Reproductive damage and compensation of wild earthworm Metaphire californica from contaminated fields with long-term heavy metal exposure
Reproduction is a significant biological process for organisms responding to environmental stresses, however, little is known about the reproductive strategies of invertebrates under long-term exposure to contaminations. In this study, earthworm Metaphire californica (Kinberg, 1867) from contaminate...
Ausführliche Beschreibung
Autor*in: |
Huang, Caide [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023transfer abstract |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: MPI vs Fortran coarrays beyond 100k cores: 3D cellular automata - Shterenlikht, Anton ELSEVIER, 2019, chemistry, biology and toxicology as related to environmental problems, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:311 ; year:2023 ; pages:0 |
Links: |
---|
DOI / URN: |
10.1016/j.chemosphere.2022.137027 |
---|
Katalog-ID: |
ELV059517158 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV059517158 | ||
003 | DE-627 | ||
005 | 20230626053051.0 | ||
007 | cr uuu---uuuuu | ||
008 | 221219s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.chemosphere.2022.137027 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001982.pica |
035 | |a (DE-627)ELV059517158 | ||
035 | |a (ELSEVIER)S0045-6535(22)03520-2 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |a 620 |q VZ |
084 | |a 54.25 |2 bkl | ||
100 | 1 | |a Huang, Caide |e verfasserin |4 aut | |
245 | 1 | 0 | |a Reproductive damage and compensation of wild earthworm Metaphire californica from contaminated fields with long-term heavy metal exposure |
264 | 1 | |c 2023transfer abstract | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Reproduction is a significant biological process for organisms responding to environmental stresses, however, little is known about the reproductive strategies of invertebrates under long-term exposure to contaminations. In this study, earthworm Metaphire californica (Kinberg, 1867) from contaminated fields with an increased metal gradient were collected to investigate their reproductive responses. The results showed heavy metals (Cd, Cu, Zn, and Pb) induced histological damage to earthworms’ seminal vesicles, including tissue disorders and cavities, and decreases in mature spermatozoa. Sperm morphology analysis indicated deformity rates were up to13.2% (e.g. head swollen or missing) for worms from the most contaminated site, which coincided with DNA damages. Furthermore, the computer-assisted sperm analysis (CASA) system was employed for the evaluation of sperm kinetic traits. Results suggested earthworms exposed to higher contamination showed a lower sperm viability rate but faster sperm velocity after re-exposure with Cd solution (like the curvilinear velocity and straight-line velocity paraments) compared with those from relatively clean sites. The activities of lactate dehydrogenase and sorbitol dehydrogenase showed the highest 32.5% and 12.5% up-regulation respectively with the increased metal gradient. In conclusion, this study elucidated the earthworm reproductive toxicity, underlying reproductive compensation, metal stress-induced damages, and adaptive responses caused by heavy metal exposure, while also providing the possibility of sperm trait analysis (CASA) for related earthworm toxicological studies. | ||
520 | |a Reproduction is a significant biological process for organisms responding to environmental stresses, however, little is known about the reproductive strategies of invertebrates under long-term exposure to contaminations. In this study, earthworm Metaphire californica (Kinberg, 1867) from contaminated fields with an increased metal gradient were collected to investigate their reproductive responses. The results showed heavy metals (Cd, Cu, Zn, and Pb) induced histological damage to earthworms’ seminal vesicles, including tissue disorders and cavities, and decreases in mature spermatozoa. Sperm morphology analysis indicated deformity rates were up to13.2% (e.g. head swollen or missing) for worms from the most contaminated site, which coincided with DNA damages. Furthermore, the computer-assisted sperm analysis (CASA) system was employed for the evaluation of sperm kinetic traits. Results suggested earthworms exposed to higher contamination showed a lower sperm viability rate but faster sperm velocity after re-exposure with Cd solution (like the curvilinear velocity and straight-line velocity paraments) compared with those from relatively clean sites. The activities of lactate dehydrogenase and sorbitol dehydrogenase showed the highest 32.5% and 12.5% up-regulation respectively with the increased metal gradient. In conclusion, this study elucidated the earthworm reproductive toxicity, underlying reproductive compensation, metal stress-induced damages, and adaptive responses caused by heavy metal exposure, while also providing the possibility of sperm trait analysis (CASA) for related earthworm toxicological studies. | ||
650 | 7 | |a Seminal vesicles |2 Elsevier | |
650 | 7 | |a Sperm traits |2 Elsevier | |
650 | 7 | |a Morphology |2 Elsevier | |
650 | 7 | |a Earthworms |2 Elsevier | |
650 | 7 | |a Reproductive metabolism |2 Elsevier | |
700 | 1 | |a Shen, Zhiqiang |4 oth | |
700 | 1 | |a Li, Liang |4 oth | |
700 | 1 | |a Yue, Shizhong |4 oth | |
700 | 1 | |a Jia, Li |4 oth | |
700 | 1 | |a Wang, Kun |4 oth | |
700 | 1 | |a Zhou, Wenhao |4 oth | |
700 | 1 | |a Qiao, Yuhui |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Shterenlikht, Anton ELSEVIER |t MPI vs Fortran coarrays beyond 100k cores: 3D cellular automata |d 2019 |d chemistry, biology and toxicology as related to environmental problems |g Amsterdam [u.a.] |w (DE-627)ELV002112701 |
773 | 1 | 8 | |g volume:311 |g year:2023 |g pages:0 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.chemosphere.2022.137027 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
936 | b | k | |a 54.25 |j Parallele Datenverarbeitung |q VZ |
951 | |a AR | ||
952 | |d 311 |j 2023 |h 0 |
author_variant |
c h ch |
---|---|
matchkey_str |
huangcaideshenzhiqiangliliangyueshizhong:2023----:erdcieaaencmestoowlerhomeahrclfriarmotmntdils |
hierarchy_sort_str |
2023transfer abstract |
bklnumber |
54.25 |
publishDate |
2023 |
allfields |
10.1016/j.chemosphere.2022.137027 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001982.pica (DE-627)ELV059517158 (ELSEVIER)S0045-6535(22)03520-2 DE-627 ger DE-627 rakwb eng 004 620 VZ 54.25 bkl Huang, Caide verfasserin aut Reproductive damage and compensation of wild earthworm Metaphire californica from contaminated fields with long-term heavy metal exposure 2023transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Reproduction is a significant biological process for organisms responding to environmental stresses, however, little is known about the reproductive strategies of invertebrates under long-term exposure to contaminations. In this study, earthworm Metaphire californica (Kinberg, 1867) from contaminated fields with an increased metal gradient were collected to investigate their reproductive responses. The results showed heavy metals (Cd, Cu, Zn, and Pb) induced histological damage to earthworms’ seminal vesicles, including tissue disorders and cavities, and decreases in mature spermatozoa. Sperm morphology analysis indicated deformity rates were up to13.2% (e.g. head swollen or missing) for worms from the most contaminated site, which coincided with DNA damages. Furthermore, the computer-assisted sperm analysis (CASA) system was employed for the evaluation of sperm kinetic traits. Results suggested earthworms exposed to higher contamination showed a lower sperm viability rate but faster sperm velocity after re-exposure with Cd solution (like the curvilinear velocity and straight-line velocity paraments) compared with those from relatively clean sites. The activities of lactate dehydrogenase and sorbitol dehydrogenase showed the highest 32.5% and 12.5% up-regulation respectively with the increased metal gradient. In conclusion, this study elucidated the earthworm reproductive toxicity, underlying reproductive compensation, metal stress-induced damages, and adaptive responses caused by heavy metal exposure, while also providing the possibility of sperm trait analysis (CASA) for related earthworm toxicological studies. Reproduction is a significant biological process for organisms responding to environmental stresses, however, little is known about the reproductive strategies of invertebrates under long-term exposure to contaminations. In this study, earthworm Metaphire californica (Kinberg, 1867) from contaminated fields with an increased metal gradient were collected to investigate their reproductive responses. The results showed heavy metals (Cd, Cu, Zn, and Pb) induced histological damage to earthworms’ seminal vesicles, including tissue disorders and cavities, and decreases in mature spermatozoa. Sperm morphology analysis indicated deformity rates were up to13.2% (e.g. head swollen or missing) for worms from the most contaminated site, which coincided with DNA damages. Furthermore, the computer-assisted sperm analysis (CASA) system was employed for the evaluation of sperm kinetic traits. Results suggested earthworms exposed to higher contamination showed a lower sperm viability rate but faster sperm velocity after re-exposure with Cd solution (like the curvilinear velocity and straight-line velocity paraments) compared with those from relatively clean sites. The activities of lactate dehydrogenase and sorbitol dehydrogenase showed the highest 32.5% and 12.5% up-regulation respectively with the increased metal gradient. In conclusion, this study elucidated the earthworm reproductive toxicity, underlying reproductive compensation, metal stress-induced damages, and adaptive responses caused by heavy metal exposure, while also providing the possibility of sperm trait analysis (CASA) for related earthworm toxicological studies. Seminal vesicles Elsevier Sperm traits Elsevier Morphology Elsevier Earthworms Elsevier Reproductive metabolism Elsevier Shen, Zhiqiang oth Li, Liang oth Yue, Shizhong oth Jia, Li oth Wang, Kun oth Zhou, Wenhao oth Qiao, Yuhui oth Enthalten in Elsevier Science Shterenlikht, Anton ELSEVIER MPI vs Fortran coarrays beyond 100k cores: 3D cellular automata 2019 chemistry, biology and toxicology as related to environmental problems Amsterdam [u.a.] (DE-627)ELV002112701 volume:311 year:2023 pages:0 https://doi.org/10.1016/j.chemosphere.2022.137027 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 54.25 Parallele Datenverarbeitung VZ AR 311 2023 0 |
spelling |
10.1016/j.chemosphere.2022.137027 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001982.pica (DE-627)ELV059517158 (ELSEVIER)S0045-6535(22)03520-2 DE-627 ger DE-627 rakwb eng 004 620 VZ 54.25 bkl Huang, Caide verfasserin aut Reproductive damage and compensation of wild earthworm Metaphire californica from contaminated fields with long-term heavy metal exposure 2023transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Reproduction is a significant biological process for organisms responding to environmental stresses, however, little is known about the reproductive strategies of invertebrates under long-term exposure to contaminations. In this study, earthworm Metaphire californica (Kinberg, 1867) from contaminated fields with an increased metal gradient were collected to investigate their reproductive responses. The results showed heavy metals (Cd, Cu, Zn, and Pb) induced histological damage to earthworms’ seminal vesicles, including tissue disorders and cavities, and decreases in mature spermatozoa. Sperm morphology analysis indicated deformity rates were up to13.2% (e.g. head swollen or missing) for worms from the most contaminated site, which coincided with DNA damages. Furthermore, the computer-assisted sperm analysis (CASA) system was employed for the evaluation of sperm kinetic traits. Results suggested earthworms exposed to higher contamination showed a lower sperm viability rate but faster sperm velocity after re-exposure with Cd solution (like the curvilinear velocity and straight-line velocity paraments) compared with those from relatively clean sites. The activities of lactate dehydrogenase and sorbitol dehydrogenase showed the highest 32.5% and 12.5% up-regulation respectively with the increased metal gradient. In conclusion, this study elucidated the earthworm reproductive toxicity, underlying reproductive compensation, metal stress-induced damages, and adaptive responses caused by heavy metal exposure, while also providing the possibility of sperm trait analysis (CASA) for related earthworm toxicological studies. Reproduction is a significant biological process for organisms responding to environmental stresses, however, little is known about the reproductive strategies of invertebrates under long-term exposure to contaminations. In this study, earthworm Metaphire californica (Kinberg, 1867) from contaminated fields with an increased metal gradient were collected to investigate their reproductive responses. The results showed heavy metals (Cd, Cu, Zn, and Pb) induced histological damage to earthworms’ seminal vesicles, including tissue disorders and cavities, and decreases in mature spermatozoa. Sperm morphology analysis indicated deformity rates were up to13.2% (e.g. head swollen or missing) for worms from the most contaminated site, which coincided with DNA damages. Furthermore, the computer-assisted sperm analysis (CASA) system was employed for the evaluation of sperm kinetic traits. Results suggested earthworms exposed to higher contamination showed a lower sperm viability rate but faster sperm velocity after re-exposure with Cd solution (like the curvilinear velocity and straight-line velocity paraments) compared with those from relatively clean sites. The activities of lactate dehydrogenase and sorbitol dehydrogenase showed the highest 32.5% and 12.5% up-regulation respectively with the increased metal gradient. In conclusion, this study elucidated the earthworm reproductive toxicity, underlying reproductive compensation, metal stress-induced damages, and adaptive responses caused by heavy metal exposure, while also providing the possibility of sperm trait analysis (CASA) for related earthworm toxicological studies. Seminal vesicles Elsevier Sperm traits Elsevier Morphology Elsevier Earthworms Elsevier Reproductive metabolism Elsevier Shen, Zhiqiang oth Li, Liang oth Yue, Shizhong oth Jia, Li oth Wang, Kun oth Zhou, Wenhao oth Qiao, Yuhui oth Enthalten in Elsevier Science Shterenlikht, Anton ELSEVIER MPI vs Fortran coarrays beyond 100k cores: 3D cellular automata 2019 chemistry, biology and toxicology as related to environmental problems Amsterdam [u.a.] (DE-627)ELV002112701 volume:311 year:2023 pages:0 https://doi.org/10.1016/j.chemosphere.2022.137027 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 54.25 Parallele Datenverarbeitung VZ AR 311 2023 0 |
allfields_unstemmed |
10.1016/j.chemosphere.2022.137027 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001982.pica (DE-627)ELV059517158 (ELSEVIER)S0045-6535(22)03520-2 DE-627 ger DE-627 rakwb eng 004 620 VZ 54.25 bkl Huang, Caide verfasserin aut Reproductive damage and compensation of wild earthworm Metaphire californica from contaminated fields with long-term heavy metal exposure 2023transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Reproduction is a significant biological process for organisms responding to environmental stresses, however, little is known about the reproductive strategies of invertebrates under long-term exposure to contaminations. In this study, earthworm Metaphire californica (Kinberg, 1867) from contaminated fields with an increased metal gradient were collected to investigate their reproductive responses. The results showed heavy metals (Cd, Cu, Zn, and Pb) induced histological damage to earthworms’ seminal vesicles, including tissue disorders and cavities, and decreases in mature spermatozoa. Sperm morphology analysis indicated deformity rates were up to13.2% (e.g. head swollen or missing) for worms from the most contaminated site, which coincided with DNA damages. Furthermore, the computer-assisted sperm analysis (CASA) system was employed for the evaluation of sperm kinetic traits. Results suggested earthworms exposed to higher contamination showed a lower sperm viability rate but faster sperm velocity after re-exposure with Cd solution (like the curvilinear velocity and straight-line velocity paraments) compared with those from relatively clean sites. The activities of lactate dehydrogenase and sorbitol dehydrogenase showed the highest 32.5% and 12.5% up-regulation respectively with the increased metal gradient. In conclusion, this study elucidated the earthworm reproductive toxicity, underlying reproductive compensation, metal stress-induced damages, and adaptive responses caused by heavy metal exposure, while also providing the possibility of sperm trait analysis (CASA) for related earthworm toxicological studies. Reproduction is a significant biological process for organisms responding to environmental stresses, however, little is known about the reproductive strategies of invertebrates under long-term exposure to contaminations. In this study, earthworm Metaphire californica (Kinberg, 1867) from contaminated fields with an increased metal gradient were collected to investigate their reproductive responses. The results showed heavy metals (Cd, Cu, Zn, and Pb) induced histological damage to earthworms’ seminal vesicles, including tissue disorders and cavities, and decreases in mature spermatozoa. Sperm morphology analysis indicated deformity rates were up to13.2% (e.g. head swollen or missing) for worms from the most contaminated site, which coincided with DNA damages. Furthermore, the computer-assisted sperm analysis (CASA) system was employed for the evaluation of sperm kinetic traits. Results suggested earthworms exposed to higher contamination showed a lower sperm viability rate but faster sperm velocity after re-exposure with Cd solution (like the curvilinear velocity and straight-line velocity paraments) compared with those from relatively clean sites. The activities of lactate dehydrogenase and sorbitol dehydrogenase showed the highest 32.5% and 12.5% up-regulation respectively with the increased metal gradient. In conclusion, this study elucidated the earthworm reproductive toxicity, underlying reproductive compensation, metal stress-induced damages, and adaptive responses caused by heavy metal exposure, while also providing the possibility of sperm trait analysis (CASA) for related earthworm toxicological studies. Seminal vesicles Elsevier Sperm traits Elsevier Morphology Elsevier Earthworms Elsevier Reproductive metabolism Elsevier Shen, Zhiqiang oth Li, Liang oth Yue, Shizhong oth Jia, Li oth Wang, Kun oth Zhou, Wenhao oth Qiao, Yuhui oth Enthalten in Elsevier Science Shterenlikht, Anton ELSEVIER MPI vs Fortran coarrays beyond 100k cores: 3D cellular automata 2019 chemistry, biology and toxicology as related to environmental problems Amsterdam [u.a.] (DE-627)ELV002112701 volume:311 year:2023 pages:0 https://doi.org/10.1016/j.chemosphere.2022.137027 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 54.25 Parallele Datenverarbeitung VZ AR 311 2023 0 |
allfieldsGer |
10.1016/j.chemosphere.2022.137027 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001982.pica (DE-627)ELV059517158 (ELSEVIER)S0045-6535(22)03520-2 DE-627 ger DE-627 rakwb eng 004 620 VZ 54.25 bkl Huang, Caide verfasserin aut Reproductive damage and compensation of wild earthworm Metaphire californica from contaminated fields with long-term heavy metal exposure 2023transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Reproduction is a significant biological process for organisms responding to environmental stresses, however, little is known about the reproductive strategies of invertebrates under long-term exposure to contaminations. In this study, earthworm Metaphire californica (Kinberg, 1867) from contaminated fields with an increased metal gradient were collected to investigate their reproductive responses. The results showed heavy metals (Cd, Cu, Zn, and Pb) induced histological damage to earthworms’ seminal vesicles, including tissue disorders and cavities, and decreases in mature spermatozoa. Sperm morphology analysis indicated deformity rates were up to13.2% (e.g. head swollen or missing) for worms from the most contaminated site, which coincided with DNA damages. Furthermore, the computer-assisted sperm analysis (CASA) system was employed for the evaluation of sperm kinetic traits. Results suggested earthworms exposed to higher contamination showed a lower sperm viability rate but faster sperm velocity after re-exposure with Cd solution (like the curvilinear velocity and straight-line velocity paraments) compared with those from relatively clean sites. The activities of lactate dehydrogenase and sorbitol dehydrogenase showed the highest 32.5% and 12.5% up-regulation respectively with the increased metal gradient. In conclusion, this study elucidated the earthworm reproductive toxicity, underlying reproductive compensation, metal stress-induced damages, and adaptive responses caused by heavy metal exposure, while also providing the possibility of sperm trait analysis (CASA) for related earthworm toxicological studies. Reproduction is a significant biological process for organisms responding to environmental stresses, however, little is known about the reproductive strategies of invertebrates under long-term exposure to contaminations. In this study, earthworm Metaphire californica (Kinberg, 1867) from contaminated fields with an increased metal gradient were collected to investigate their reproductive responses. The results showed heavy metals (Cd, Cu, Zn, and Pb) induced histological damage to earthworms’ seminal vesicles, including tissue disorders and cavities, and decreases in mature spermatozoa. Sperm morphology analysis indicated deformity rates were up to13.2% (e.g. head swollen or missing) for worms from the most contaminated site, which coincided with DNA damages. Furthermore, the computer-assisted sperm analysis (CASA) system was employed for the evaluation of sperm kinetic traits. Results suggested earthworms exposed to higher contamination showed a lower sperm viability rate but faster sperm velocity after re-exposure with Cd solution (like the curvilinear velocity and straight-line velocity paraments) compared with those from relatively clean sites. The activities of lactate dehydrogenase and sorbitol dehydrogenase showed the highest 32.5% and 12.5% up-regulation respectively with the increased metal gradient. In conclusion, this study elucidated the earthworm reproductive toxicity, underlying reproductive compensation, metal stress-induced damages, and adaptive responses caused by heavy metal exposure, while also providing the possibility of sperm trait analysis (CASA) for related earthworm toxicological studies. Seminal vesicles Elsevier Sperm traits Elsevier Morphology Elsevier Earthworms Elsevier Reproductive metabolism Elsevier Shen, Zhiqiang oth Li, Liang oth Yue, Shizhong oth Jia, Li oth Wang, Kun oth Zhou, Wenhao oth Qiao, Yuhui oth Enthalten in Elsevier Science Shterenlikht, Anton ELSEVIER MPI vs Fortran coarrays beyond 100k cores: 3D cellular automata 2019 chemistry, biology and toxicology as related to environmental problems Amsterdam [u.a.] (DE-627)ELV002112701 volume:311 year:2023 pages:0 https://doi.org/10.1016/j.chemosphere.2022.137027 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 54.25 Parallele Datenverarbeitung VZ AR 311 2023 0 |
allfieldsSound |
10.1016/j.chemosphere.2022.137027 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001982.pica (DE-627)ELV059517158 (ELSEVIER)S0045-6535(22)03520-2 DE-627 ger DE-627 rakwb eng 004 620 VZ 54.25 bkl Huang, Caide verfasserin aut Reproductive damage and compensation of wild earthworm Metaphire californica from contaminated fields with long-term heavy metal exposure 2023transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Reproduction is a significant biological process for organisms responding to environmental stresses, however, little is known about the reproductive strategies of invertebrates under long-term exposure to contaminations. In this study, earthworm Metaphire californica (Kinberg, 1867) from contaminated fields with an increased metal gradient were collected to investigate their reproductive responses. The results showed heavy metals (Cd, Cu, Zn, and Pb) induced histological damage to earthworms’ seminal vesicles, including tissue disorders and cavities, and decreases in mature spermatozoa. Sperm morphology analysis indicated deformity rates were up to13.2% (e.g. head swollen or missing) for worms from the most contaminated site, which coincided with DNA damages. Furthermore, the computer-assisted sperm analysis (CASA) system was employed for the evaluation of sperm kinetic traits. Results suggested earthworms exposed to higher contamination showed a lower sperm viability rate but faster sperm velocity after re-exposure with Cd solution (like the curvilinear velocity and straight-line velocity paraments) compared with those from relatively clean sites. The activities of lactate dehydrogenase and sorbitol dehydrogenase showed the highest 32.5% and 12.5% up-regulation respectively with the increased metal gradient. In conclusion, this study elucidated the earthworm reproductive toxicity, underlying reproductive compensation, metal stress-induced damages, and adaptive responses caused by heavy metal exposure, while also providing the possibility of sperm trait analysis (CASA) for related earthworm toxicological studies. Reproduction is a significant biological process for organisms responding to environmental stresses, however, little is known about the reproductive strategies of invertebrates under long-term exposure to contaminations. In this study, earthworm Metaphire californica (Kinberg, 1867) from contaminated fields with an increased metal gradient were collected to investigate their reproductive responses. The results showed heavy metals (Cd, Cu, Zn, and Pb) induced histological damage to earthworms’ seminal vesicles, including tissue disorders and cavities, and decreases in mature spermatozoa. Sperm morphology analysis indicated deformity rates were up to13.2% (e.g. head swollen or missing) for worms from the most contaminated site, which coincided with DNA damages. Furthermore, the computer-assisted sperm analysis (CASA) system was employed for the evaluation of sperm kinetic traits. Results suggested earthworms exposed to higher contamination showed a lower sperm viability rate but faster sperm velocity after re-exposure with Cd solution (like the curvilinear velocity and straight-line velocity paraments) compared with those from relatively clean sites. The activities of lactate dehydrogenase and sorbitol dehydrogenase showed the highest 32.5% and 12.5% up-regulation respectively with the increased metal gradient. In conclusion, this study elucidated the earthworm reproductive toxicity, underlying reproductive compensation, metal stress-induced damages, and adaptive responses caused by heavy metal exposure, while also providing the possibility of sperm trait analysis (CASA) for related earthworm toxicological studies. Seminal vesicles Elsevier Sperm traits Elsevier Morphology Elsevier Earthworms Elsevier Reproductive metabolism Elsevier Shen, Zhiqiang oth Li, Liang oth Yue, Shizhong oth Jia, Li oth Wang, Kun oth Zhou, Wenhao oth Qiao, Yuhui oth Enthalten in Elsevier Science Shterenlikht, Anton ELSEVIER MPI vs Fortran coarrays beyond 100k cores: 3D cellular automata 2019 chemistry, biology and toxicology as related to environmental problems Amsterdam [u.a.] (DE-627)ELV002112701 volume:311 year:2023 pages:0 https://doi.org/10.1016/j.chemosphere.2022.137027 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 54.25 Parallele Datenverarbeitung VZ AR 311 2023 0 |
language |
English |
source |
Enthalten in MPI vs Fortran coarrays beyond 100k cores: 3D cellular automata Amsterdam [u.a.] volume:311 year:2023 pages:0 |
sourceStr |
Enthalten in MPI vs Fortran coarrays beyond 100k cores: 3D cellular automata Amsterdam [u.a.] volume:311 year:2023 pages:0 |
format_phy_str_mv |
Article |
bklname |
Parallele Datenverarbeitung |
institution |
findex.gbv.de |
topic_facet |
Seminal vesicles Sperm traits Morphology Earthworms Reproductive metabolism |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
MPI vs Fortran coarrays beyond 100k cores: 3D cellular automata |
authorswithroles_txt_mv |
Huang, Caide @@aut@@ Shen, Zhiqiang @@oth@@ Li, Liang @@oth@@ Yue, Shizhong @@oth@@ Jia, Li @@oth@@ Wang, Kun @@oth@@ Zhou, Wenhao @@oth@@ Qiao, Yuhui @@oth@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
ELV002112701 |
dewey-sort |
14 |
id |
ELV059517158 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV059517158</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626053051.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">221219s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.chemosphere.2022.137027</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001982.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV059517158</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0045-6535(22)03520-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.25</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Huang, Caide</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Reproductive damage and compensation of wild earthworm Metaphire californica from contaminated fields with long-term heavy metal exposure</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Reproduction is a significant biological process for organisms responding to environmental stresses, however, little is known about the reproductive strategies of invertebrates under long-term exposure to contaminations. In this study, earthworm Metaphire californica (Kinberg, 1867) from contaminated fields with an increased metal gradient were collected to investigate their reproductive responses. The results showed heavy metals (Cd, Cu, Zn, and Pb) induced histological damage to earthworms’ seminal vesicles, including tissue disorders and cavities, and decreases in mature spermatozoa. Sperm morphology analysis indicated deformity rates were up to13.2% (e.g. head swollen or missing) for worms from the most contaminated site, which coincided with DNA damages. Furthermore, the computer-assisted sperm analysis (CASA) system was employed for the evaluation of sperm kinetic traits. Results suggested earthworms exposed to higher contamination showed a lower sperm viability rate but faster sperm velocity after re-exposure with Cd solution (like the curvilinear velocity and straight-line velocity paraments) compared with those from relatively clean sites. The activities of lactate dehydrogenase and sorbitol dehydrogenase showed the highest 32.5% and 12.5% up-regulation respectively with the increased metal gradient. In conclusion, this study elucidated the earthworm reproductive toxicity, underlying reproductive compensation, metal stress-induced damages, and adaptive responses caused by heavy metal exposure, while also providing the possibility of sperm trait analysis (CASA) for related earthworm toxicological studies.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Reproduction is a significant biological process for organisms responding to environmental stresses, however, little is known about the reproductive strategies of invertebrates under long-term exposure to contaminations. In this study, earthworm Metaphire californica (Kinberg, 1867) from contaminated fields with an increased metal gradient were collected to investigate their reproductive responses. The results showed heavy metals (Cd, Cu, Zn, and Pb) induced histological damage to earthworms’ seminal vesicles, including tissue disorders and cavities, and decreases in mature spermatozoa. Sperm morphology analysis indicated deformity rates were up to13.2% (e.g. head swollen or missing) for worms from the most contaminated site, which coincided with DNA damages. Furthermore, the computer-assisted sperm analysis (CASA) system was employed for the evaluation of sperm kinetic traits. Results suggested earthworms exposed to higher contamination showed a lower sperm viability rate but faster sperm velocity after re-exposure with Cd solution (like the curvilinear velocity and straight-line velocity paraments) compared with those from relatively clean sites. The activities of lactate dehydrogenase and sorbitol dehydrogenase showed the highest 32.5% and 12.5% up-regulation respectively with the increased metal gradient. In conclusion, this study elucidated the earthworm reproductive toxicity, underlying reproductive compensation, metal stress-induced damages, and adaptive responses caused by heavy metal exposure, while also providing the possibility of sperm trait analysis (CASA) for related earthworm toxicological studies.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Seminal vesicles</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Sperm traits</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Morphology</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Earthworms</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Reproductive metabolism</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shen, Zhiqiang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Liang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yue, Shizhong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jia, Li</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Kun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhou, Wenhao</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qiao, Yuhui</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Shterenlikht, Anton ELSEVIER</subfield><subfield code="t">MPI vs Fortran coarrays beyond 100k cores: 3D cellular automata</subfield><subfield code="d">2019</subfield><subfield code="d">chemistry, biology and toxicology as related to environmental problems</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV002112701</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:311</subfield><subfield code="g">year:2023</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.chemosphere.2022.137027</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.25</subfield><subfield code="j">Parallele Datenverarbeitung</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">311</subfield><subfield code="j">2023</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
author |
Huang, Caide |
spellingShingle |
Huang, Caide ddc 004 bkl 54.25 Elsevier Seminal vesicles Elsevier Sperm traits Elsevier Morphology Elsevier Earthworms Elsevier Reproductive metabolism Reproductive damage and compensation of wild earthworm Metaphire californica from contaminated fields with long-term heavy metal exposure |
authorStr |
Huang, Caide |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV002112701 |
format |
electronic Article |
dewey-ones |
004 - Data processing & computer science 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
004 620 VZ 54.25 bkl Reproductive damage and compensation of wild earthworm Metaphire californica from contaminated fields with long-term heavy metal exposure Seminal vesicles Elsevier Sperm traits Elsevier Morphology Elsevier Earthworms Elsevier Reproductive metabolism Elsevier |
topic |
ddc 004 bkl 54.25 Elsevier Seminal vesicles Elsevier Sperm traits Elsevier Morphology Elsevier Earthworms Elsevier Reproductive metabolism |
topic_unstemmed |
ddc 004 bkl 54.25 Elsevier Seminal vesicles Elsevier Sperm traits Elsevier Morphology Elsevier Earthworms Elsevier Reproductive metabolism |
topic_browse |
ddc 004 bkl 54.25 Elsevier Seminal vesicles Elsevier Sperm traits Elsevier Morphology Elsevier Earthworms Elsevier Reproductive metabolism |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
z s zs l l ll s y sy l j lj k w kw w z wz y q yq |
hierarchy_parent_title |
MPI vs Fortran coarrays beyond 100k cores: 3D cellular automata |
hierarchy_parent_id |
ELV002112701 |
dewey-tens |
000 - Computer science, knowledge & systems 620 - Engineering |
hierarchy_top_title |
MPI vs Fortran coarrays beyond 100k cores: 3D cellular automata |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV002112701 |
title |
Reproductive damage and compensation of wild earthworm Metaphire californica from contaminated fields with long-term heavy metal exposure |
ctrlnum |
(DE-627)ELV059517158 (ELSEVIER)S0045-6535(22)03520-2 |
title_full |
Reproductive damage and compensation of wild earthworm Metaphire californica from contaminated fields with long-term heavy metal exposure |
author_sort |
Huang, Caide |
journal |
MPI vs Fortran coarrays beyond 100k cores: 3D cellular automata |
journalStr |
MPI vs Fortran coarrays beyond 100k cores: 3D cellular automata |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works 600 - Technology |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
container_start_page |
0 |
author_browse |
Huang, Caide |
container_volume |
311 |
class |
004 620 VZ 54.25 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Huang, Caide |
doi_str_mv |
10.1016/j.chemosphere.2022.137027 |
dewey-full |
004 620 |
title_sort |
reproductive damage and compensation of wild earthworm metaphire californica from contaminated fields with long-term heavy metal exposure |
title_auth |
Reproductive damage and compensation of wild earthworm Metaphire californica from contaminated fields with long-term heavy metal exposure |
abstract |
Reproduction is a significant biological process for organisms responding to environmental stresses, however, little is known about the reproductive strategies of invertebrates under long-term exposure to contaminations. In this study, earthworm Metaphire californica (Kinberg, 1867) from contaminated fields with an increased metal gradient were collected to investigate their reproductive responses. The results showed heavy metals (Cd, Cu, Zn, and Pb) induced histological damage to earthworms’ seminal vesicles, including tissue disorders and cavities, and decreases in mature spermatozoa. Sperm morphology analysis indicated deformity rates were up to13.2% (e.g. head swollen or missing) for worms from the most contaminated site, which coincided with DNA damages. Furthermore, the computer-assisted sperm analysis (CASA) system was employed for the evaluation of sperm kinetic traits. Results suggested earthworms exposed to higher contamination showed a lower sperm viability rate but faster sperm velocity after re-exposure with Cd solution (like the curvilinear velocity and straight-line velocity paraments) compared with those from relatively clean sites. The activities of lactate dehydrogenase and sorbitol dehydrogenase showed the highest 32.5% and 12.5% up-regulation respectively with the increased metal gradient. In conclusion, this study elucidated the earthworm reproductive toxicity, underlying reproductive compensation, metal stress-induced damages, and adaptive responses caused by heavy metal exposure, while also providing the possibility of sperm trait analysis (CASA) for related earthworm toxicological studies. |
abstractGer |
Reproduction is a significant biological process for organisms responding to environmental stresses, however, little is known about the reproductive strategies of invertebrates under long-term exposure to contaminations. In this study, earthworm Metaphire californica (Kinberg, 1867) from contaminated fields with an increased metal gradient were collected to investigate their reproductive responses. The results showed heavy metals (Cd, Cu, Zn, and Pb) induced histological damage to earthworms’ seminal vesicles, including tissue disorders and cavities, and decreases in mature spermatozoa. Sperm morphology analysis indicated deformity rates were up to13.2% (e.g. head swollen or missing) for worms from the most contaminated site, which coincided with DNA damages. Furthermore, the computer-assisted sperm analysis (CASA) system was employed for the evaluation of sperm kinetic traits. Results suggested earthworms exposed to higher contamination showed a lower sperm viability rate but faster sperm velocity after re-exposure with Cd solution (like the curvilinear velocity and straight-line velocity paraments) compared with those from relatively clean sites. The activities of lactate dehydrogenase and sorbitol dehydrogenase showed the highest 32.5% and 12.5% up-regulation respectively with the increased metal gradient. In conclusion, this study elucidated the earthworm reproductive toxicity, underlying reproductive compensation, metal stress-induced damages, and adaptive responses caused by heavy metal exposure, while also providing the possibility of sperm trait analysis (CASA) for related earthworm toxicological studies. |
abstract_unstemmed |
Reproduction is a significant biological process for organisms responding to environmental stresses, however, little is known about the reproductive strategies of invertebrates under long-term exposure to contaminations. In this study, earthworm Metaphire californica (Kinberg, 1867) from contaminated fields with an increased metal gradient were collected to investigate their reproductive responses. The results showed heavy metals (Cd, Cu, Zn, and Pb) induced histological damage to earthworms’ seminal vesicles, including tissue disorders and cavities, and decreases in mature spermatozoa. Sperm morphology analysis indicated deformity rates were up to13.2% (e.g. head swollen or missing) for worms from the most contaminated site, which coincided with DNA damages. Furthermore, the computer-assisted sperm analysis (CASA) system was employed for the evaluation of sperm kinetic traits. Results suggested earthworms exposed to higher contamination showed a lower sperm viability rate but faster sperm velocity after re-exposure with Cd solution (like the curvilinear velocity and straight-line velocity paraments) compared with those from relatively clean sites. The activities of lactate dehydrogenase and sorbitol dehydrogenase showed the highest 32.5% and 12.5% up-regulation respectively with the increased metal gradient. In conclusion, this study elucidated the earthworm reproductive toxicity, underlying reproductive compensation, metal stress-induced damages, and adaptive responses caused by heavy metal exposure, while also providing the possibility of sperm trait analysis (CASA) for related earthworm toxicological studies. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U |
title_short |
Reproductive damage and compensation of wild earthworm Metaphire californica from contaminated fields with long-term heavy metal exposure |
url |
https://doi.org/10.1016/j.chemosphere.2022.137027 |
remote_bool |
true |
author2 |
Shen, Zhiqiang Li, Liang Yue, Shizhong Jia, Li Wang, Kun Zhou, Wenhao Qiao, Yuhui |
author2Str |
Shen, Zhiqiang Li, Liang Yue, Shizhong Jia, Li Wang, Kun Zhou, Wenhao Qiao, Yuhui |
ppnlink |
ELV002112701 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth oth |
doi_str |
10.1016/j.chemosphere.2022.137027 |
up_date |
2024-07-06T22:14:17.976Z |
_version_ |
1803869547897290752 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV059517158</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626053051.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">221219s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.chemosphere.2022.137027</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001982.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV059517158</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0045-6535(22)03520-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.25</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Huang, Caide</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Reproductive damage and compensation of wild earthworm Metaphire californica from contaminated fields with long-term heavy metal exposure</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Reproduction is a significant biological process for organisms responding to environmental stresses, however, little is known about the reproductive strategies of invertebrates under long-term exposure to contaminations. In this study, earthworm Metaphire californica (Kinberg, 1867) from contaminated fields with an increased metal gradient were collected to investigate their reproductive responses. The results showed heavy metals (Cd, Cu, Zn, and Pb) induced histological damage to earthworms’ seminal vesicles, including tissue disorders and cavities, and decreases in mature spermatozoa. Sperm morphology analysis indicated deformity rates were up to13.2% (e.g. head swollen or missing) for worms from the most contaminated site, which coincided with DNA damages. Furthermore, the computer-assisted sperm analysis (CASA) system was employed for the evaluation of sperm kinetic traits. Results suggested earthworms exposed to higher contamination showed a lower sperm viability rate but faster sperm velocity after re-exposure with Cd solution (like the curvilinear velocity and straight-line velocity paraments) compared with those from relatively clean sites. The activities of lactate dehydrogenase and sorbitol dehydrogenase showed the highest 32.5% and 12.5% up-regulation respectively with the increased metal gradient. In conclusion, this study elucidated the earthworm reproductive toxicity, underlying reproductive compensation, metal stress-induced damages, and adaptive responses caused by heavy metal exposure, while also providing the possibility of sperm trait analysis (CASA) for related earthworm toxicological studies.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Reproduction is a significant biological process for organisms responding to environmental stresses, however, little is known about the reproductive strategies of invertebrates under long-term exposure to contaminations. In this study, earthworm Metaphire californica (Kinberg, 1867) from contaminated fields with an increased metal gradient were collected to investigate their reproductive responses. The results showed heavy metals (Cd, Cu, Zn, and Pb) induced histological damage to earthworms’ seminal vesicles, including tissue disorders and cavities, and decreases in mature spermatozoa. Sperm morphology analysis indicated deformity rates were up to13.2% (e.g. head swollen or missing) for worms from the most contaminated site, which coincided with DNA damages. Furthermore, the computer-assisted sperm analysis (CASA) system was employed for the evaluation of sperm kinetic traits. Results suggested earthworms exposed to higher contamination showed a lower sperm viability rate but faster sperm velocity after re-exposure with Cd solution (like the curvilinear velocity and straight-line velocity paraments) compared with those from relatively clean sites. The activities of lactate dehydrogenase and sorbitol dehydrogenase showed the highest 32.5% and 12.5% up-regulation respectively with the increased metal gradient. In conclusion, this study elucidated the earthworm reproductive toxicity, underlying reproductive compensation, metal stress-induced damages, and adaptive responses caused by heavy metal exposure, while also providing the possibility of sperm trait analysis (CASA) for related earthworm toxicological studies.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Seminal vesicles</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Sperm traits</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Morphology</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Earthworms</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Reproductive metabolism</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shen, Zhiqiang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Liang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yue, Shizhong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jia, Li</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Kun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhou, Wenhao</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qiao, Yuhui</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Shterenlikht, Anton ELSEVIER</subfield><subfield code="t">MPI vs Fortran coarrays beyond 100k cores: 3D cellular automata</subfield><subfield code="d">2019</subfield><subfield code="d">chemistry, biology and toxicology as related to environmental problems</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV002112701</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:311</subfield><subfield code="g">year:2023</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.chemosphere.2022.137027</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.25</subfield><subfield code="j">Parallele Datenverarbeitung</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">311</subfield><subfield code="j">2023</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
score |
7.4010687 |