Isolation, characterization, and applications of holocellulose nanofibers from apple and rhubarb pomace using eco-friendly approach
Pomace, a byproduct generated from juice processing, contains high quality and quantity of lignocellulosic fibers that can be utilized to extract cellulosic materials for high value applications. Holocellulose fibers contain cellulose and hemicellulose without lignin. This study extracted holocellul...
Ausführliche Beschreibung
Autor*in: |
Wang, Taoran [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
10 |
---|
Übergeordnetes Werk: |
Enthalten in: Intelligent clustering cooperative spectrum sensing based on Bayesian learning for cognitive radio network - Liu, Xin ELSEVIER, 2019, Amsterdam |
---|---|
Übergeordnetes Werk: |
volume:136 ; year:2022 ; pages:166-175 ; extent:10 |
Links: |
---|
DOI / URN: |
10.1016/j.fbp.2022.09.016 |
---|
Katalog-ID: |
ELV059544945 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV059544945 | ||
003 | DE-627 | ||
005 | 20230626053158.0 | ||
007 | cr uuu---uuuuu | ||
008 | 221219s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.fbp.2022.09.016 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001969.pica |
035 | |a (DE-627)ELV059544945 | ||
035 | |a (ELSEVIER)S0960-3085(22)00115-8 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q VZ |
084 | |a 54.32 |2 bkl | ||
084 | |a 53.74 |2 bkl | ||
100 | 1 | |a Wang, Taoran |e verfasserin |4 aut | |
245 | 1 | 0 | |a Isolation, characterization, and applications of holocellulose nanofibers from apple and rhubarb pomace using eco-friendly approach |
264 | 1 | |c 2022transfer abstract | |
300 | |a 10 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Pomace, a byproduct generated from juice processing, contains high quality and quantity of lignocellulosic fibers that can be utilized to extract cellulosic materials for high value applications. Holocellulose fibers contain cellulose and hemicellulose without lignin. This study extracted holocellulose nanofiber (Holo-CNF) from apple (AP) and rhubarb pomaces (RP) using peracetic acid delignification and low energy blending at 5, 15, and 30 min. Holocellulose fibers were easily fibrillated into Holo-CNF with low-energy mechanical treatment due to presence of hemicellulose, which inhibits cellulose-cellulose adhension through steric hindrance and charge repulsion. Morphology of Holo-CNFs depended on type of pomace and blending time. Diameter of Holo-CNFs ranged from 29.8 to 54.0 nm, lower (P < 0.05) than diameter (62.2 nm) of CNF from wood fibers. RP Holo-CNFs had similar length (40.9–44.9 µm) to CNF (53.0 µm), but AP Holo-CNFs were shorter (P < 0.05) (16.1–26.0 µm). Holo-CNF reinforcement in pectin or chitosan films improved mechanical properties and hydrophobicity of films. RP Holo-CNF (5 min blending) enhanced (P < 0.05) stability of oleic acid Pickering emulsion during ambient storage. This study demonstrated the feasibility of converting fruit pomace to Holo-CNF via low-energy and eco-friendly method for various applications. | ||
520 | |a Pomace, a byproduct generated from juice processing, contains high quality and quantity of lignocellulosic fibers that can be utilized to extract cellulosic materials for high value applications. Holocellulose fibers contain cellulose and hemicellulose without lignin. This study extracted holocellulose nanofiber (Holo-CNF) from apple (AP) and rhubarb pomaces (RP) using peracetic acid delignification and low energy blending at 5, 15, and 30 min. Holocellulose fibers were easily fibrillated into Holo-CNF with low-energy mechanical treatment due to presence of hemicellulose, which inhibits cellulose-cellulose adhension through steric hindrance and charge repulsion. Morphology of Holo-CNFs depended on type of pomace and blending time. Diameter of Holo-CNFs ranged from 29.8 to 54.0 nm, lower (P < 0.05) than diameter (62.2 nm) of CNF from wood fibers. RP Holo-CNFs had similar length (40.9–44.9 µm) to CNF (53.0 µm), but AP Holo-CNFs were shorter (P < 0.05) (16.1–26.0 µm). Holo-CNF reinforcement in pectin or chitosan films improved mechanical properties and hydrophobicity of films. RP Holo-CNF (5 min blending) enhanced (P < 0.05) stability of oleic acid Pickering emulsion during ambient storage. This study demonstrated the feasibility of converting fruit pomace to Holo-CNF via low-energy and eco-friendly method for various applications. | ||
650 | 7 | |a Low energy fibrillation |2 Elsevier | |
650 | 7 | |a Pickering emulsion |2 Elsevier | |
650 | 7 | |a Edible film |2 Elsevier | |
650 | 7 | |a Holocellulose nanofibers |2 Elsevier | |
650 | 7 | |a Holocellulose |2 Elsevier | |
700 | 1 | |a Jung, Jooyeoun |4 oth | |
700 | 1 | |a Zhao, Yanyun |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Liu, Xin ELSEVIER |t Intelligent clustering cooperative spectrum sensing based on Bayesian learning for cognitive radio network |d 2019 |g Amsterdam |w (DE-627)ELV002723557 |
773 | 1 | 8 | |g volume:136 |g year:2022 |g pages:166-175 |g extent:10 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.fbp.2022.09.016 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
936 | b | k | |a 54.32 |j Rechnerkommunikation |q VZ |
936 | b | k | |a 53.74 |j Hochfrequenztechnik |j Funktechnik |q VZ |
951 | |a AR | ||
952 | |d 136 |j 2022 |h 166-175 |g 10 |
author_variant |
t w tw |
---|---|
matchkey_str |
wangtaoranjungjooyeounzhaoyanyun:2022----:sltocaatrztoadplctosfooellsnnfbrfoapenruab |
hierarchy_sort_str |
2022transfer abstract |
bklnumber |
54.32 53.74 |
publishDate |
2022 |
allfields |
10.1016/j.fbp.2022.09.016 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001969.pica (DE-627)ELV059544945 (ELSEVIER)S0960-3085(22)00115-8 DE-627 ger DE-627 rakwb eng 004 VZ 54.32 bkl 53.74 bkl Wang, Taoran verfasserin aut Isolation, characterization, and applications of holocellulose nanofibers from apple and rhubarb pomace using eco-friendly approach 2022transfer abstract 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Pomace, a byproduct generated from juice processing, contains high quality and quantity of lignocellulosic fibers that can be utilized to extract cellulosic materials for high value applications. Holocellulose fibers contain cellulose and hemicellulose without lignin. This study extracted holocellulose nanofiber (Holo-CNF) from apple (AP) and rhubarb pomaces (RP) using peracetic acid delignification and low energy blending at 5, 15, and 30 min. Holocellulose fibers were easily fibrillated into Holo-CNF with low-energy mechanical treatment due to presence of hemicellulose, which inhibits cellulose-cellulose adhension through steric hindrance and charge repulsion. Morphology of Holo-CNFs depended on type of pomace and blending time. Diameter of Holo-CNFs ranged from 29.8 to 54.0 nm, lower (P < 0.05) than diameter (62.2 nm) of CNF from wood fibers. RP Holo-CNFs had similar length (40.9–44.9 µm) to CNF (53.0 µm), but AP Holo-CNFs were shorter (P < 0.05) (16.1–26.0 µm). Holo-CNF reinforcement in pectin or chitosan films improved mechanical properties and hydrophobicity of films. RP Holo-CNF (5 min blending) enhanced (P < 0.05) stability of oleic acid Pickering emulsion during ambient storage. This study demonstrated the feasibility of converting fruit pomace to Holo-CNF via low-energy and eco-friendly method for various applications. Pomace, a byproduct generated from juice processing, contains high quality and quantity of lignocellulosic fibers that can be utilized to extract cellulosic materials for high value applications. Holocellulose fibers contain cellulose and hemicellulose without lignin. This study extracted holocellulose nanofiber (Holo-CNF) from apple (AP) and rhubarb pomaces (RP) using peracetic acid delignification and low energy blending at 5, 15, and 30 min. Holocellulose fibers were easily fibrillated into Holo-CNF with low-energy mechanical treatment due to presence of hemicellulose, which inhibits cellulose-cellulose adhension through steric hindrance and charge repulsion. Morphology of Holo-CNFs depended on type of pomace and blending time. Diameter of Holo-CNFs ranged from 29.8 to 54.0 nm, lower (P < 0.05) than diameter (62.2 nm) of CNF from wood fibers. RP Holo-CNFs had similar length (40.9–44.9 µm) to CNF (53.0 µm), but AP Holo-CNFs were shorter (P < 0.05) (16.1–26.0 µm). Holo-CNF reinforcement in pectin or chitosan films improved mechanical properties and hydrophobicity of films. RP Holo-CNF (5 min blending) enhanced (P < 0.05) stability of oleic acid Pickering emulsion during ambient storage. This study demonstrated the feasibility of converting fruit pomace to Holo-CNF via low-energy and eco-friendly method for various applications. Low energy fibrillation Elsevier Pickering emulsion Elsevier Edible film Elsevier Holocellulose nanofibers Elsevier Holocellulose Elsevier Jung, Jooyeoun oth Zhao, Yanyun oth Enthalten in Elsevier Liu, Xin ELSEVIER Intelligent clustering cooperative spectrum sensing based on Bayesian learning for cognitive radio network 2019 Amsterdam (DE-627)ELV002723557 volume:136 year:2022 pages:166-175 extent:10 https://doi.org/10.1016/j.fbp.2022.09.016 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 54.32 Rechnerkommunikation VZ 53.74 Hochfrequenztechnik Funktechnik VZ AR 136 2022 166-175 10 |
spelling |
10.1016/j.fbp.2022.09.016 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001969.pica (DE-627)ELV059544945 (ELSEVIER)S0960-3085(22)00115-8 DE-627 ger DE-627 rakwb eng 004 VZ 54.32 bkl 53.74 bkl Wang, Taoran verfasserin aut Isolation, characterization, and applications of holocellulose nanofibers from apple and rhubarb pomace using eco-friendly approach 2022transfer abstract 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Pomace, a byproduct generated from juice processing, contains high quality and quantity of lignocellulosic fibers that can be utilized to extract cellulosic materials for high value applications. Holocellulose fibers contain cellulose and hemicellulose without lignin. This study extracted holocellulose nanofiber (Holo-CNF) from apple (AP) and rhubarb pomaces (RP) using peracetic acid delignification and low energy blending at 5, 15, and 30 min. Holocellulose fibers were easily fibrillated into Holo-CNF with low-energy mechanical treatment due to presence of hemicellulose, which inhibits cellulose-cellulose adhension through steric hindrance and charge repulsion. Morphology of Holo-CNFs depended on type of pomace and blending time. Diameter of Holo-CNFs ranged from 29.8 to 54.0 nm, lower (P < 0.05) than diameter (62.2 nm) of CNF from wood fibers. RP Holo-CNFs had similar length (40.9–44.9 µm) to CNF (53.0 µm), but AP Holo-CNFs were shorter (P < 0.05) (16.1–26.0 µm). Holo-CNF reinforcement in pectin or chitosan films improved mechanical properties and hydrophobicity of films. RP Holo-CNF (5 min blending) enhanced (P < 0.05) stability of oleic acid Pickering emulsion during ambient storage. This study demonstrated the feasibility of converting fruit pomace to Holo-CNF via low-energy and eco-friendly method for various applications. Pomace, a byproduct generated from juice processing, contains high quality and quantity of lignocellulosic fibers that can be utilized to extract cellulosic materials for high value applications. Holocellulose fibers contain cellulose and hemicellulose without lignin. This study extracted holocellulose nanofiber (Holo-CNF) from apple (AP) and rhubarb pomaces (RP) using peracetic acid delignification and low energy blending at 5, 15, and 30 min. Holocellulose fibers were easily fibrillated into Holo-CNF with low-energy mechanical treatment due to presence of hemicellulose, which inhibits cellulose-cellulose adhension through steric hindrance and charge repulsion. Morphology of Holo-CNFs depended on type of pomace and blending time. Diameter of Holo-CNFs ranged from 29.8 to 54.0 nm, lower (P < 0.05) than diameter (62.2 nm) of CNF from wood fibers. RP Holo-CNFs had similar length (40.9–44.9 µm) to CNF (53.0 µm), but AP Holo-CNFs were shorter (P < 0.05) (16.1–26.0 µm). Holo-CNF reinforcement in pectin or chitosan films improved mechanical properties and hydrophobicity of films. RP Holo-CNF (5 min blending) enhanced (P < 0.05) stability of oleic acid Pickering emulsion during ambient storage. This study demonstrated the feasibility of converting fruit pomace to Holo-CNF via low-energy and eco-friendly method for various applications. Low energy fibrillation Elsevier Pickering emulsion Elsevier Edible film Elsevier Holocellulose nanofibers Elsevier Holocellulose Elsevier Jung, Jooyeoun oth Zhao, Yanyun oth Enthalten in Elsevier Liu, Xin ELSEVIER Intelligent clustering cooperative spectrum sensing based on Bayesian learning for cognitive radio network 2019 Amsterdam (DE-627)ELV002723557 volume:136 year:2022 pages:166-175 extent:10 https://doi.org/10.1016/j.fbp.2022.09.016 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 54.32 Rechnerkommunikation VZ 53.74 Hochfrequenztechnik Funktechnik VZ AR 136 2022 166-175 10 |
allfields_unstemmed |
10.1016/j.fbp.2022.09.016 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001969.pica (DE-627)ELV059544945 (ELSEVIER)S0960-3085(22)00115-8 DE-627 ger DE-627 rakwb eng 004 VZ 54.32 bkl 53.74 bkl Wang, Taoran verfasserin aut Isolation, characterization, and applications of holocellulose nanofibers from apple and rhubarb pomace using eco-friendly approach 2022transfer abstract 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Pomace, a byproduct generated from juice processing, contains high quality and quantity of lignocellulosic fibers that can be utilized to extract cellulosic materials for high value applications. Holocellulose fibers contain cellulose and hemicellulose without lignin. This study extracted holocellulose nanofiber (Holo-CNF) from apple (AP) and rhubarb pomaces (RP) using peracetic acid delignification and low energy blending at 5, 15, and 30 min. Holocellulose fibers were easily fibrillated into Holo-CNF with low-energy mechanical treatment due to presence of hemicellulose, which inhibits cellulose-cellulose adhension through steric hindrance and charge repulsion. Morphology of Holo-CNFs depended on type of pomace and blending time. Diameter of Holo-CNFs ranged from 29.8 to 54.0 nm, lower (P < 0.05) than diameter (62.2 nm) of CNF from wood fibers. RP Holo-CNFs had similar length (40.9–44.9 µm) to CNF (53.0 µm), but AP Holo-CNFs were shorter (P < 0.05) (16.1–26.0 µm). Holo-CNF reinforcement in pectin or chitosan films improved mechanical properties and hydrophobicity of films. RP Holo-CNF (5 min blending) enhanced (P < 0.05) stability of oleic acid Pickering emulsion during ambient storage. This study demonstrated the feasibility of converting fruit pomace to Holo-CNF via low-energy and eco-friendly method for various applications. Pomace, a byproduct generated from juice processing, contains high quality and quantity of lignocellulosic fibers that can be utilized to extract cellulosic materials for high value applications. Holocellulose fibers contain cellulose and hemicellulose without lignin. This study extracted holocellulose nanofiber (Holo-CNF) from apple (AP) and rhubarb pomaces (RP) using peracetic acid delignification and low energy blending at 5, 15, and 30 min. Holocellulose fibers were easily fibrillated into Holo-CNF with low-energy mechanical treatment due to presence of hemicellulose, which inhibits cellulose-cellulose adhension through steric hindrance and charge repulsion. Morphology of Holo-CNFs depended on type of pomace and blending time. Diameter of Holo-CNFs ranged from 29.8 to 54.0 nm, lower (P < 0.05) than diameter (62.2 nm) of CNF from wood fibers. RP Holo-CNFs had similar length (40.9–44.9 µm) to CNF (53.0 µm), but AP Holo-CNFs were shorter (P < 0.05) (16.1–26.0 µm). Holo-CNF reinforcement in pectin or chitosan films improved mechanical properties and hydrophobicity of films. RP Holo-CNF (5 min blending) enhanced (P < 0.05) stability of oleic acid Pickering emulsion during ambient storage. This study demonstrated the feasibility of converting fruit pomace to Holo-CNF via low-energy and eco-friendly method for various applications. Low energy fibrillation Elsevier Pickering emulsion Elsevier Edible film Elsevier Holocellulose nanofibers Elsevier Holocellulose Elsevier Jung, Jooyeoun oth Zhao, Yanyun oth Enthalten in Elsevier Liu, Xin ELSEVIER Intelligent clustering cooperative spectrum sensing based on Bayesian learning for cognitive radio network 2019 Amsterdam (DE-627)ELV002723557 volume:136 year:2022 pages:166-175 extent:10 https://doi.org/10.1016/j.fbp.2022.09.016 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 54.32 Rechnerkommunikation VZ 53.74 Hochfrequenztechnik Funktechnik VZ AR 136 2022 166-175 10 |
allfieldsGer |
10.1016/j.fbp.2022.09.016 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001969.pica (DE-627)ELV059544945 (ELSEVIER)S0960-3085(22)00115-8 DE-627 ger DE-627 rakwb eng 004 VZ 54.32 bkl 53.74 bkl Wang, Taoran verfasserin aut Isolation, characterization, and applications of holocellulose nanofibers from apple and rhubarb pomace using eco-friendly approach 2022transfer abstract 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Pomace, a byproduct generated from juice processing, contains high quality and quantity of lignocellulosic fibers that can be utilized to extract cellulosic materials for high value applications. Holocellulose fibers contain cellulose and hemicellulose without lignin. This study extracted holocellulose nanofiber (Holo-CNF) from apple (AP) and rhubarb pomaces (RP) using peracetic acid delignification and low energy blending at 5, 15, and 30 min. Holocellulose fibers were easily fibrillated into Holo-CNF with low-energy mechanical treatment due to presence of hemicellulose, which inhibits cellulose-cellulose adhension through steric hindrance and charge repulsion. Morphology of Holo-CNFs depended on type of pomace and blending time. Diameter of Holo-CNFs ranged from 29.8 to 54.0 nm, lower (P < 0.05) than diameter (62.2 nm) of CNF from wood fibers. RP Holo-CNFs had similar length (40.9–44.9 µm) to CNF (53.0 µm), but AP Holo-CNFs were shorter (P < 0.05) (16.1–26.0 µm). Holo-CNF reinforcement in pectin or chitosan films improved mechanical properties and hydrophobicity of films. RP Holo-CNF (5 min blending) enhanced (P < 0.05) stability of oleic acid Pickering emulsion during ambient storage. This study demonstrated the feasibility of converting fruit pomace to Holo-CNF via low-energy and eco-friendly method for various applications. Pomace, a byproduct generated from juice processing, contains high quality and quantity of lignocellulosic fibers that can be utilized to extract cellulosic materials for high value applications. Holocellulose fibers contain cellulose and hemicellulose without lignin. This study extracted holocellulose nanofiber (Holo-CNF) from apple (AP) and rhubarb pomaces (RP) using peracetic acid delignification and low energy blending at 5, 15, and 30 min. Holocellulose fibers were easily fibrillated into Holo-CNF with low-energy mechanical treatment due to presence of hemicellulose, which inhibits cellulose-cellulose adhension through steric hindrance and charge repulsion. Morphology of Holo-CNFs depended on type of pomace and blending time. Diameter of Holo-CNFs ranged from 29.8 to 54.0 nm, lower (P < 0.05) than diameter (62.2 nm) of CNF from wood fibers. RP Holo-CNFs had similar length (40.9–44.9 µm) to CNF (53.0 µm), but AP Holo-CNFs were shorter (P < 0.05) (16.1–26.0 µm). Holo-CNF reinforcement in pectin or chitosan films improved mechanical properties and hydrophobicity of films. RP Holo-CNF (5 min blending) enhanced (P < 0.05) stability of oleic acid Pickering emulsion during ambient storage. This study demonstrated the feasibility of converting fruit pomace to Holo-CNF via low-energy and eco-friendly method for various applications. Low energy fibrillation Elsevier Pickering emulsion Elsevier Edible film Elsevier Holocellulose nanofibers Elsevier Holocellulose Elsevier Jung, Jooyeoun oth Zhao, Yanyun oth Enthalten in Elsevier Liu, Xin ELSEVIER Intelligent clustering cooperative spectrum sensing based on Bayesian learning for cognitive radio network 2019 Amsterdam (DE-627)ELV002723557 volume:136 year:2022 pages:166-175 extent:10 https://doi.org/10.1016/j.fbp.2022.09.016 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 54.32 Rechnerkommunikation VZ 53.74 Hochfrequenztechnik Funktechnik VZ AR 136 2022 166-175 10 |
allfieldsSound |
10.1016/j.fbp.2022.09.016 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001969.pica (DE-627)ELV059544945 (ELSEVIER)S0960-3085(22)00115-8 DE-627 ger DE-627 rakwb eng 004 VZ 54.32 bkl 53.74 bkl Wang, Taoran verfasserin aut Isolation, characterization, and applications of holocellulose nanofibers from apple and rhubarb pomace using eco-friendly approach 2022transfer abstract 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Pomace, a byproduct generated from juice processing, contains high quality and quantity of lignocellulosic fibers that can be utilized to extract cellulosic materials for high value applications. Holocellulose fibers contain cellulose and hemicellulose without lignin. This study extracted holocellulose nanofiber (Holo-CNF) from apple (AP) and rhubarb pomaces (RP) using peracetic acid delignification and low energy blending at 5, 15, and 30 min. Holocellulose fibers were easily fibrillated into Holo-CNF with low-energy mechanical treatment due to presence of hemicellulose, which inhibits cellulose-cellulose adhension through steric hindrance and charge repulsion. Morphology of Holo-CNFs depended on type of pomace and blending time. Diameter of Holo-CNFs ranged from 29.8 to 54.0 nm, lower (P < 0.05) than diameter (62.2 nm) of CNF from wood fibers. RP Holo-CNFs had similar length (40.9–44.9 µm) to CNF (53.0 µm), but AP Holo-CNFs were shorter (P < 0.05) (16.1–26.0 µm). Holo-CNF reinforcement in pectin or chitosan films improved mechanical properties and hydrophobicity of films. RP Holo-CNF (5 min blending) enhanced (P < 0.05) stability of oleic acid Pickering emulsion during ambient storage. This study demonstrated the feasibility of converting fruit pomace to Holo-CNF via low-energy and eco-friendly method for various applications. Pomace, a byproduct generated from juice processing, contains high quality and quantity of lignocellulosic fibers that can be utilized to extract cellulosic materials for high value applications. Holocellulose fibers contain cellulose and hemicellulose without lignin. This study extracted holocellulose nanofiber (Holo-CNF) from apple (AP) and rhubarb pomaces (RP) using peracetic acid delignification and low energy blending at 5, 15, and 30 min. Holocellulose fibers were easily fibrillated into Holo-CNF with low-energy mechanical treatment due to presence of hemicellulose, which inhibits cellulose-cellulose adhension through steric hindrance and charge repulsion. Morphology of Holo-CNFs depended on type of pomace and blending time. Diameter of Holo-CNFs ranged from 29.8 to 54.0 nm, lower (P < 0.05) than diameter (62.2 nm) of CNF from wood fibers. RP Holo-CNFs had similar length (40.9–44.9 µm) to CNF (53.0 µm), but AP Holo-CNFs were shorter (P < 0.05) (16.1–26.0 µm). Holo-CNF reinforcement in pectin or chitosan films improved mechanical properties and hydrophobicity of films. RP Holo-CNF (5 min blending) enhanced (P < 0.05) stability of oleic acid Pickering emulsion during ambient storage. This study demonstrated the feasibility of converting fruit pomace to Holo-CNF via low-energy and eco-friendly method for various applications. Low energy fibrillation Elsevier Pickering emulsion Elsevier Edible film Elsevier Holocellulose nanofibers Elsevier Holocellulose Elsevier Jung, Jooyeoun oth Zhao, Yanyun oth Enthalten in Elsevier Liu, Xin ELSEVIER Intelligent clustering cooperative spectrum sensing based on Bayesian learning for cognitive radio network 2019 Amsterdam (DE-627)ELV002723557 volume:136 year:2022 pages:166-175 extent:10 https://doi.org/10.1016/j.fbp.2022.09.016 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 54.32 Rechnerkommunikation VZ 53.74 Hochfrequenztechnik Funktechnik VZ AR 136 2022 166-175 10 |
language |
English |
source |
Enthalten in Intelligent clustering cooperative spectrum sensing based on Bayesian learning for cognitive radio network Amsterdam volume:136 year:2022 pages:166-175 extent:10 |
sourceStr |
Enthalten in Intelligent clustering cooperative spectrum sensing based on Bayesian learning for cognitive radio network Amsterdam volume:136 year:2022 pages:166-175 extent:10 |
format_phy_str_mv |
Article |
bklname |
Rechnerkommunikation Hochfrequenztechnik Funktechnik |
institution |
findex.gbv.de |
topic_facet |
Low energy fibrillation Pickering emulsion Edible film Holocellulose nanofibers Holocellulose |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Intelligent clustering cooperative spectrum sensing based on Bayesian learning for cognitive radio network |
authorswithroles_txt_mv |
Wang, Taoran @@aut@@ Jung, Jooyeoun @@oth@@ Zhao, Yanyun @@oth@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
ELV002723557 |
dewey-sort |
14 |
id |
ELV059544945 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV059544945</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626053158.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">221219s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.fbp.2022.09.016</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001969.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV059544945</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0960-3085(22)00115-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.32</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.74</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Taoran</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Isolation, characterization, and applications of holocellulose nanofibers from apple and rhubarb pomace using eco-friendly approach</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">10</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Pomace, a byproduct generated from juice processing, contains high quality and quantity of lignocellulosic fibers that can be utilized to extract cellulosic materials for high value applications. Holocellulose fibers contain cellulose and hemicellulose without lignin. This study extracted holocellulose nanofiber (Holo-CNF) from apple (AP) and rhubarb pomaces (RP) using peracetic acid delignification and low energy blending at 5, 15, and 30 min. Holocellulose fibers were easily fibrillated into Holo-CNF with low-energy mechanical treatment due to presence of hemicellulose, which inhibits cellulose-cellulose adhension through steric hindrance and charge repulsion. Morphology of Holo-CNFs depended on type of pomace and blending time. Diameter of Holo-CNFs ranged from 29.8 to 54.0 nm, lower (P < 0.05) than diameter (62.2 nm) of CNF from wood fibers. RP Holo-CNFs had similar length (40.9–44.9 µm) to CNF (53.0 µm), but AP Holo-CNFs were shorter (P < 0.05) (16.1–26.0 µm). Holo-CNF reinforcement in pectin or chitosan films improved mechanical properties and hydrophobicity of films. RP Holo-CNF (5 min blending) enhanced (P < 0.05) stability of oleic acid Pickering emulsion during ambient storage. This study demonstrated the feasibility of converting fruit pomace to Holo-CNF via low-energy and eco-friendly method for various applications.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Pomace, a byproduct generated from juice processing, contains high quality and quantity of lignocellulosic fibers that can be utilized to extract cellulosic materials for high value applications. Holocellulose fibers contain cellulose and hemicellulose without lignin. This study extracted holocellulose nanofiber (Holo-CNF) from apple (AP) and rhubarb pomaces (RP) using peracetic acid delignification and low energy blending at 5, 15, and 30 min. Holocellulose fibers were easily fibrillated into Holo-CNF with low-energy mechanical treatment due to presence of hemicellulose, which inhibits cellulose-cellulose adhension through steric hindrance and charge repulsion. Morphology of Holo-CNFs depended on type of pomace and blending time. Diameter of Holo-CNFs ranged from 29.8 to 54.0 nm, lower (P < 0.05) than diameter (62.2 nm) of CNF from wood fibers. RP Holo-CNFs had similar length (40.9–44.9 µm) to CNF (53.0 µm), but AP Holo-CNFs were shorter (P < 0.05) (16.1–26.0 µm). Holo-CNF reinforcement in pectin or chitosan films improved mechanical properties and hydrophobicity of films. RP Holo-CNF (5 min blending) enhanced (P < 0.05) stability of oleic acid Pickering emulsion during ambient storage. This study demonstrated the feasibility of converting fruit pomace to Holo-CNF via low-energy and eco-friendly method for various applications.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Low energy fibrillation</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Pickering emulsion</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Edible film</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Holocellulose nanofibers</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Holocellulose</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jung, Jooyeoun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Yanyun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Liu, Xin ELSEVIER</subfield><subfield code="t">Intelligent clustering cooperative spectrum sensing based on Bayesian learning for cognitive radio network</subfield><subfield code="d">2019</subfield><subfield code="g">Amsterdam</subfield><subfield code="w">(DE-627)ELV002723557</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:136</subfield><subfield code="g">year:2022</subfield><subfield code="g">pages:166-175</subfield><subfield code="g">extent:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.fbp.2022.09.016</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.32</subfield><subfield code="j">Rechnerkommunikation</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.74</subfield><subfield code="j">Hochfrequenztechnik</subfield><subfield code="j">Funktechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">136</subfield><subfield code="j">2022</subfield><subfield code="h">166-175</subfield><subfield code="g">10</subfield></datafield></record></collection>
|
author |
Wang, Taoran |
spellingShingle |
Wang, Taoran ddc 004 bkl 54.32 bkl 53.74 Elsevier Low energy fibrillation Elsevier Pickering emulsion Elsevier Edible film Elsevier Holocellulose nanofibers Elsevier Holocellulose Isolation, characterization, and applications of holocellulose nanofibers from apple and rhubarb pomace using eco-friendly approach |
authorStr |
Wang, Taoran |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV002723557 |
format |
electronic Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
004 VZ 54.32 bkl 53.74 bkl Isolation, characterization, and applications of holocellulose nanofibers from apple and rhubarb pomace using eco-friendly approach Low energy fibrillation Elsevier Pickering emulsion Elsevier Edible film Elsevier Holocellulose nanofibers Elsevier Holocellulose Elsevier |
topic |
ddc 004 bkl 54.32 bkl 53.74 Elsevier Low energy fibrillation Elsevier Pickering emulsion Elsevier Edible film Elsevier Holocellulose nanofibers Elsevier Holocellulose |
topic_unstemmed |
ddc 004 bkl 54.32 bkl 53.74 Elsevier Low energy fibrillation Elsevier Pickering emulsion Elsevier Edible film Elsevier Holocellulose nanofibers Elsevier Holocellulose |
topic_browse |
ddc 004 bkl 54.32 bkl 53.74 Elsevier Low energy fibrillation Elsevier Pickering emulsion Elsevier Edible film Elsevier Holocellulose nanofibers Elsevier Holocellulose |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
j j jj y z yz |
hierarchy_parent_title |
Intelligent clustering cooperative spectrum sensing based on Bayesian learning for cognitive radio network |
hierarchy_parent_id |
ELV002723557 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
Intelligent clustering cooperative spectrum sensing based on Bayesian learning for cognitive radio network |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV002723557 |
title |
Isolation, characterization, and applications of holocellulose nanofibers from apple and rhubarb pomace using eco-friendly approach |
ctrlnum |
(DE-627)ELV059544945 (ELSEVIER)S0960-3085(22)00115-8 |
title_full |
Isolation, characterization, and applications of holocellulose nanofibers from apple and rhubarb pomace using eco-friendly approach |
author_sort |
Wang, Taoran |
journal |
Intelligent clustering cooperative spectrum sensing based on Bayesian learning for cognitive radio network |
journalStr |
Intelligent clustering cooperative spectrum sensing based on Bayesian learning for cognitive radio network |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
zzz |
container_start_page |
166 |
author_browse |
Wang, Taoran |
container_volume |
136 |
physical |
10 |
class |
004 VZ 54.32 bkl 53.74 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Wang, Taoran |
doi_str_mv |
10.1016/j.fbp.2022.09.016 |
dewey-full |
004 |
title_sort |
isolation, characterization, and applications of holocellulose nanofibers from apple and rhubarb pomace using eco-friendly approach |
title_auth |
Isolation, characterization, and applications of holocellulose nanofibers from apple and rhubarb pomace using eco-friendly approach |
abstract |
Pomace, a byproduct generated from juice processing, contains high quality and quantity of lignocellulosic fibers that can be utilized to extract cellulosic materials for high value applications. Holocellulose fibers contain cellulose and hemicellulose without lignin. This study extracted holocellulose nanofiber (Holo-CNF) from apple (AP) and rhubarb pomaces (RP) using peracetic acid delignification and low energy blending at 5, 15, and 30 min. Holocellulose fibers were easily fibrillated into Holo-CNF with low-energy mechanical treatment due to presence of hemicellulose, which inhibits cellulose-cellulose adhension through steric hindrance and charge repulsion. Morphology of Holo-CNFs depended on type of pomace and blending time. Diameter of Holo-CNFs ranged from 29.8 to 54.0 nm, lower (P < 0.05) than diameter (62.2 nm) of CNF from wood fibers. RP Holo-CNFs had similar length (40.9–44.9 µm) to CNF (53.0 µm), but AP Holo-CNFs were shorter (P < 0.05) (16.1–26.0 µm). Holo-CNF reinforcement in pectin or chitosan films improved mechanical properties and hydrophobicity of films. RP Holo-CNF (5 min blending) enhanced (P < 0.05) stability of oleic acid Pickering emulsion during ambient storage. This study demonstrated the feasibility of converting fruit pomace to Holo-CNF via low-energy and eco-friendly method for various applications. |
abstractGer |
Pomace, a byproduct generated from juice processing, contains high quality and quantity of lignocellulosic fibers that can be utilized to extract cellulosic materials for high value applications. Holocellulose fibers contain cellulose and hemicellulose without lignin. This study extracted holocellulose nanofiber (Holo-CNF) from apple (AP) and rhubarb pomaces (RP) using peracetic acid delignification and low energy blending at 5, 15, and 30 min. Holocellulose fibers were easily fibrillated into Holo-CNF with low-energy mechanical treatment due to presence of hemicellulose, which inhibits cellulose-cellulose adhension through steric hindrance and charge repulsion. Morphology of Holo-CNFs depended on type of pomace and blending time. Diameter of Holo-CNFs ranged from 29.8 to 54.0 nm, lower (P < 0.05) than diameter (62.2 nm) of CNF from wood fibers. RP Holo-CNFs had similar length (40.9–44.9 µm) to CNF (53.0 µm), but AP Holo-CNFs were shorter (P < 0.05) (16.1–26.0 µm). Holo-CNF reinforcement in pectin or chitosan films improved mechanical properties and hydrophobicity of films. RP Holo-CNF (5 min blending) enhanced (P < 0.05) stability of oleic acid Pickering emulsion during ambient storage. This study demonstrated the feasibility of converting fruit pomace to Holo-CNF via low-energy and eco-friendly method for various applications. |
abstract_unstemmed |
Pomace, a byproduct generated from juice processing, contains high quality and quantity of lignocellulosic fibers that can be utilized to extract cellulosic materials for high value applications. Holocellulose fibers contain cellulose and hemicellulose without lignin. This study extracted holocellulose nanofiber (Holo-CNF) from apple (AP) and rhubarb pomaces (RP) using peracetic acid delignification and low energy blending at 5, 15, and 30 min. Holocellulose fibers were easily fibrillated into Holo-CNF with low-energy mechanical treatment due to presence of hemicellulose, which inhibits cellulose-cellulose adhension through steric hindrance and charge repulsion. Morphology of Holo-CNFs depended on type of pomace and blending time. Diameter of Holo-CNFs ranged from 29.8 to 54.0 nm, lower (P < 0.05) than diameter (62.2 nm) of CNF from wood fibers. RP Holo-CNFs had similar length (40.9–44.9 µm) to CNF (53.0 µm), but AP Holo-CNFs were shorter (P < 0.05) (16.1–26.0 µm). Holo-CNF reinforcement in pectin or chitosan films improved mechanical properties and hydrophobicity of films. RP Holo-CNF (5 min blending) enhanced (P < 0.05) stability of oleic acid Pickering emulsion during ambient storage. This study demonstrated the feasibility of converting fruit pomace to Holo-CNF via low-energy and eco-friendly method for various applications. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U |
title_short |
Isolation, characterization, and applications of holocellulose nanofibers from apple and rhubarb pomace using eco-friendly approach |
url |
https://doi.org/10.1016/j.fbp.2022.09.016 |
remote_bool |
true |
author2 |
Jung, Jooyeoun Zhao, Yanyun |
author2Str |
Jung, Jooyeoun Zhao, Yanyun |
ppnlink |
ELV002723557 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
doi_str |
10.1016/j.fbp.2022.09.016 |
up_date |
2024-07-06T22:19:21.338Z |
_version_ |
1803869865995403264 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV059544945</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626053158.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">221219s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.fbp.2022.09.016</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001969.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV059544945</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0960-3085(22)00115-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.32</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.74</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Taoran</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Isolation, characterization, and applications of holocellulose nanofibers from apple and rhubarb pomace using eco-friendly approach</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">10</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Pomace, a byproduct generated from juice processing, contains high quality and quantity of lignocellulosic fibers that can be utilized to extract cellulosic materials for high value applications. Holocellulose fibers contain cellulose and hemicellulose without lignin. This study extracted holocellulose nanofiber (Holo-CNF) from apple (AP) and rhubarb pomaces (RP) using peracetic acid delignification and low energy blending at 5, 15, and 30 min. Holocellulose fibers were easily fibrillated into Holo-CNF with low-energy mechanical treatment due to presence of hemicellulose, which inhibits cellulose-cellulose adhension through steric hindrance and charge repulsion. Morphology of Holo-CNFs depended on type of pomace and blending time. Diameter of Holo-CNFs ranged from 29.8 to 54.0 nm, lower (P < 0.05) than diameter (62.2 nm) of CNF from wood fibers. RP Holo-CNFs had similar length (40.9–44.9 µm) to CNF (53.0 µm), but AP Holo-CNFs were shorter (P < 0.05) (16.1–26.0 µm). Holo-CNF reinforcement in pectin or chitosan films improved mechanical properties and hydrophobicity of films. RP Holo-CNF (5 min blending) enhanced (P < 0.05) stability of oleic acid Pickering emulsion during ambient storage. This study demonstrated the feasibility of converting fruit pomace to Holo-CNF via low-energy and eco-friendly method for various applications.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Pomace, a byproduct generated from juice processing, contains high quality and quantity of lignocellulosic fibers that can be utilized to extract cellulosic materials for high value applications. Holocellulose fibers contain cellulose and hemicellulose without lignin. This study extracted holocellulose nanofiber (Holo-CNF) from apple (AP) and rhubarb pomaces (RP) using peracetic acid delignification and low energy blending at 5, 15, and 30 min. Holocellulose fibers were easily fibrillated into Holo-CNF with low-energy mechanical treatment due to presence of hemicellulose, which inhibits cellulose-cellulose adhension through steric hindrance and charge repulsion. Morphology of Holo-CNFs depended on type of pomace and blending time. Diameter of Holo-CNFs ranged from 29.8 to 54.0 nm, lower (P < 0.05) than diameter (62.2 nm) of CNF from wood fibers. RP Holo-CNFs had similar length (40.9–44.9 µm) to CNF (53.0 µm), but AP Holo-CNFs were shorter (P < 0.05) (16.1–26.0 µm). Holo-CNF reinforcement in pectin or chitosan films improved mechanical properties and hydrophobicity of films. RP Holo-CNF (5 min blending) enhanced (P < 0.05) stability of oleic acid Pickering emulsion during ambient storage. This study demonstrated the feasibility of converting fruit pomace to Holo-CNF via low-energy and eco-friendly method for various applications.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Low energy fibrillation</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Pickering emulsion</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Edible film</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Holocellulose nanofibers</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Holocellulose</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jung, Jooyeoun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Yanyun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Liu, Xin ELSEVIER</subfield><subfield code="t">Intelligent clustering cooperative spectrum sensing based on Bayesian learning for cognitive radio network</subfield><subfield code="d">2019</subfield><subfield code="g">Amsterdam</subfield><subfield code="w">(DE-627)ELV002723557</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:136</subfield><subfield code="g">year:2022</subfield><subfield code="g">pages:166-175</subfield><subfield code="g">extent:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.fbp.2022.09.016</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.32</subfield><subfield code="j">Rechnerkommunikation</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.74</subfield><subfield code="j">Hochfrequenztechnik</subfield><subfield code="j">Funktechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">136</subfield><subfield code="j">2022</subfield><subfield code="h">166-175</subfield><subfield code="g">10</subfield></datafield></record></collection>
|
score |
7.4028835 |