Preparation and mechanical behavior of the acellular porcine common bile duct and its immunogenicity in vivo
The current clinical treatments for complications caused by hepatobiliary surgery still have some inevitable weaknesses. This study aimed to prepare the acellular porcine common bile duct (APCBD) for repairing biliary defects and damage. The porcine common bile duct was decellularized by the freeze-...
Ausführliche Beschreibung
Autor*in: |
Li, Qing [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022transfer abstract |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: A volume-shrinkage-based method for quantifying the inward solidification heat transfer of a phase change material filled in spherical capsules - Liu, Min-Jie ELSEVIER, 2016, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:136 ; year:2022 ; pages:0 |
Links: |
---|
DOI / URN: |
10.1016/j.jmbbm.2022.105494 |
---|
Katalog-ID: |
ELV059384751 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV059384751 | ||
003 | DE-627 | ||
005 | 20230626052800.0 | ||
007 | cr uuu---uuuuu | ||
008 | 221219s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jmbbm.2022.105494 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001952.pica |
035 | |a (DE-627)ELV059384751 | ||
035 | |a (ELSEVIER)S1751-6161(22)00399-X | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 690 |q VZ |
084 | |a 52.43 |2 bkl | ||
084 | |a 52.52 |2 bkl | ||
084 | |a 52.42 |2 bkl | ||
084 | |a 50.38 |2 bkl | ||
100 | 1 | |a Li, Qing |e verfasserin |4 aut | |
245 | 1 | 0 | |a Preparation and mechanical behavior of the acellular porcine common bile duct and its immunogenicity in vivo |
264 | 1 | |c 2022transfer abstract | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a The current clinical treatments for complications caused by hepatobiliary surgery still have some inevitable weaknesses. This study aimed to prepare the acellular porcine common bile duct (APCBD) for repairing biliary defects and damage. The porcine common bile duct was decellularized by the freeze-thaw method combined with nuclease treatment, and the efficacy of acellularization was confirmed by the DNA quantification and histological structure. The results showed that the residual DNA content was reduced from 854.67 ± 9.71 ng/mg to 5.43 ± 0.85 ng/mg, and the natural structure and shape of the bile duct were well preserved. The biomechanical properties such as the tensile strength, elastic modulus, and elongation-at-break of the APCBD in the transverse and longitudinal direction indicated that the APCBD meets the requirements of the biomechanical strength in replacement. In addition, the results of the immunotoxicity test showed there was no significant difference in the body weights, organ coefficient, hematology, and immune histology between the experimental groups (three subgroups) and the negative control group, which demonstrated the prepared APCBD had no obvious toxicity to the immune system in vivo and might be a suitable biomaterial for the bile duct repairing. | ||
520 | |a The current clinical treatments for complications caused by hepatobiliary surgery still have some inevitable weaknesses. This study aimed to prepare the acellular porcine common bile duct (APCBD) for repairing biliary defects and damage. The porcine common bile duct was decellularized by the freeze-thaw method combined with nuclease treatment, and the efficacy of acellularization was confirmed by the DNA quantification and histological structure. The results showed that the residual DNA content was reduced from 854.67 ± 9.71 ng/mg to 5.43 ± 0.85 ng/mg, and the natural structure and shape of the bile duct were well preserved. The biomechanical properties such as the tensile strength, elastic modulus, and elongation-at-break of the APCBD in the transverse and longitudinal direction indicated that the APCBD meets the requirements of the biomechanical strength in replacement. In addition, the results of the immunotoxicity test showed there was no significant difference in the body weights, organ coefficient, hematology, and immune histology between the experimental groups (three subgroups) and the negative control group, which demonstrated the prepared APCBD had no obvious toxicity to the immune system in vivo and might be a suitable biomaterial for the bile duct repairing. | ||
650 | 7 | |a Biomechanical |2 Elsevier | |
650 | 7 | |a Immunotoxicity |2 Elsevier | |
650 | 7 | |a Bile duct repairing |2 Elsevier | |
650 | 7 | |a Acellular porcine common bile duct |2 Elsevier | |
700 | 1 | |a Wang, Peng |4 oth | |
700 | 1 | |a Liu, Chongzhong |4 oth | |
700 | 1 | |a Liu, Fengyue |4 oth | |
700 | 1 | |a Zhao, Haibin |4 oth | |
700 | 1 | |a Guo, Yu |4 oth | |
700 | 1 | |a Zhao, Guoqun |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Liu, Min-Jie ELSEVIER |t A volume-shrinkage-based method for quantifying the inward solidification heat transfer of a phase change material filled in spherical capsules |d 2016 |g Amsterdam [u.a.] |w (DE-627)ELV009727671 |
773 | 1 | 8 | |g volume:136 |g year:2022 |g pages:0 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.jmbbm.2022.105494 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
936 | b | k | |a 52.43 |j Kältetechnik |q VZ |
936 | b | k | |a 52.52 |j Thermische Energieerzeugung |j Wärmetechnik |q VZ |
936 | b | k | |a 52.42 |j Heizungstechnik |j Lüftungstechnik |j Klimatechnik |q VZ |
936 | b | k | |a 50.38 |j Technische Thermodynamik |q VZ |
951 | |a AR | ||
952 | |d 136 |j 2022 |h 0 |
author_variant |
q l ql |
---|---|
matchkey_str |
liqingwangpengliuchongzhongliufengyuezha:2022----:rprtoadehncleairfhaellrocncmobldca |
hierarchy_sort_str |
2022transfer abstract |
bklnumber |
52.43 52.52 52.42 50.38 |
publishDate |
2022 |
allfields |
10.1016/j.jmbbm.2022.105494 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001952.pica (DE-627)ELV059384751 (ELSEVIER)S1751-6161(22)00399-X DE-627 ger DE-627 rakwb eng 690 VZ 52.43 bkl 52.52 bkl 52.42 bkl 50.38 bkl Li, Qing verfasserin aut Preparation and mechanical behavior of the acellular porcine common bile duct and its immunogenicity in vivo 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The current clinical treatments for complications caused by hepatobiliary surgery still have some inevitable weaknesses. This study aimed to prepare the acellular porcine common bile duct (APCBD) for repairing biliary defects and damage. The porcine common bile duct was decellularized by the freeze-thaw method combined with nuclease treatment, and the efficacy of acellularization was confirmed by the DNA quantification and histological structure. The results showed that the residual DNA content was reduced from 854.67 ± 9.71 ng/mg to 5.43 ± 0.85 ng/mg, and the natural structure and shape of the bile duct were well preserved. The biomechanical properties such as the tensile strength, elastic modulus, and elongation-at-break of the APCBD in the transverse and longitudinal direction indicated that the APCBD meets the requirements of the biomechanical strength in replacement. In addition, the results of the immunotoxicity test showed there was no significant difference in the body weights, organ coefficient, hematology, and immune histology between the experimental groups (three subgroups) and the negative control group, which demonstrated the prepared APCBD had no obvious toxicity to the immune system in vivo and might be a suitable biomaterial for the bile duct repairing. The current clinical treatments for complications caused by hepatobiliary surgery still have some inevitable weaknesses. This study aimed to prepare the acellular porcine common bile duct (APCBD) for repairing biliary defects and damage. The porcine common bile duct was decellularized by the freeze-thaw method combined with nuclease treatment, and the efficacy of acellularization was confirmed by the DNA quantification and histological structure. The results showed that the residual DNA content was reduced from 854.67 ± 9.71 ng/mg to 5.43 ± 0.85 ng/mg, and the natural structure and shape of the bile duct were well preserved. The biomechanical properties such as the tensile strength, elastic modulus, and elongation-at-break of the APCBD in the transverse and longitudinal direction indicated that the APCBD meets the requirements of the biomechanical strength in replacement. In addition, the results of the immunotoxicity test showed there was no significant difference in the body weights, organ coefficient, hematology, and immune histology between the experimental groups (three subgroups) and the negative control group, which demonstrated the prepared APCBD had no obvious toxicity to the immune system in vivo and might be a suitable biomaterial for the bile duct repairing. Biomechanical Elsevier Immunotoxicity Elsevier Bile duct repairing Elsevier Acellular porcine common bile duct Elsevier Wang, Peng oth Liu, Chongzhong oth Liu, Fengyue oth Zhao, Haibin oth Guo, Yu oth Zhao, Guoqun oth Enthalten in Elsevier Liu, Min-Jie ELSEVIER A volume-shrinkage-based method for quantifying the inward solidification heat transfer of a phase change material filled in spherical capsules 2016 Amsterdam [u.a.] (DE-627)ELV009727671 volume:136 year:2022 pages:0 https://doi.org/10.1016/j.jmbbm.2022.105494 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 52.43 Kältetechnik VZ 52.52 Thermische Energieerzeugung Wärmetechnik VZ 52.42 Heizungstechnik Lüftungstechnik Klimatechnik VZ 50.38 Technische Thermodynamik VZ AR 136 2022 0 |
spelling |
10.1016/j.jmbbm.2022.105494 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001952.pica (DE-627)ELV059384751 (ELSEVIER)S1751-6161(22)00399-X DE-627 ger DE-627 rakwb eng 690 VZ 52.43 bkl 52.52 bkl 52.42 bkl 50.38 bkl Li, Qing verfasserin aut Preparation and mechanical behavior of the acellular porcine common bile duct and its immunogenicity in vivo 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The current clinical treatments for complications caused by hepatobiliary surgery still have some inevitable weaknesses. This study aimed to prepare the acellular porcine common bile duct (APCBD) for repairing biliary defects and damage. The porcine common bile duct was decellularized by the freeze-thaw method combined with nuclease treatment, and the efficacy of acellularization was confirmed by the DNA quantification and histological structure. The results showed that the residual DNA content was reduced from 854.67 ± 9.71 ng/mg to 5.43 ± 0.85 ng/mg, and the natural structure and shape of the bile duct were well preserved. The biomechanical properties such as the tensile strength, elastic modulus, and elongation-at-break of the APCBD in the transverse and longitudinal direction indicated that the APCBD meets the requirements of the biomechanical strength in replacement. In addition, the results of the immunotoxicity test showed there was no significant difference in the body weights, organ coefficient, hematology, and immune histology between the experimental groups (three subgroups) and the negative control group, which demonstrated the prepared APCBD had no obvious toxicity to the immune system in vivo and might be a suitable biomaterial for the bile duct repairing. The current clinical treatments for complications caused by hepatobiliary surgery still have some inevitable weaknesses. This study aimed to prepare the acellular porcine common bile duct (APCBD) for repairing biliary defects and damage. The porcine common bile duct was decellularized by the freeze-thaw method combined with nuclease treatment, and the efficacy of acellularization was confirmed by the DNA quantification and histological structure. The results showed that the residual DNA content was reduced from 854.67 ± 9.71 ng/mg to 5.43 ± 0.85 ng/mg, and the natural structure and shape of the bile duct were well preserved. The biomechanical properties such as the tensile strength, elastic modulus, and elongation-at-break of the APCBD in the transverse and longitudinal direction indicated that the APCBD meets the requirements of the biomechanical strength in replacement. In addition, the results of the immunotoxicity test showed there was no significant difference in the body weights, organ coefficient, hematology, and immune histology between the experimental groups (three subgroups) and the negative control group, which demonstrated the prepared APCBD had no obvious toxicity to the immune system in vivo and might be a suitable biomaterial for the bile duct repairing. Biomechanical Elsevier Immunotoxicity Elsevier Bile duct repairing Elsevier Acellular porcine common bile duct Elsevier Wang, Peng oth Liu, Chongzhong oth Liu, Fengyue oth Zhao, Haibin oth Guo, Yu oth Zhao, Guoqun oth Enthalten in Elsevier Liu, Min-Jie ELSEVIER A volume-shrinkage-based method for quantifying the inward solidification heat transfer of a phase change material filled in spherical capsules 2016 Amsterdam [u.a.] (DE-627)ELV009727671 volume:136 year:2022 pages:0 https://doi.org/10.1016/j.jmbbm.2022.105494 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 52.43 Kältetechnik VZ 52.52 Thermische Energieerzeugung Wärmetechnik VZ 52.42 Heizungstechnik Lüftungstechnik Klimatechnik VZ 50.38 Technische Thermodynamik VZ AR 136 2022 0 |
allfields_unstemmed |
10.1016/j.jmbbm.2022.105494 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001952.pica (DE-627)ELV059384751 (ELSEVIER)S1751-6161(22)00399-X DE-627 ger DE-627 rakwb eng 690 VZ 52.43 bkl 52.52 bkl 52.42 bkl 50.38 bkl Li, Qing verfasserin aut Preparation and mechanical behavior of the acellular porcine common bile duct and its immunogenicity in vivo 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The current clinical treatments for complications caused by hepatobiliary surgery still have some inevitable weaknesses. This study aimed to prepare the acellular porcine common bile duct (APCBD) for repairing biliary defects and damage. The porcine common bile duct was decellularized by the freeze-thaw method combined with nuclease treatment, and the efficacy of acellularization was confirmed by the DNA quantification and histological structure. The results showed that the residual DNA content was reduced from 854.67 ± 9.71 ng/mg to 5.43 ± 0.85 ng/mg, and the natural structure and shape of the bile duct were well preserved. The biomechanical properties such as the tensile strength, elastic modulus, and elongation-at-break of the APCBD in the transverse and longitudinal direction indicated that the APCBD meets the requirements of the biomechanical strength in replacement. In addition, the results of the immunotoxicity test showed there was no significant difference in the body weights, organ coefficient, hematology, and immune histology between the experimental groups (three subgroups) and the negative control group, which demonstrated the prepared APCBD had no obvious toxicity to the immune system in vivo and might be a suitable biomaterial for the bile duct repairing. The current clinical treatments for complications caused by hepatobiliary surgery still have some inevitable weaknesses. This study aimed to prepare the acellular porcine common bile duct (APCBD) for repairing biliary defects and damage. The porcine common bile duct was decellularized by the freeze-thaw method combined with nuclease treatment, and the efficacy of acellularization was confirmed by the DNA quantification and histological structure. The results showed that the residual DNA content was reduced from 854.67 ± 9.71 ng/mg to 5.43 ± 0.85 ng/mg, and the natural structure and shape of the bile duct were well preserved. The biomechanical properties such as the tensile strength, elastic modulus, and elongation-at-break of the APCBD in the transverse and longitudinal direction indicated that the APCBD meets the requirements of the biomechanical strength in replacement. In addition, the results of the immunotoxicity test showed there was no significant difference in the body weights, organ coefficient, hematology, and immune histology between the experimental groups (three subgroups) and the negative control group, which demonstrated the prepared APCBD had no obvious toxicity to the immune system in vivo and might be a suitable biomaterial for the bile duct repairing. Biomechanical Elsevier Immunotoxicity Elsevier Bile duct repairing Elsevier Acellular porcine common bile duct Elsevier Wang, Peng oth Liu, Chongzhong oth Liu, Fengyue oth Zhao, Haibin oth Guo, Yu oth Zhao, Guoqun oth Enthalten in Elsevier Liu, Min-Jie ELSEVIER A volume-shrinkage-based method for quantifying the inward solidification heat transfer of a phase change material filled in spherical capsules 2016 Amsterdam [u.a.] (DE-627)ELV009727671 volume:136 year:2022 pages:0 https://doi.org/10.1016/j.jmbbm.2022.105494 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 52.43 Kältetechnik VZ 52.52 Thermische Energieerzeugung Wärmetechnik VZ 52.42 Heizungstechnik Lüftungstechnik Klimatechnik VZ 50.38 Technische Thermodynamik VZ AR 136 2022 0 |
allfieldsGer |
10.1016/j.jmbbm.2022.105494 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001952.pica (DE-627)ELV059384751 (ELSEVIER)S1751-6161(22)00399-X DE-627 ger DE-627 rakwb eng 690 VZ 52.43 bkl 52.52 bkl 52.42 bkl 50.38 bkl Li, Qing verfasserin aut Preparation and mechanical behavior of the acellular porcine common bile duct and its immunogenicity in vivo 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The current clinical treatments for complications caused by hepatobiliary surgery still have some inevitable weaknesses. This study aimed to prepare the acellular porcine common bile duct (APCBD) for repairing biliary defects and damage. The porcine common bile duct was decellularized by the freeze-thaw method combined with nuclease treatment, and the efficacy of acellularization was confirmed by the DNA quantification and histological structure. The results showed that the residual DNA content was reduced from 854.67 ± 9.71 ng/mg to 5.43 ± 0.85 ng/mg, and the natural structure and shape of the bile duct were well preserved. The biomechanical properties such as the tensile strength, elastic modulus, and elongation-at-break of the APCBD in the transverse and longitudinal direction indicated that the APCBD meets the requirements of the biomechanical strength in replacement. In addition, the results of the immunotoxicity test showed there was no significant difference in the body weights, organ coefficient, hematology, and immune histology between the experimental groups (three subgroups) and the negative control group, which demonstrated the prepared APCBD had no obvious toxicity to the immune system in vivo and might be a suitable biomaterial for the bile duct repairing. The current clinical treatments for complications caused by hepatobiliary surgery still have some inevitable weaknesses. This study aimed to prepare the acellular porcine common bile duct (APCBD) for repairing biliary defects and damage. The porcine common bile duct was decellularized by the freeze-thaw method combined with nuclease treatment, and the efficacy of acellularization was confirmed by the DNA quantification and histological structure. The results showed that the residual DNA content was reduced from 854.67 ± 9.71 ng/mg to 5.43 ± 0.85 ng/mg, and the natural structure and shape of the bile duct were well preserved. The biomechanical properties such as the tensile strength, elastic modulus, and elongation-at-break of the APCBD in the transverse and longitudinal direction indicated that the APCBD meets the requirements of the biomechanical strength in replacement. In addition, the results of the immunotoxicity test showed there was no significant difference in the body weights, organ coefficient, hematology, and immune histology between the experimental groups (three subgroups) and the negative control group, which demonstrated the prepared APCBD had no obvious toxicity to the immune system in vivo and might be a suitable biomaterial for the bile duct repairing. Biomechanical Elsevier Immunotoxicity Elsevier Bile duct repairing Elsevier Acellular porcine common bile duct Elsevier Wang, Peng oth Liu, Chongzhong oth Liu, Fengyue oth Zhao, Haibin oth Guo, Yu oth Zhao, Guoqun oth Enthalten in Elsevier Liu, Min-Jie ELSEVIER A volume-shrinkage-based method for quantifying the inward solidification heat transfer of a phase change material filled in spherical capsules 2016 Amsterdam [u.a.] (DE-627)ELV009727671 volume:136 year:2022 pages:0 https://doi.org/10.1016/j.jmbbm.2022.105494 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 52.43 Kältetechnik VZ 52.52 Thermische Energieerzeugung Wärmetechnik VZ 52.42 Heizungstechnik Lüftungstechnik Klimatechnik VZ 50.38 Technische Thermodynamik VZ AR 136 2022 0 |
allfieldsSound |
10.1016/j.jmbbm.2022.105494 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001952.pica (DE-627)ELV059384751 (ELSEVIER)S1751-6161(22)00399-X DE-627 ger DE-627 rakwb eng 690 VZ 52.43 bkl 52.52 bkl 52.42 bkl 50.38 bkl Li, Qing verfasserin aut Preparation and mechanical behavior of the acellular porcine common bile duct and its immunogenicity in vivo 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The current clinical treatments for complications caused by hepatobiliary surgery still have some inevitable weaknesses. This study aimed to prepare the acellular porcine common bile duct (APCBD) for repairing biliary defects and damage. The porcine common bile duct was decellularized by the freeze-thaw method combined with nuclease treatment, and the efficacy of acellularization was confirmed by the DNA quantification and histological structure. The results showed that the residual DNA content was reduced from 854.67 ± 9.71 ng/mg to 5.43 ± 0.85 ng/mg, and the natural structure and shape of the bile duct were well preserved. The biomechanical properties such as the tensile strength, elastic modulus, and elongation-at-break of the APCBD in the transverse and longitudinal direction indicated that the APCBD meets the requirements of the biomechanical strength in replacement. In addition, the results of the immunotoxicity test showed there was no significant difference in the body weights, organ coefficient, hematology, and immune histology between the experimental groups (three subgroups) and the negative control group, which demonstrated the prepared APCBD had no obvious toxicity to the immune system in vivo and might be a suitable biomaterial for the bile duct repairing. The current clinical treatments for complications caused by hepatobiliary surgery still have some inevitable weaknesses. This study aimed to prepare the acellular porcine common bile duct (APCBD) for repairing biliary defects and damage. The porcine common bile duct was decellularized by the freeze-thaw method combined with nuclease treatment, and the efficacy of acellularization was confirmed by the DNA quantification and histological structure. The results showed that the residual DNA content was reduced from 854.67 ± 9.71 ng/mg to 5.43 ± 0.85 ng/mg, and the natural structure and shape of the bile duct were well preserved. The biomechanical properties such as the tensile strength, elastic modulus, and elongation-at-break of the APCBD in the transverse and longitudinal direction indicated that the APCBD meets the requirements of the biomechanical strength in replacement. In addition, the results of the immunotoxicity test showed there was no significant difference in the body weights, organ coefficient, hematology, and immune histology between the experimental groups (three subgroups) and the negative control group, which demonstrated the prepared APCBD had no obvious toxicity to the immune system in vivo and might be a suitable biomaterial for the bile duct repairing. Biomechanical Elsevier Immunotoxicity Elsevier Bile duct repairing Elsevier Acellular porcine common bile duct Elsevier Wang, Peng oth Liu, Chongzhong oth Liu, Fengyue oth Zhao, Haibin oth Guo, Yu oth Zhao, Guoqun oth Enthalten in Elsevier Liu, Min-Jie ELSEVIER A volume-shrinkage-based method for quantifying the inward solidification heat transfer of a phase change material filled in spherical capsules 2016 Amsterdam [u.a.] (DE-627)ELV009727671 volume:136 year:2022 pages:0 https://doi.org/10.1016/j.jmbbm.2022.105494 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 52.43 Kältetechnik VZ 52.52 Thermische Energieerzeugung Wärmetechnik VZ 52.42 Heizungstechnik Lüftungstechnik Klimatechnik VZ 50.38 Technische Thermodynamik VZ AR 136 2022 0 |
language |
English |
source |
Enthalten in A volume-shrinkage-based method for quantifying the inward solidification heat transfer of a phase change material filled in spherical capsules Amsterdam [u.a.] volume:136 year:2022 pages:0 |
sourceStr |
Enthalten in A volume-shrinkage-based method for quantifying the inward solidification heat transfer of a phase change material filled in spherical capsules Amsterdam [u.a.] volume:136 year:2022 pages:0 |
format_phy_str_mv |
Article |
bklname |
Kältetechnik Thermische Energieerzeugung Wärmetechnik Heizungstechnik Lüftungstechnik Klimatechnik Technische Thermodynamik |
institution |
findex.gbv.de |
topic_facet |
Biomechanical Immunotoxicity Bile duct repairing Acellular porcine common bile duct |
dewey-raw |
690 |
isfreeaccess_bool |
false |
container_title |
A volume-shrinkage-based method for quantifying the inward solidification heat transfer of a phase change material filled in spherical capsules |
authorswithroles_txt_mv |
Li, Qing @@aut@@ Wang, Peng @@oth@@ Liu, Chongzhong @@oth@@ Liu, Fengyue @@oth@@ Zhao, Haibin @@oth@@ Guo, Yu @@oth@@ Zhao, Guoqun @@oth@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
ELV009727671 |
dewey-sort |
3690 |
id |
ELV059384751 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV059384751</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626052800.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">221219s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jmbbm.2022.105494</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001952.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV059384751</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1751-6161(22)00399-X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.43</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.52</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.42</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Qing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Preparation and mechanical behavior of the acellular porcine common bile duct and its immunogenicity in vivo</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The current clinical treatments for complications caused by hepatobiliary surgery still have some inevitable weaknesses. This study aimed to prepare the acellular porcine common bile duct (APCBD) for repairing biliary defects and damage. The porcine common bile duct was decellularized by the freeze-thaw method combined with nuclease treatment, and the efficacy of acellularization was confirmed by the DNA quantification and histological structure. The results showed that the residual DNA content was reduced from 854.67 ± 9.71 ng/mg to 5.43 ± 0.85 ng/mg, and the natural structure and shape of the bile duct were well preserved. The biomechanical properties such as the tensile strength, elastic modulus, and elongation-at-break of the APCBD in the transverse and longitudinal direction indicated that the APCBD meets the requirements of the biomechanical strength in replacement. In addition, the results of the immunotoxicity test showed there was no significant difference in the body weights, organ coefficient, hematology, and immune histology between the experimental groups (three subgroups) and the negative control group, which demonstrated the prepared APCBD had no obvious toxicity to the immune system in vivo and might be a suitable biomaterial for the bile duct repairing.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The current clinical treatments for complications caused by hepatobiliary surgery still have some inevitable weaknesses. This study aimed to prepare the acellular porcine common bile duct (APCBD) for repairing biliary defects and damage. The porcine common bile duct was decellularized by the freeze-thaw method combined with nuclease treatment, and the efficacy of acellularization was confirmed by the DNA quantification and histological structure. The results showed that the residual DNA content was reduced from 854.67 ± 9.71 ng/mg to 5.43 ± 0.85 ng/mg, and the natural structure and shape of the bile duct were well preserved. The biomechanical properties such as the tensile strength, elastic modulus, and elongation-at-break of the APCBD in the transverse and longitudinal direction indicated that the APCBD meets the requirements of the biomechanical strength in replacement. In addition, the results of the immunotoxicity test showed there was no significant difference in the body weights, organ coefficient, hematology, and immune histology between the experimental groups (three subgroups) and the negative control group, which demonstrated the prepared APCBD had no obvious toxicity to the immune system in vivo and might be a suitable biomaterial for the bile duct repairing.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Biomechanical</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Immunotoxicity</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Bile duct repairing</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Acellular porcine common bile duct</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Peng</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Chongzhong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Fengyue</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Haibin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guo, Yu</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Guoqun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Liu, Min-Jie ELSEVIER</subfield><subfield code="t">A volume-shrinkage-based method for quantifying the inward solidification heat transfer of a phase change material filled in spherical capsules</subfield><subfield code="d">2016</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV009727671</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:136</subfield><subfield code="g">year:2022</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jmbbm.2022.105494</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.43</subfield><subfield code="j">Kältetechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.52</subfield><subfield code="j">Thermische Energieerzeugung</subfield><subfield code="j">Wärmetechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.42</subfield><subfield code="j">Heizungstechnik</subfield><subfield code="j">Lüftungstechnik</subfield><subfield code="j">Klimatechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.38</subfield><subfield code="j">Technische Thermodynamik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">136</subfield><subfield code="j">2022</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
author |
Li, Qing |
spellingShingle |
Li, Qing ddc 690 bkl 52.43 bkl 52.52 bkl 52.42 bkl 50.38 Elsevier Biomechanical Elsevier Immunotoxicity Elsevier Bile duct repairing Elsevier Acellular porcine common bile duct Preparation and mechanical behavior of the acellular porcine common bile duct and its immunogenicity in vivo |
authorStr |
Li, Qing |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV009727671 |
format |
electronic Article |
dewey-ones |
690 - Buildings |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
690 VZ 52.43 bkl 52.52 bkl 52.42 bkl 50.38 bkl Preparation and mechanical behavior of the acellular porcine common bile duct and its immunogenicity in vivo Biomechanical Elsevier Immunotoxicity Elsevier Bile duct repairing Elsevier Acellular porcine common bile duct Elsevier |
topic |
ddc 690 bkl 52.43 bkl 52.52 bkl 52.42 bkl 50.38 Elsevier Biomechanical Elsevier Immunotoxicity Elsevier Bile duct repairing Elsevier Acellular porcine common bile duct |
topic_unstemmed |
ddc 690 bkl 52.43 bkl 52.52 bkl 52.42 bkl 50.38 Elsevier Biomechanical Elsevier Immunotoxicity Elsevier Bile duct repairing Elsevier Acellular porcine common bile duct |
topic_browse |
ddc 690 bkl 52.43 bkl 52.52 bkl 52.42 bkl 50.38 Elsevier Biomechanical Elsevier Immunotoxicity Elsevier Bile duct repairing Elsevier Acellular porcine common bile duct |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
p w pw c l cl f l fl h z hz y g yg g z gz |
hierarchy_parent_title |
A volume-shrinkage-based method for quantifying the inward solidification heat transfer of a phase change material filled in spherical capsules |
hierarchy_parent_id |
ELV009727671 |
dewey-tens |
690 - Building & construction |
hierarchy_top_title |
A volume-shrinkage-based method for quantifying the inward solidification heat transfer of a phase change material filled in spherical capsules |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV009727671 |
title |
Preparation and mechanical behavior of the acellular porcine common bile duct and its immunogenicity in vivo |
ctrlnum |
(DE-627)ELV059384751 (ELSEVIER)S1751-6161(22)00399-X |
title_full |
Preparation and mechanical behavior of the acellular porcine common bile duct and its immunogenicity in vivo |
author_sort |
Li, Qing |
journal |
A volume-shrinkage-based method for quantifying the inward solidification heat transfer of a phase change material filled in spherical capsules |
journalStr |
A volume-shrinkage-based method for quantifying the inward solidification heat transfer of a phase change material filled in spherical capsules |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
zzz |
container_start_page |
0 |
author_browse |
Li, Qing |
container_volume |
136 |
class |
690 VZ 52.43 bkl 52.52 bkl 52.42 bkl 50.38 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Li, Qing |
doi_str_mv |
10.1016/j.jmbbm.2022.105494 |
dewey-full |
690 |
title_sort |
preparation and mechanical behavior of the acellular porcine common bile duct and its immunogenicity in vivo |
title_auth |
Preparation and mechanical behavior of the acellular porcine common bile duct and its immunogenicity in vivo |
abstract |
The current clinical treatments for complications caused by hepatobiliary surgery still have some inevitable weaknesses. This study aimed to prepare the acellular porcine common bile duct (APCBD) for repairing biliary defects and damage. The porcine common bile duct was decellularized by the freeze-thaw method combined with nuclease treatment, and the efficacy of acellularization was confirmed by the DNA quantification and histological structure. The results showed that the residual DNA content was reduced from 854.67 ± 9.71 ng/mg to 5.43 ± 0.85 ng/mg, and the natural structure and shape of the bile duct were well preserved. The biomechanical properties such as the tensile strength, elastic modulus, and elongation-at-break of the APCBD in the transverse and longitudinal direction indicated that the APCBD meets the requirements of the biomechanical strength in replacement. In addition, the results of the immunotoxicity test showed there was no significant difference in the body weights, organ coefficient, hematology, and immune histology between the experimental groups (three subgroups) and the negative control group, which demonstrated the prepared APCBD had no obvious toxicity to the immune system in vivo and might be a suitable biomaterial for the bile duct repairing. |
abstractGer |
The current clinical treatments for complications caused by hepatobiliary surgery still have some inevitable weaknesses. This study aimed to prepare the acellular porcine common bile duct (APCBD) for repairing biliary defects and damage. The porcine common bile duct was decellularized by the freeze-thaw method combined with nuclease treatment, and the efficacy of acellularization was confirmed by the DNA quantification and histological structure. The results showed that the residual DNA content was reduced from 854.67 ± 9.71 ng/mg to 5.43 ± 0.85 ng/mg, and the natural structure and shape of the bile duct were well preserved. The biomechanical properties such as the tensile strength, elastic modulus, and elongation-at-break of the APCBD in the transverse and longitudinal direction indicated that the APCBD meets the requirements of the biomechanical strength in replacement. In addition, the results of the immunotoxicity test showed there was no significant difference in the body weights, organ coefficient, hematology, and immune histology between the experimental groups (three subgroups) and the negative control group, which demonstrated the prepared APCBD had no obvious toxicity to the immune system in vivo and might be a suitable biomaterial for the bile duct repairing. |
abstract_unstemmed |
The current clinical treatments for complications caused by hepatobiliary surgery still have some inevitable weaknesses. This study aimed to prepare the acellular porcine common bile duct (APCBD) for repairing biliary defects and damage. The porcine common bile duct was decellularized by the freeze-thaw method combined with nuclease treatment, and the efficacy of acellularization was confirmed by the DNA quantification and histological structure. The results showed that the residual DNA content was reduced from 854.67 ± 9.71 ng/mg to 5.43 ± 0.85 ng/mg, and the natural structure and shape of the bile duct were well preserved. The biomechanical properties such as the tensile strength, elastic modulus, and elongation-at-break of the APCBD in the transverse and longitudinal direction indicated that the APCBD meets the requirements of the biomechanical strength in replacement. In addition, the results of the immunotoxicity test showed there was no significant difference in the body weights, organ coefficient, hematology, and immune histology between the experimental groups (three subgroups) and the negative control group, which demonstrated the prepared APCBD had no obvious toxicity to the immune system in vivo and might be a suitable biomaterial for the bile duct repairing. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U |
title_short |
Preparation and mechanical behavior of the acellular porcine common bile duct and its immunogenicity in vivo |
url |
https://doi.org/10.1016/j.jmbbm.2022.105494 |
remote_bool |
true |
author2 |
Wang, Peng Liu, Chongzhong Liu, Fengyue Zhao, Haibin Guo, Yu Zhao, Guoqun |
author2Str |
Wang, Peng Liu, Chongzhong Liu, Fengyue Zhao, Haibin Guo, Yu Zhao, Guoqun |
ppnlink |
ELV009727671 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth |
doi_str |
10.1016/j.jmbbm.2022.105494 |
up_date |
2024-07-06T21:50:15.101Z |
_version_ |
1803868034934243328 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV059384751</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626052800.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">221219s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jmbbm.2022.105494</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001952.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV059384751</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1751-6161(22)00399-X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.43</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.52</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.42</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Qing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Preparation and mechanical behavior of the acellular porcine common bile duct and its immunogenicity in vivo</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The current clinical treatments for complications caused by hepatobiliary surgery still have some inevitable weaknesses. This study aimed to prepare the acellular porcine common bile duct (APCBD) for repairing biliary defects and damage. The porcine common bile duct was decellularized by the freeze-thaw method combined with nuclease treatment, and the efficacy of acellularization was confirmed by the DNA quantification and histological structure. The results showed that the residual DNA content was reduced from 854.67 ± 9.71 ng/mg to 5.43 ± 0.85 ng/mg, and the natural structure and shape of the bile duct were well preserved. The biomechanical properties such as the tensile strength, elastic modulus, and elongation-at-break of the APCBD in the transverse and longitudinal direction indicated that the APCBD meets the requirements of the biomechanical strength in replacement. In addition, the results of the immunotoxicity test showed there was no significant difference in the body weights, organ coefficient, hematology, and immune histology between the experimental groups (three subgroups) and the negative control group, which demonstrated the prepared APCBD had no obvious toxicity to the immune system in vivo and might be a suitable biomaterial for the bile duct repairing.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The current clinical treatments for complications caused by hepatobiliary surgery still have some inevitable weaknesses. This study aimed to prepare the acellular porcine common bile duct (APCBD) for repairing biliary defects and damage. The porcine common bile duct was decellularized by the freeze-thaw method combined with nuclease treatment, and the efficacy of acellularization was confirmed by the DNA quantification and histological structure. The results showed that the residual DNA content was reduced from 854.67 ± 9.71 ng/mg to 5.43 ± 0.85 ng/mg, and the natural structure and shape of the bile duct were well preserved. The biomechanical properties such as the tensile strength, elastic modulus, and elongation-at-break of the APCBD in the transverse and longitudinal direction indicated that the APCBD meets the requirements of the biomechanical strength in replacement. In addition, the results of the immunotoxicity test showed there was no significant difference in the body weights, organ coefficient, hematology, and immune histology between the experimental groups (three subgroups) and the negative control group, which demonstrated the prepared APCBD had no obvious toxicity to the immune system in vivo and might be a suitable biomaterial for the bile duct repairing.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Biomechanical</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Immunotoxicity</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Bile duct repairing</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Acellular porcine common bile duct</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Peng</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Chongzhong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Fengyue</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Haibin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guo, Yu</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Guoqun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Liu, Min-Jie ELSEVIER</subfield><subfield code="t">A volume-shrinkage-based method for quantifying the inward solidification heat transfer of a phase change material filled in spherical capsules</subfield><subfield code="d">2016</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV009727671</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:136</subfield><subfield code="g">year:2022</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jmbbm.2022.105494</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.43</subfield><subfield code="j">Kältetechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.52</subfield><subfield code="j">Thermische Energieerzeugung</subfield><subfield code="j">Wärmetechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.42</subfield><subfield code="j">Heizungstechnik</subfield><subfield code="j">Lüftungstechnik</subfield><subfield code="j">Klimatechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.38</subfield><subfield code="j">Technische Thermodynamik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">136</subfield><subfield code="j">2022</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
score |
7.4013624 |