Leukemia segmentation and classification: A comprehensive survey
Blood is made up of leukocytes (WBCs), erythrocytes (RBCs), and thrombocytes. The ratio of blood cancer diseases is increasing rapidly, among which leukemia is one of the famous cancer which may lead to death. Leukemia cancer is initiated by the unnecessary growth of immature WBCs present in the spo...
Ausführliche Beschreibung
Autor*in: |
Saleem, Saba [verfasserIn] Amin, Javaria [verfasserIn] Sharif, Muhammad [verfasserIn] Mallah, Ghulam Ali [verfasserIn] Kadry, Seifedine [verfasserIn] Gandomi, Amir H. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Computers in biology and medicine - Amsterdam [u.a.] : Elsevier Science, 1970, 150 |
---|---|
Übergeordnetes Werk: |
volume:150 |
DOI / URN: |
10.1016/j.compbiomed.2022.106028 |
---|
Katalog-ID: |
ELV05934105X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV05934105X | ||
003 | DE-627 | ||
005 | 20240103093254.0 | ||
007 | cr uuu---uuuuu | ||
008 | 221103s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.compbiomed.2022.106028 |2 doi | |
035 | |a (DE-627)ELV05934105X | ||
035 | |a (ELSEVIER)S0010-4825(22)00748-X | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 610 |a 570 |q VZ |
084 | |a 42.00 |2 bkl | ||
084 | |a 44.09 |2 bkl | ||
100 | 1 | |a Saleem, Saba |e verfasserin |4 aut | |
245 | 1 | 0 | |a Leukemia segmentation and classification: A comprehensive survey |
264 | 1 | |c 2022 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Blood is made up of leukocytes (WBCs), erythrocytes (RBCs), and thrombocytes. The ratio of blood cancer diseases is increasing rapidly, among which leukemia is one of the famous cancer which may lead to death. Leukemia cancer is initiated by the unnecessary growth of immature WBCs present in the sponge tissues of bone marrow. It is generally analyzed by etiologists by perceiving slides of blood smear images under a microscope. The morphological features and blood cells count facilitated the etiologists to detect leukemia. Due to the late detection and expensive instruments used for leukemia analysis, the death rate has risen significantly. The fluorescence-based cell sorting technique and manual recounts using a hemocytometer are error-prone and imprecise. Leukemia detection methods consist of pre-processing, segmentation, features extraction, and classification. In this article, recent deep learning methodologies and challenges for leukemia detection are discussed. These methods are helpful to examine the microscopic blood smears images and for the detection of leukemia more accurately. | ||
650 | 4 | |a Leukocytes | |
650 | 4 | |a Leukemia | |
650 | 4 | |a Segmentation | |
650 | 4 | |a Features extraction | |
650 | 4 | |a Features selection | |
650 | 4 | |a Classification | |
700 | 1 | |a Amin, Javaria |e verfasserin |4 aut | |
700 | 1 | |a Sharif, Muhammad |e verfasserin |4 aut | |
700 | 1 | |a Mallah, Ghulam Ali |e verfasserin |4 aut | |
700 | 1 | |a Kadry, Seifedine |e verfasserin |4 aut | |
700 | 1 | |a Gandomi, Amir H. |e verfasserin |0 (orcid)0000-0002-2798-0104 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Computers in biology and medicine |d Amsterdam [u.a.] : Elsevier Science, 1970 |g 150 |h Online-Ressource |w (DE-627)306356783 |w (DE-600)1496984-1 |w (DE-576)081952988 |x 1879-0534 |7 nnns |
773 | 1 | 8 | |g volume:150 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 42.00 |q VZ |
936 | b | k | |a 44.09 |j Medizintechnik |q VZ |
951 | |a AR | ||
952 | |d 150 |
author_variant |
s s ss j a ja m s ms g a m ga gam s k sk a h g ah ahg |
---|---|
matchkey_str |
article:18790534:2022----::ekmaemnainncasfctoaop |
hierarchy_sort_str |
2022 |
bklnumber |
42.00 44.09 |
publishDate |
2022 |
allfields |
10.1016/j.compbiomed.2022.106028 doi (DE-627)ELV05934105X (ELSEVIER)S0010-4825(22)00748-X DE-627 ger DE-627 rda eng 610 570 VZ 42.00 bkl 44.09 bkl Saleem, Saba verfasserin aut Leukemia segmentation and classification: A comprehensive survey 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Blood is made up of leukocytes (WBCs), erythrocytes (RBCs), and thrombocytes. The ratio of blood cancer diseases is increasing rapidly, among which leukemia is one of the famous cancer which may lead to death. Leukemia cancer is initiated by the unnecessary growth of immature WBCs present in the sponge tissues of bone marrow. It is generally analyzed by etiologists by perceiving slides of blood smear images under a microscope. The morphological features and blood cells count facilitated the etiologists to detect leukemia. Due to the late detection and expensive instruments used for leukemia analysis, the death rate has risen significantly. The fluorescence-based cell sorting technique and manual recounts using a hemocytometer are error-prone and imprecise. Leukemia detection methods consist of pre-processing, segmentation, features extraction, and classification. In this article, recent deep learning methodologies and challenges for leukemia detection are discussed. These methods are helpful to examine the microscopic blood smears images and for the detection of leukemia more accurately. Leukocytes Leukemia Segmentation Features extraction Features selection Classification Amin, Javaria verfasserin aut Sharif, Muhammad verfasserin aut Mallah, Ghulam Ali verfasserin aut Kadry, Seifedine verfasserin aut Gandomi, Amir H. verfasserin (orcid)0000-0002-2798-0104 aut Enthalten in Computers in biology and medicine Amsterdam [u.a.] : Elsevier Science, 1970 150 Online-Ressource (DE-627)306356783 (DE-600)1496984-1 (DE-576)081952988 1879-0534 nnns volume:150 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 42.00 VZ 44.09 Medizintechnik VZ AR 150 |
spelling |
10.1016/j.compbiomed.2022.106028 doi (DE-627)ELV05934105X (ELSEVIER)S0010-4825(22)00748-X DE-627 ger DE-627 rda eng 610 570 VZ 42.00 bkl 44.09 bkl Saleem, Saba verfasserin aut Leukemia segmentation and classification: A comprehensive survey 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Blood is made up of leukocytes (WBCs), erythrocytes (RBCs), and thrombocytes. The ratio of blood cancer diseases is increasing rapidly, among which leukemia is one of the famous cancer which may lead to death. Leukemia cancer is initiated by the unnecessary growth of immature WBCs present in the sponge tissues of bone marrow. It is generally analyzed by etiologists by perceiving slides of blood smear images under a microscope. The morphological features and blood cells count facilitated the etiologists to detect leukemia. Due to the late detection and expensive instruments used for leukemia analysis, the death rate has risen significantly. The fluorescence-based cell sorting technique and manual recounts using a hemocytometer are error-prone and imprecise. Leukemia detection methods consist of pre-processing, segmentation, features extraction, and classification. In this article, recent deep learning methodologies and challenges for leukemia detection are discussed. These methods are helpful to examine the microscopic blood smears images and for the detection of leukemia more accurately. Leukocytes Leukemia Segmentation Features extraction Features selection Classification Amin, Javaria verfasserin aut Sharif, Muhammad verfasserin aut Mallah, Ghulam Ali verfasserin aut Kadry, Seifedine verfasserin aut Gandomi, Amir H. verfasserin (orcid)0000-0002-2798-0104 aut Enthalten in Computers in biology and medicine Amsterdam [u.a.] : Elsevier Science, 1970 150 Online-Ressource (DE-627)306356783 (DE-600)1496984-1 (DE-576)081952988 1879-0534 nnns volume:150 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 42.00 VZ 44.09 Medizintechnik VZ AR 150 |
allfields_unstemmed |
10.1016/j.compbiomed.2022.106028 doi (DE-627)ELV05934105X (ELSEVIER)S0010-4825(22)00748-X DE-627 ger DE-627 rda eng 610 570 VZ 42.00 bkl 44.09 bkl Saleem, Saba verfasserin aut Leukemia segmentation and classification: A comprehensive survey 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Blood is made up of leukocytes (WBCs), erythrocytes (RBCs), and thrombocytes. The ratio of blood cancer diseases is increasing rapidly, among which leukemia is one of the famous cancer which may lead to death. Leukemia cancer is initiated by the unnecessary growth of immature WBCs present in the sponge tissues of bone marrow. It is generally analyzed by etiologists by perceiving slides of blood smear images under a microscope. The morphological features and blood cells count facilitated the etiologists to detect leukemia. Due to the late detection and expensive instruments used for leukemia analysis, the death rate has risen significantly. The fluorescence-based cell sorting technique and manual recounts using a hemocytometer are error-prone and imprecise. Leukemia detection methods consist of pre-processing, segmentation, features extraction, and classification. In this article, recent deep learning methodologies and challenges for leukemia detection are discussed. These methods are helpful to examine the microscopic blood smears images and for the detection of leukemia more accurately. Leukocytes Leukemia Segmentation Features extraction Features selection Classification Amin, Javaria verfasserin aut Sharif, Muhammad verfasserin aut Mallah, Ghulam Ali verfasserin aut Kadry, Seifedine verfasserin aut Gandomi, Amir H. verfasserin (orcid)0000-0002-2798-0104 aut Enthalten in Computers in biology and medicine Amsterdam [u.a.] : Elsevier Science, 1970 150 Online-Ressource (DE-627)306356783 (DE-600)1496984-1 (DE-576)081952988 1879-0534 nnns volume:150 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 42.00 VZ 44.09 Medizintechnik VZ AR 150 |
allfieldsGer |
10.1016/j.compbiomed.2022.106028 doi (DE-627)ELV05934105X (ELSEVIER)S0010-4825(22)00748-X DE-627 ger DE-627 rda eng 610 570 VZ 42.00 bkl 44.09 bkl Saleem, Saba verfasserin aut Leukemia segmentation and classification: A comprehensive survey 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Blood is made up of leukocytes (WBCs), erythrocytes (RBCs), and thrombocytes. The ratio of blood cancer diseases is increasing rapidly, among which leukemia is one of the famous cancer which may lead to death. Leukemia cancer is initiated by the unnecessary growth of immature WBCs present in the sponge tissues of bone marrow. It is generally analyzed by etiologists by perceiving slides of blood smear images under a microscope. The morphological features and blood cells count facilitated the etiologists to detect leukemia. Due to the late detection and expensive instruments used for leukemia analysis, the death rate has risen significantly. The fluorescence-based cell sorting technique and manual recounts using a hemocytometer are error-prone and imprecise. Leukemia detection methods consist of pre-processing, segmentation, features extraction, and classification. In this article, recent deep learning methodologies and challenges for leukemia detection are discussed. These methods are helpful to examine the microscopic blood smears images and for the detection of leukemia more accurately. Leukocytes Leukemia Segmentation Features extraction Features selection Classification Amin, Javaria verfasserin aut Sharif, Muhammad verfasserin aut Mallah, Ghulam Ali verfasserin aut Kadry, Seifedine verfasserin aut Gandomi, Amir H. verfasserin (orcid)0000-0002-2798-0104 aut Enthalten in Computers in biology and medicine Amsterdam [u.a.] : Elsevier Science, 1970 150 Online-Ressource (DE-627)306356783 (DE-600)1496984-1 (DE-576)081952988 1879-0534 nnns volume:150 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 42.00 VZ 44.09 Medizintechnik VZ AR 150 |
allfieldsSound |
10.1016/j.compbiomed.2022.106028 doi (DE-627)ELV05934105X (ELSEVIER)S0010-4825(22)00748-X DE-627 ger DE-627 rda eng 610 570 VZ 42.00 bkl 44.09 bkl Saleem, Saba verfasserin aut Leukemia segmentation and classification: A comprehensive survey 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Blood is made up of leukocytes (WBCs), erythrocytes (RBCs), and thrombocytes. The ratio of blood cancer diseases is increasing rapidly, among which leukemia is one of the famous cancer which may lead to death. Leukemia cancer is initiated by the unnecessary growth of immature WBCs present in the sponge tissues of bone marrow. It is generally analyzed by etiologists by perceiving slides of blood smear images under a microscope. The morphological features and blood cells count facilitated the etiologists to detect leukemia. Due to the late detection and expensive instruments used for leukemia analysis, the death rate has risen significantly. The fluorescence-based cell sorting technique and manual recounts using a hemocytometer are error-prone and imprecise. Leukemia detection methods consist of pre-processing, segmentation, features extraction, and classification. In this article, recent deep learning methodologies and challenges for leukemia detection are discussed. These methods are helpful to examine the microscopic blood smears images and for the detection of leukemia more accurately. Leukocytes Leukemia Segmentation Features extraction Features selection Classification Amin, Javaria verfasserin aut Sharif, Muhammad verfasserin aut Mallah, Ghulam Ali verfasserin aut Kadry, Seifedine verfasserin aut Gandomi, Amir H. verfasserin (orcid)0000-0002-2798-0104 aut Enthalten in Computers in biology and medicine Amsterdam [u.a.] : Elsevier Science, 1970 150 Online-Ressource (DE-627)306356783 (DE-600)1496984-1 (DE-576)081952988 1879-0534 nnns volume:150 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 42.00 VZ 44.09 Medizintechnik VZ AR 150 |
language |
English |
source |
Enthalten in Computers in biology and medicine 150 volume:150 |
sourceStr |
Enthalten in Computers in biology and medicine 150 volume:150 |
format_phy_str_mv |
Article |
bklname |
Medizintechnik |
institution |
findex.gbv.de |
topic_facet |
Leukocytes Leukemia Segmentation Features extraction Features selection Classification |
dewey-raw |
610 |
isfreeaccess_bool |
false |
container_title |
Computers in biology and medicine |
authorswithroles_txt_mv |
Saleem, Saba @@aut@@ Amin, Javaria @@aut@@ Sharif, Muhammad @@aut@@ Mallah, Ghulam Ali @@aut@@ Kadry, Seifedine @@aut@@ Gandomi, Amir H. @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
306356783 |
dewey-sort |
3610 |
id |
ELV05934105X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV05934105X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240103093254.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">221103s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.compbiomed.2022.106028</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV05934105X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0010-4825(22)00748-X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="a">570</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.09</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Saleem, Saba</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Leukemia segmentation and classification: A comprehensive survey</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Blood is made up of leukocytes (WBCs), erythrocytes (RBCs), and thrombocytes. The ratio of blood cancer diseases is increasing rapidly, among which leukemia is one of the famous cancer which may lead to death. Leukemia cancer is initiated by the unnecessary growth of immature WBCs present in the sponge tissues of bone marrow. It is generally analyzed by etiologists by perceiving slides of blood smear images under a microscope. The morphological features and blood cells count facilitated the etiologists to detect leukemia. Due to the late detection and expensive instruments used for leukemia analysis, the death rate has risen significantly. The fluorescence-based cell sorting technique and manual recounts using a hemocytometer are error-prone and imprecise. Leukemia detection methods consist of pre-processing, segmentation, features extraction, and classification. In this article, recent deep learning methodologies and challenges for leukemia detection are discussed. These methods are helpful to examine the microscopic blood smears images and for the detection of leukemia more accurately.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Leukocytes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Leukemia</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Segmentation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Features extraction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Features selection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Classification</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Amin, Javaria</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sharif, Muhammad</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mallah, Ghulam Ali</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kadry, Seifedine</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gandomi, Amir H.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-2798-0104</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Computers in biology and medicine</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1970</subfield><subfield code="g">150</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)306356783</subfield><subfield code="w">(DE-600)1496984-1</subfield><subfield code="w">(DE-576)081952988</subfield><subfield code="x">1879-0534</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">42.00</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.09</subfield><subfield code="j">Medizintechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">150</subfield></datafield></record></collection>
|
author |
Saleem, Saba |
spellingShingle |
Saleem, Saba ddc 610 bkl 42.00 bkl 44.09 misc Leukocytes misc Leukemia misc Segmentation misc Features extraction misc Features selection misc Classification Leukemia segmentation and classification: A comprehensive survey |
authorStr |
Saleem, Saba |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)306356783 |
format |
electronic Article |
dewey-ones |
610 - Medicine & health 570 - Life sciences; biology |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1879-0534 |
topic_title |
610 570 VZ 42.00 bkl 44.09 bkl Leukemia segmentation and classification: A comprehensive survey Leukocytes Leukemia Segmentation Features extraction Features selection Classification |
topic |
ddc 610 bkl 42.00 bkl 44.09 misc Leukocytes misc Leukemia misc Segmentation misc Features extraction misc Features selection misc Classification |
topic_unstemmed |
ddc 610 bkl 42.00 bkl 44.09 misc Leukocytes misc Leukemia misc Segmentation misc Features extraction misc Features selection misc Classification |
topic_browse |
ddc 610 bkl 42.00 bkl 44.09 misc Leukocytes misc Leukemia misc Segmentation misc Features extraction misc Features selection misc Classification |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Computers in biology and medicine |
hierarchy_parent_id |
306356783 |
dewey-tens |
610 - Medicine & health 570 - Life sciences; biology |
hierarchy_top_title |
Computers in biology and medicine |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)306356783 (DE-600)1496984-1 (DE-576)081952988 |
title |
Leukemia segmentation and classification: A comprehensive survey |
ctrlnum |
(DE-627)ELV05934105X (ELSEVIER)S0010-4825(22)00748-X |
title_full |
Leukemia segmentation and classification: A comprehensive survey |
author_sort |
Saleem, Saba |
journal |
Computers in biology and medicine |
journalStr |
Computers in biology and medicine |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 500 - Science |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
zzz |
author_browse |
Saleem, Saba Amin, Javaria Sharif, Muhammad Mallah, Ghulam Ali Kadry, Seifedine Gandomi, Amir H. |
container_volume |
150 |
class |
610 570 VZ 42.00 bkl 44.09 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Saleem, Saba |
doi_str_mv |
10.1016/j.compbiomed.2022.106028 |
normlink |
(ORCID)0000-0002-2798-0104 |
normlink_prefix_str_mv |
(orcid)0000-0002-2798-0104 |
dewey-full |
610 570 |
author2-role |
verfasserin |
title_sort |
leukemia segmentation and classification: a comprehensive survey |
title_auth |
Leukemia segmentation and classification: A comprehensive survey |
abstract |
Blood is made up of leukocytes (WBCs), erythrocytes (RBCs), and thrombocytes. The ratio of blood cancer diseases is increasing rapidly, among which leukemia is one of the famous cancer which may lead to death. Leukemia cancer is initiated by the unnecessary growth of immature WBCs present in the sponge tissues of bone marrow. It is generally analyzed by etiologists by perceiving slides of blood smear images under a microscope. The morphological features and blood cells count facilitated the etiologists to detect leukemia. Due to the late detection and expensive instruments used for leukemia analysis, the death rate has risen significantly. The fluorescence-based cell sorting technique and manual recounts using a hemocytometer are error-prone and imprecise. Leukemia detection methods consist of pre-processing, segmentation, features extraction, and classification. In this article, recent deep learning methodologies and challenges for leukemia detection are discussed. These methods are helpful to examine the microscopic blood smears images and for the detection of leukemia more accurately. |
abstractGer |
Blood is made up of leukocytes (WBCs), erythrocytes (RBCs), and thrombocytes. The ratio of blood cancer diseases is increasing rapidly, among which leukemia is one of the famous cancer which may lead to death. Leukemia cancer is initiated by the unnecessary growth of immature WBCs present in the sponge tissues of bone marrow. It is generally analyzed by etiologists by perceiving slides of blood smear images under a microscope. The morphological features and blood cells count facilitated the etiologists to detect leukemia. Due to the late detection and expensive instruments used for leukemia analysis, the death rate has risen significantly. The fluorescence-based cell sorting technique and manual recounts using a hemocytometer are error-prone and imprecise. Leukemia detection methods consist of pre-processing, segmentation, features extraction, and classification. In this article, recent deep learning methodologies and challenges for leukemia detection are discussed. These methods are helpful to examine the microscopic blood smears images and for the detection of leukemia more accurately. |
abstract_unstemmed |
Blood is made up of leukocytes (WBCs), erythrocytes (RBCs), and thrombocytes. The ratio of blood cancer diseases is increasing rapidly, among which leukemia is one of the famous cancer which may lead to death. Leukemia cancer is initiated by the unnecessary growth of immature WBCs present in the sponge tissues of bone marrow. It is generally analyzed by etiologists by perceiving slides of blood smear images under a microscope. The morphological features and blood cells count facilitated the etiologists to detect leukemia. Due to the late detection and expensive instruments used for leukemia analysis, the death rate has risen significantly. The fluorescence-based cell sorting technique and manual recounts using a hemocytometer are error-prone and imprecise. Leukemia detection methods consist of pre-processing, segmentation, features extraction, and classification. In this article, recent deep learning methodologies and challenges for leukemia detection are discussed. These methods are helpful to examine the microscopic blood smears images and for the detection of leukemia more accurately. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Leukemia segmentation and classification: A comprehensive survey |
remote_bool |
true |
author2 |
Amin, Javaria Sharif, Muhammad Mallah, Ghulam Ali Kadry, Seifedine Gandomi, Amir H. |
author2Str |
Amin, Javaria Sharif, Muhammad Mallah, Ghulam Ali Kadry, Seifedine Gandomi, Amir H. |
ppnlink |
306356783 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.compbiomed.2022.106028 |
up_date |
2024-07-06T21:41:56.193Z |
_version_ |
1803867511791288320 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV05934105X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240103093254.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">221103s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.compbiomed.2022.106028</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV05934105X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0010-4825(22)00748-X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="a">570</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.09</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Saleem, Saba</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Leukemia segmentation and classification: A comprehensive survey</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Blood is made up of leukocytes (WBCs), erythrocytes (RBCs), and thrombocytes. The ratio of blood cancer diseases is increasing rapidly, among which leukemia is one of the famous cancer which may lead to death. Leukemia cancer is initiated by the unnecessary growth of immature WBCs present in the sponge tissues of bone marrow. It is generally analyzed by etiologists by perceiving slides of blood smear images under a microscope. The morphological features and blood cells count facilitated the etiologists to detect leukemia. Due to the late detection and expensive instruments used for leukemia analysis, the death rate has risen significantly. The fluorescence-based cell sorting technique and manual recounts using a hemocytometer are error-prone and imprecise. Leukemia detection methods consist of pre-processing, segmentation, features extraction, and classification. In this article, recent deep learning methodologies and challenges for leukemia detection are discussed. These methods are helpful to examine the microscopic blood smears images and for the detection of leukemia more accurately.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Leukocytes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Leukemia</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Segmentation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Features extraction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Features selection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Classification</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Amin, Javaria</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sharif, Muhammad</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mallah, Ghulam Ali</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kadry, Seifedine</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gandomi, Amir H.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-2798-0104</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Computers in biology and medicine</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1970</subfield><subfield code="g">150</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)306356783</subfield><subfield code="w">(DE-600)1496984-1</subfield><subfield code="w">(DE-576)081952988</subfield><subfield code="x">1879-0534</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">42.00</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.09</subfield><subfield code="j">Medizintechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">150</subfield></datafield></record></collection>
|
score |
7.4014244 |