algorithm.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Model predictive control</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Skin temperature</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Thermal management</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Electronic device</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Compact thermal model</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yu, Jiaqi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Ruzhu</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Solanki, Nayan ELSEVIER</subfield><subfield code="t">Rheological analysis of itraconazole-polymer mixtures to determine optimal melt extrusion temperature for development of amorphous solid dispersion</subfield><subfield code="d">2017</subfield><subfield code="d">the international journal</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV000529575</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:260</subfield><subfield code="g">year:2022</subfield><subfield code="g">day:1</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.energy.2022.125185</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-PHARM</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.40</subfield><subfield code="j">Pharmazie</subfield><subfield code="j">Pharmazeutika</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">260</subfield><subfield code="j">2022</subfield><subfield code="b">1</subfield><subfield code="c">1201</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
score |
7.4012136 |