Influence of multi-layer TiO2/SnO2 heterojunctions on fast and sensitive ethanol detection
The fabrication of MEMS gas sensors based on SMO sensing materials has become popular in commercials. However, due to the dense surface, the MEMS gas sensor based on sputtered sensing film always shows low sensitivity and slow response. Herein, we report multi-layer TiO2/SnO2 heterojunctions sensing...
Ausführliche Beschreibung
Autor*in: |
Tian, Xin [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023transfer abstract |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Reconstructing historical atmospheric mercury deposition in Western Europe using: Misten peat bog cores, Belgium - 2013transfer abstract, surface engineering, surface instrumentation & vacuum technology, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:207 ; year:2023 ; pages:0 |
Links: |
---|
DOI / URN: |
10.1016/j.vacuum.2022.111620 |
---|
Katalog-ID: |
ELV059720840 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV059720840 | ||
003 | DE-627 | ||
005 | 20230626053747.0 | ||
007 | cr uuu---uuuuu | ||
008 | 221219s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.vacuum.2022.111620 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001981.pica |
035 | |a (DE-627)ELV059720840 | ||
035 | |a (ELSEVIER)S0042-207X(22)00742-4 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 333.7 |q VZ |
082 | 0 | 4 | |a 610 |q VZ |
082 | 0 | 4 | |a 630 |a 640 |a 610 |q VZ |
100 | 1 | |a Tian, Xin |e verfasserin |4 aut | |
245 | 1 | 0 | |a Influence of multi-layer TiO2/SnO2 heterojunctions on fast and sensitive ethanol detection |
264 | 1 | |c 2023transfer abstract | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a The fabrication of MEMS gas sensors based on SMO sensing materials has become popular in commercials. However, due to the dense surface, the MEMS gas sensor based on sputtered sensing film always shows low sensitivity and slow response. Herein, we report multi-layer TiO2/SnO2 heterojunctions sensing film deposited by sputtering techniques. SnO2 and TiO2 thin film have an approximate thickness of 265.34 nm and 66.28 nm, respectively. The effects of different-layer TiO2/SnO2 heterojunctions and annealing temperatures to sensing film on gas sensing properties were investigated. The different samples with the same surface and annealed temperature exhibit different gas sensing properties, which indicates that more layer heterojunctions may decrease the positive effects of heterojunctions and oxygen adsorptions on the gas sensing properties. The two-layer TiO2/SnO2 heterojunctions sensing film with an annealed temperature of 400 °C in air obtain the best gas sensing properties, which has a response value of 7.54 and response/recovery time of 33/298 s to 50 ppm ethanol at 260 °C. Furthermore, the MEMS gas sensor based on two-layer TiO2/SnO2 heterojunctions sensing film can detect ethanol ranging from 1 ppm to 1000 ppm with excellent linearity. | ||
520 | |a The fabrication of MEMS gas sensors based on SMO sensing materials has become popular in commercials. However, due to the dense surface, the MEMS gas sensor based on sputtered sensing film always shows low sensitivity and slow response. Herein, we report multi-layer TiO2/SnO2 heterojunctions sensing film deposited by sputtering techniques. SnO2 and TiO2 thin film have an approximate thickness of 265.34 nm and 66.28 nm, respectively. The effects of different-layer TiO2/SnO2 heterojunctions and annealing temperatures to sensing film on gas sensing properties were investigated. The different samples with the same surface and annealed temperature exhibit different gas sensing properties, which indicates that more layer heterojunctions may decrease the positive effects of heterojunctions and oxygen adsorptions on the gas sensing properties. The two-layer TiO2/SnO2 heterojunctions sensing film with an annealed temperature of 400 °C in air obtain the best gas sensing properties, which has a response value of 7.54 and response/recovery time of 33/298 s to 50 ppm ethanol at 260 °C. Furthermore, the MEMS gas sensor based on two-layer TiO2/SnO2 heterojunctions sensing film can detect ethanol ranging from 1 ppm to 1000 ppm with excellent linearity. | ||
650 | 7 | |a TiO2/SnO2 sensing film |2 Elsevier | |
650 | 7 | |a Ethanol |2 Elsevier | |
650 | 7 | |a High sensitivity |2 Elsevier | |
650 | 7 | |a Gas sensor |2 Elsevier | |
650 | 7 | |a Sputtering |2 Elsevier | |
650 | 7 | |a Multi-layer heterojunctions |2 Elsevier | |
700 | 1 | |a Hu, Zonxin |4 oth | |
700 | 1 | |a Wang, Tian |4 oth | |
700 | 1 | |a Wang, Hairong |4 oth | |
700 | 1 | |a Zhang, Qunming |4 oth | |
700 | 1 | |a Wei, Xueyong |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |t Reconstructing historical atmospheric mercury deposition in Western Europe using: Misten peat bog cores, Belgium |d 2013transfer abstract |d surface engineering, surface instrumentation & vacuum technology |g Amsterdam [u.a.] |w (DE-627)ELV011955074 |
773 | 1 | 8 | |g volume:207 |g year:2023 |g pages:0 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.vacuum.2022.111620 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_40 | ||
951 | |a AR | ||
952 | |d 207 |j 2023 |h 0 |
author_variant |
x t xt |
---|---|
matchkey_str |
tianxinhuzonxinwangtianwanghairongzhangq:2023----:nlecomliaetosohtrjntosnatnsn |
hierarchy_sort_str |
2023transfer abstract |
publishDate |
2023 |
allfields |
10.1016/j.vacuum.2022.111620 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001981.pica (DE-627)ELV059720840 (ELSEVIER)S0042-207X(22)00742-4 DE-627 ger DE-627 rakwb eng 333.7 VZ 610 VZ 630 640 610 VZ Tian, Xin verfasserin aut Influence of multi-layer TiO2/SnO2 heterojunctions on fast and sensitive ethanol detection 2023transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The fabrication of MEMS gas sensors based on SMO sensing materials has become popular in commercials. However, due to the dense surface, the MEMS gas sensor based on sputtered sensing film always shows low sensitivity and slow response. Herein, we report multi-layer TiO2/SnO2 heterojunctions sensing film deposited by sputtering techniques. SnO2 and TiO2 thin film have an approximate thickness of 265.34 nm and 66.28 nm, respectively. The effects of different-layer TiO2/SnO2 heterojunctions and annealing temperatures to sensing film on gas sensing properties were investigated. The different samples with the same surface and annealed temperature exhibit different gas sensing properties, which indicates that more layer heterojunctions may decrease the positive effects of heterojunctions and oxygen adsorptions on the gas sensing properties. The two-layer TiO2/SnO2 heterojunctions sensing film with an annealed temperature of 400 °C in air obtain the best gas sensing properties, which has a response value of 7.54 and response/recovery time of 33/298 s to 50 ppm ethanol at 260 °C. Furthermore, the MEMS gas sensor based on two-layer TiO2/SnO2 heterojunctions sensing film can detect ethanol ranging from 1 ppm to 1000 ppm with excellent linearity. The fabrication of MEMS gas sensors based on SMO sensing materials has become popular in commercials. However, due to the dense surface, the MEMS gas sensor based on sputtered sensing film always shows low sensitivity and slow response. Herein, we report multi-layer TiO2/SnO2 heterojunctions sensing film deposited by sputtering techniques. SnO2 and TiO2 thin film have an approximate thickness of 265.34 nm and 66.28 nm, respectively. The effects of different-layer TiO2/SnO2 heterojunctions and annealing temperatures to sensing film on gas sensing properties were investigated. The different samples with the same surface and annealed temperature exhibit different gas sensing properties, which indicates that more layer heterojunctions may decrease the positive effects of heterojunctions and oxygen adsorptions on the gas sensing properties. The two-layer TiO2/SnO2 heterojunctions sensing film with an annealed temperature of 400 °C in air obtain the best gas sensing properties, which has a response value of 7.54 and response/recovery time of 33/298 s to 50 ppm ethanol at 260 °C. Furthermore, the MEMS gas sensor based on two-layer TiO2/SnO2 heterojunctions sensing film can detect ethanol ranging from 1 ppm to 1000 ppm with excellent linearity. TiO2/SnO2 sensing film Elsevier Ethanol Elsevier High sensitivity Elsevier Gas sensor Elsevier Sputtering Elsevier Multi-layer heterojunctions Elsevier Hu, Zonxin oth Wang, Tian oth Wang, Hairong oth Zhang, Qunming oth Wei, Xueyong oth Enthalten in Elsevier Science Reconstructing historical atmospheric mercury deposition in Western Europe using: Misten peat bog cores, Belgium 2013transfer abstract surface engineering, surface instrumentation & vacuum technology Amsterdam [u.a.] (DE-627)ELV011955074 volume:207 year:2023 pages:0 https://doi.org/10.1016/j.vacuum.2022.111620 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_22 GBV_ILN_40 AR 207 2023 0 |
spelling |
10.1016/j.vacuum.2022.111620 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001981.pica (DE-627)ELV059720840 (ELSEVIER)S0042-207X(22)00742-4 DE-627 ger DE-627 rakwb eng 333.7 VZ 610 VZ 630 640 610 VZ Tian, Xin verfasserin aut Influence of multi-layer TiO2/SnO2 heterojunctions on fast and sensitive ethanol detection 2023transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The fabrication of MEMS gas sensors based on SMO sensing materials has become popular in commercials. However, due to the dense surface, the MEMS gas sensor based on sputtered sensing film always shows low sensitivity and slow response. Herein, we report multi-layer TiO2/SnO2 heterojunctions sensing film deposited by sputtering techniques. SnO2 and TiO2 thin film have an approximate thickness of 265.34 nm and 66.28 nm, respectively. The effects of different-layer TiO2/SnO2 heterojunctions and annealing temperatures to sensing film on gas sensing properties were investigated. The different samples with the same surface and annealed temperature exhibit different gas sensing properties, which indicates that more layer heterojunctions may decrease the positive effects of heterojunctions and oxygen adsorptions on the gas sensing properties. The two-layer TiO2/SnO2 heterojunctions sensing film with an annealed temperature of 400 °C in air obtain the best gas sensing properties, which has a response value of 7.54 and response/recovery time of 33/298 s to 50 ppm ethanol at 260 °C. Furthermore, the MEMS gas sensor based on two-layer TiO2/SnO2 heterojunctions sensing film can detect ethanol ranging from 1 ppm to 1000 ppm with excellent linearity. The fabrication of MEMS gas sensors based on SMO sensing materials has become popular in commercials. However, due to the dense surface, the MEMS gas sensor based on sputtered sensing film always shows low sensitivity and slow response. Herein, we report multi-layer TiO2/SnO2 heterojunctions sensing film deposited by sputtering techniques. SnO2 and TiO2 thin film have an approximate thickness of 265.34 nm and 66.28 nm, respectively. The effects of different-layer TiO2/SnO2 heterojunctions and annealing temperatures to sensing film on gas sensing properties were investigated. The different samples with the same surface and annealed temperature exhibit different gas sensing properties, which indicates that more layer heterojunctions may decrease the positive effects of heterojunctions and oxygen adsorptions on the gas sensing properties. The two-layer TiO2/SnO2 heterojunctions sensing film with an annealed temperature of 400 °C in air obtain the best gas sensing properties, which has a response value of 7.54 and response/recovery time of 33/298 s to 50 ppm ethanol at 260 °C. Furthermore, the MEMS gas sensor based on two-layer TiO2/SnO2 heterojunctions sensing film can detect ethanol ranging from 1 ppm to 1000 ppm with excellent linearity. TiO2/SnO2 sensing film Elsevier Ethanol Elsevier High sensitivity Elsevier Gas sensor Elsevier Sputtering Elsevier Multi-layer heterojunctions Elsevier Hu, Zonxin oth Wang, Tian oth Wang, Hairong oth Zhang, Qunming oth Wei, Xueyong oth Enthalten in Elsevier Science Reconstructing historical atmospheric mercury deposition in Western Europe using: Misten peat bog cores, Belgium 2013transfer abstract surface engineering, surface instrumentation & vacuum technology Amsterdam [u.a.] (DE-627)ELV011955074 volume:207 year:2023 pages:0 https://doi.org/10.1016/j.vacuum.2022.111620 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_22 GBV_ILN_40 AR 207 2023 0 |
allfields_unstemmed |
10.1016/j.vacuum.2022.111620 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001981.pica (DE-627)ELV059720840 (ELSEVIER)S0042-207X(22)00742-4 DE-627 ger DE-627 rakwb eng 333.7 VZ 610 VZ 630 640 610 VZ Tian, Xin verfasserin aut Influence of multi-layer TiO2/SnO2 heterojunctions on fast and sensitive ethanol detection 2023transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The fabrication of MEMS gas sensors based on SMO sensing materials has become popular in commercials. However, due to the dense surface, the MEMS gas sensor based on sputtered sensing film always shows low sensitivity and slow response. Herein, we report multi-layer TiO2/SnO2 heterojunctions sensing film deposited by sputtering techniques. SnO2 and TiO2 thin film have an approximate thickness of 265.34 nm and 66.28 nm, respectively. The effects of different-layer TiO2/SnO2 heterojunctions and annealing temperatures to sensing film on gas sensing properties were investigated. The different samples with the same surface and annealed temperature exhibit different gas sensing properties, which indicates that more layer heterojunctions may decrease the positive effects of heterojunctions and oxygen adsorptions on the gas sensing properties. The two-layer TiO2/SnO2 heterojunctions sensing film with an annealed temperature of 400 °C in air obtain the best gas sensing properties, which has a response value of 7.54 and response/recovery time of 33/298 s to 50 ppm ethanol at 260 °C. Furthermore, the MEMS gas sensor based on two-layer TiO2/SnO2 heterojunctions sensing film can detect ethanol ranging from 1 ppm to 1000 ppm with excellent linearity. The fabrication of MEMS gas sensors based on SMO sensing materials has become popular in commercials. However, due to the dense surface, the MEMS gas sensor based on sputtered sensing film always shows low sensitivity and slow response. Herein, we report multi-layer TiO2/SnO2 heterojunctions sensing film deposited by sputtering techniques. SnO2 and TiO2 thin film have an approximate thickness of 265.34 nm and 66.28 nm, respectively. The effects of different-layer TiO2/SnO2 heterojunctions and annealing temperatures to sensing film on gas sensing properties were investigated. The different samples with the same surface and annealed temperature exhibit different gas sensing properties, which indicates that more layer heterojunctions may decrease the positive effects of heterojunctions and oxygen adsorptions on the gas sensing properties. The two-layer TiO2/SnO2 heterojunctions sensing film with an annealed temperature of 400 °C in air obtain the best gas sensing properties, which has a response value of 7.54 and response/recovery time of 33/298 s to 50 ppm ethanol at 260 °C. Furthermore, the MEMS gas sensor based on two-layer TiO2/SnO2 heterojunctions sensing film can detect ethanol ranging from 1 ppm to 1000 ppm with excellent linearity. TiO2/SnO2 sensing film Elsevier Ethanol Elsevier High sensitivity Elsevier Gas sensor Elsevier Sputtering Elsevier Multi-layer heterojunctions Elsevier Hu, Zonxin oth Wang, Tian oth Wang, Hairong oth Zhang, Qunming oth Wei, Xueyong oth Enthalten in Elsevier Science Reconstructing historical atmospheric mercury deposition in Western Europe using: Misten peat bog cores, Belgium 2013transfer abstract surface engineering, surface instrumentation & vacuum technology Amsterdam [u.a.] (DE-627)ELV011955074 volume:207 year:2023 pages:0 https://doi.org/10.1016/j.vacuum.2022.111620 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_22 GBV_ILN_40 AR 207 2023 0 |
allfieldsGer |
10.1016/j.vacuum.2022.111620 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001981.pica (DE-627)ELV059720840 (ELSEVIER)S0042-207X(22)00742-4 DE-627 ger DE-627 rakwb eng 333.7 VZ 610 VZ 630 640 610 VZ Tian, Xin verfasserin aut Influence of multi-layer TiO2/SnO2 heterojunctions on fast and sensitive ethanol detection 2023transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The fabrication of MEMS gas sensors based on SMO sensing materials has become popular in commercials. However, due to the dense surface, the MEMS gas sensor based on sputtered sensing film always shows low sensitivity and slow response. Herein, we report multi-layer TiO2/SnO2 heterojunctions sensing film deposited by sputtering techniques. SnO2 and TiO2 thin film have an approximate thickness of 265.34 nm and 66.28 nm, respectively. The effects of different-layer TiO2/SnO2 heterojunctions and annealing temperatures to sensing film on gas sensing properties were investigated. The different samples with the same surface and annealed temperature exhibit different gas sensing properties, which indicates that more layer heterojunctions may decrease the positive effects of heterojunctions and oxygen adsorptions on the gas sensing properties. The two-layer TiO2/SnO2 heterojunctions sensing film with an annealed temperature of 400 °C in air obtain the best gas sensing properties, which has a response value of 7.54 and response/recovery time of 33/298 s to 50 ppm ethanol at 260 °C. Furthermore, the MEMS gas sensor based on two-layer TiO2/SnO2 heterojunctions sensing film can detect ethanol ranging from 1 ppm to 1000 ppm with excellent linearity. The fabrication of MEMS gas sensors based on SMO sensing materials has become popular in commercials. However, due to the dense surface, the MEMS gas sensor based on sputtered sensing film always shows low sensitivity and slow response. Herein, we report multi-layer TiO2/SnO2 heterojunctions sensing film deposited by sputtering techniques. SnO2 and TiO2 thin film have an approximate thickness of 265.34 nm and 66.28 nm, respectively. The effects of different-layer TiO2/SnO2 heterojunctions and annealing temperatures to sensing film on gas sensing properties were investigated. The different samples with the same surface and annealed temperature exhibit different gas sensing properties, which indicates that more layer heterojunctions may decrease the positive effects of heterojunctions and oxygen adsorptions on the gas sensing properties. The two-layer TiO2/SnO2 heterojunctions sensing film with an annealed temperature of 400 °C in air obtain the best gas sensing properties, which has a response value of 7.54 and response/recovery time of 33/298 s to 50 ppm ethanol at 260 °C. Furthermore, the MEMS gas sensor based on two-layer TiO2/SnO2 heterojunctions sensing film can detect ethanol ranging from 1 ppm to 1000 ppm with excellent linearity. TiO2/SnO2 sensing film Elsevier Ethanol Elsevier High sensitivity Elsevier Gas sensor Elsevier Sputtering Elsevier Multi-layer heterojunctions Elsevier Hu, Zonxin oth Wang, Tian oth Wang, Hairong oth Zhang, Qunming oth Wei, Xueyong oth Enthalten in Elsevier Science Reconstructing historical atmospheric mercury deposition in Western Europe using: Misten peat bog cores, Belgium 2013transfer abstract surface engineering, surface instrumentation & vacuum technology Amsterdam [u.a.] (DE-627)ELV011955074 volume:207 year:2023 pages:0 https://doi.org/10.1016/j.vacuum.2022.111620 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_22 GBV_ILN_40 AR 207 2023 0 |
allfieldsSound |
10.1016/j.vacuum.2022.111620 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001981.pica (DE-627)ELV059720840 (ELSEVIER)S0042-207X(22)00742-4 DE-627 ger DE-627 rakwb eng 333.7 VZ 610 VZ 630 640 610 VZ Tian, Xin verfasserin aut Influence of multi-layer TiO2/SnO2 heterojunctions on fast and sensitive ethanol detection 2023transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The fabrication of MEMS gas sensors based on SMO sensing materials has become popular in commercials. However, due to the dense surface, the MEMS gas sensor based on sputtered sensing film always shows low sensitivity and slow response. Herein, we report multi-layer TiO2/SnO2 heterojunctions sensing film deposited by sputtering techniques. SnO2 and TiO2 thin film have an approximate thickness of 265.34 nm and 66.28 nm, respectively. The effects of different-layer TiO2/SnO2 heterojunctions and annealing temperatures to sensing film on gas sensing properties were investigated. The different samples with the same surface and annealed temperature exhibit different gas sensing properties, which indicates that more layer heterojunctions may decrease the positive effects of heterojunctions and oxygen adsorptions on the gas sensing properties. The two-layer TiO2/SnO2 heterojunctions sensing film with an annealed temperature of 400 °C in air obtain the best gas sensing properties, which has a response value of 7.54 and response/recovery time of 33/298 s to 50 ppm ethanol at 260 °C. Furthermore, the MEMS gas sensor based on two-layer TiO2/SnO2 heterojunctions sensing film can detect ethanol ranging from 1 ppm to 1000 ppm with excellent linearity. The fabrication of MEMS gas sensors based on SMO sensing materials has become popular in commercials. However, due to the dense surface, the MEMS gas sensor based on sputtered sensing film always shows low sensitivity and slow response. Herein, we report multi-layer TiO2/SnO2 heterojunctions sensing film deposited by sputtering techniques. SnO2 and TiO2 thin film have an approximate thickness of 265.34 nm and 66.28 nm, respectively. The effects of different-layer TiO2/SnO2 heterojunctions and annealing temperatures to sensing film on gas sensing properties were investigated. The different samples with the same surface and annealed temperature exhibit different gas sensing properties, which indicates that more layer heterojunctions may decrease the positive effects of heterojunctions and oxygen adsorptions on the gas sensing properties. The two-layer TiO2/SnO2 heterojunctions sensing film with an annealed temperature of 400 °C in air obtain the best gas sensing properties, which has a response value of 7.54 and response/recovery time of 33/298 s to 50 ppm ethanol at 260 °C. Furthermore, the MEMS gas sensor based on two-layer TiO2/SnO2 heterojunctions sensing film can detect ethanol ranging from 1 ppm to 1000 ppm with excellent linearity. TiO2/SnO2 sensing film Elsevier Ethanol Elsevier High sensitivity Elsevier Gas sensor Elsevier Sputtering Elsevier Multi-layer heterojunctions Elsevier Hu, Zonxin oth Wang, Tian oth Wang, Hairong oth Zhang, Qunming oth Wei, Xueyong oth Enthalten in Elsevier Science Reconstructing historical atmospheric mercury deposition in Western Europe using: Misten peat bog cores, Belgium 2013transfer abstract surface engineering, surface instrumentation & vacuum technology Amsterdam [u.a.] (DE-627)ELV011955074 volume:207 year:2023 pages:0 https://doi.org/10.1016/j.vacuum.2022.111620 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_22 GBV_ILN_40 AR 207 2023 0 |
language |
English |
source |
Enthalten in Reconstructing historical atmospheric mercury deposition in Western Europe using: Misten peat bog cores, Belgium Amsterdam [u.a.] volume:207 year:2023 pages:0 |
sourceStr |
Enthalten in Reconstructing historical atmospheric mercury deposition in Western Europe using: Misten peat bog cores, Belgium Amsterdam [u.a.] volume:207 year:2023 pages:0 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
TiO2/SnO2 sensing film Ethanol High sensitivity Gas sensor Sputtering Multi-layer heterojunctions |
dewey-raw |
333.7 |
isfreeaccess_bool |
false |
container_title |
Reconstructing historical atmospheric mercury deposition in Western Europe using: Misten peat bog cores, Belgium |
authorswithroles_txt_mv |
Tian, Xin @@aut@@ Hu, Zonxin @@oth@@ Wang, Tian @@oth@@ Wang, Hairong @@oth@@ Zhang, Qunming @@oth@@ Wei, Xueyong @@oth@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
ELV011955074 |
dewey-sort |
3333.7 |
id |
ELV059720840 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV059720840</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626053747.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">221219s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.vacuum.2022.111620</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001981.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV059720840</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0042-207X(22)00742-4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">333.7</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">630</subfield><subfield code="a">640</subfield><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tian, Xin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Influence of multi-layer TiO2/SnO2 heterojunctions on fast and sensitive ethanol detection</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The fabrication of MEMS gas sensors based on SMO sensing materials has become popular in commercials. However, due to the dense surface, the MEMS gas sensor based on sputtered sensing film always shows low sensitivity and slow response. Herein, we report multi-layer TiO2/SnO2 heterojunctions sensing film deposited by sputtering techniques. SnO2 and TiO2 thin film have an approximate thickness of 265.34 nm and 66.28 nm, respectively. The effects of different-layer TiO2/SnO2 heterojunctions and annealing temperatures to sensing film on gas sensing properties were investigated. The different samples with the same surface and annealed temperature exhibit different gas sensing properties, which indicates that more layer heterojunctions may decrease the positive effects of heterojunctions and oxygen adsorptions on the gas sensing properties. The two-layer TiO2/SnO2 heterojunctions sensing film with an annealed temperature of 400 °C in air obtain the best gas sensing properties, which has a response value of 7.54 and response/recovery time of 33/298 s to 50 ppm ethanol at 260 °C. Furthermore, the MEMS gas sensor based on two-layer TiO2/SnO2 heterojunctions sensing film can detect ethanol ranging from 1 ppm to 1000 ppm with excellent linearity.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The fabrication of MEMS gas sensors based on SMO sensing materials has become popular in commercials. However, due to the dense surface, the MEMS gas sensor based on sputtered sensing film always shows low sensitivity and slow response. Herein, we report multi-layer TiO2/SnO2 heterojunctions sensing film deposited by sputtering techniques. SnO2 and TiO2 thin film have an approximate thickness of 265.34 nm and 66.28 nm, respectively. The effects of different-layer TiO2/SnO2 heterojunctions and annealing temperatures to sensing film on gas sensing properties were investigated. The different samples with the same surface and annealed temperature exhibit different gas sensing properties, which indicates that more layer heterojunctions may decrease the positive effects of heterojunctions and oxygen adsorptions on the gas sensing properties. The two-layer TiO2/SnO2 heterojunctions sensing film with an annealed temperature of 400 °C in air obtain the best gas sensing properties, which has a response value of 7.54 and response/recovery time of 33/298 s to 50 ppm ethanol at 260 °C. Furthermore, the MEMS gas sensor based on two-layer TiO2/SnO2 heterojunctions sensing film can detect ethanol ranging from 1 ppm to 1000 ppm with excellent linearity.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TiO2/SnO2 sensing film</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Ethanol</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">High sensitivity</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Gas sensor</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Sputtering</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Multi-layer heterojunctions</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hu, Zonxin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Tian</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Hairong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Qunming</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wei, Xueyong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="t">Reconstructing historical atmospheric mercury deposition in Western Europe using: Misten peat bog cores, Belgium</subfield><subfield code="d">2013transfer abstract</subfield><subfield code="d">surface engineering, surface instrumentation & vacuum technology</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV011955074</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:207</subfield><subfield code="g">year:2023</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.vacuum.2022.111620</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">207</subfield><subfield code="j">2023</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
author |
Tian, Xin |
spellingShingle |
Tian, Xin ddc 333.7 ddc 610 ddc 630 Elsevier TiO2/SnO2 sensing film Elsevier Ethanol Elsevier High sensitivity Elsevier Gas sensor Elsevier Sputtering Elsevier Multi-layer heterojunctions Influence of multi-layer TiO2/SnO2 heterojunctions on fast and sensitive ethanol detection |
authorStr |
Tian, Xin |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV011955074 |
format |
electronic Article |
dewey-ones |
333 - Economics of land & energy 610 - Medicine & health 630 - Agriculture & related technologies 640 - Home & family management |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
333.7 VZ 610 VZ 630 640 610 VZ Influence of multi-layer TiO2/SnO2 heterojunctions on fast and sensitive ethanol detection TiO2/SnO2 sensing film Elsevier Ethanol Elsevier High sensitivity Elsevier Gas sensor Elsevier Sputtering Elsevier Multi-layer heterojunctions Elsevier |
topic |
ddc 333.7 ddc 610 ddc 630 Elsevier TiO2/SnO2 sensing film Elsevier Ethanol Elsevier High sensitivity Elsevier Gas sensor Elsevier Sputtering Elsevier Multi-layer heterojunctions |
topic_unstemmed |
ddc 333.7 ddc 610 ddc 630 Elsevier TiO2/SnO2 sensing film Elsevier Ethanol Elsevier High sensitivity Elsevier Gas sensor Elsevier Sputtering Elsevier Multi-layer heterojunctions |
topic_browse |
ddc 333.7 ddc 610 ddc 630 Elsevier TiO2/SnO2 sensing film Elsevier Ethanol Elsevier High sensitivity Elsevier Gas sensor Elsevier Sputtering Elsevier Multi-layer heterojunctions |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
z h zh t w tw h w hw q z qz x w xw |
hierarchy_parent_title |
Reconstructing historical atmospheric mercury deposition in Western Europe using: Misten peat bog cores, Belgium |
hierarchy_parent_id |
ELV011955074 |
dewey-tens |
330 - Economics 610 - Medicine & health 630 - Agriculture 640 - Home & family management |
hierarchy_top_title |
Reconstructing historical atmospheric mercury deposition in Western Europe using: Misten peat bog cores, Belgium |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV011955074 |
title |
Influence of multi-layer TiO2/SnO2 heterojunctions on fast and sensitive ethanol detection |
ctrlnum |
(DE-627)ELV059720840 (ELSEVIER)S0042-207X(22)00742-4 |
title_full |
Influence of multi-layer TiO2/SnO2 heterojunctions on fast and sensitive ethanol detection |
author_sort |
Tian, Xin |
journal |
Reconstructing historical atmospheric mercury deposition in Western Europe using: Misten peat bog cores, Belgium |
journalStr |
Reconstructing historical atmospheric mercury deposition in Western Europe using: Misten peat bog cores, Belgium |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
300 - Social sciences 600 - Technology |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
container_start_page |
0 |
author_browse |
Tian, Xin |
container_volume |
207 |
class |
333.7 VZ 610 VZ 630 640 610 VZ |
format_se |
Elektronische Aufsätze |
author-letter |
Tian, Xin |
doi_str_mv |
10.1016/j.vacuum.2022.111620 |
dewey-full |
333.7 610 630 640 |
title_sort |
influence of multi-layer tio2/sno2 heterojunctions on fast and sensitive ethanol detection |
title_auth |
Influence of multi-layer TiO2/SnO2 heterojunctions on fast and sensitive ethanol detection |
abstract |
The fabrication of MEMS gas sensors based on SMO sensing materials has become popular in commercials. However, due to the dense surface, the MEMS gas sensor based on sputtered sensing film always shows low sensitivity and slow response. Herein, we report multi-layer TiO2/SnO2 heterojunctions sensing film deposited by sputtering techniques. SnO2 and TiO2 thin film have an approximate thickness of 265.34 nm and 66.28 nm, respectively. The effects of different-layer TiO2/SnO2 heterojunctions and annealing temperatures to sensing film on gas sensing properties were investigated. The different samples with the same surface and annealed temperature exhibit different gas sensing properties, which indicates that more layer heterojunctions may decrease the positive effects of heterojunctions and oxygen adsorptions on the gas sensing properties. The two-layer TiO2/SnO2 heterojunctions sensing film with an annealed temperature of 400 °C in air obtain the best gas sensing properties, which has a response value of 7.54 and response/recovery time of 33/298 s to 50 ppm ethanol at 260 °C. Furthermore, the MEMS gas sensor based on two-layer TiO2/SnO2 heterojunctions sensing film can detect ethanol ranging from 1 ppm to 1000 ppm with excellent linearity. |
abstractGer |
The fabrication of MEMS gas sensors based on SMO sensing materials has become popular in commercials. However, due to the dense surface, the MEMS gas sensor based on sputtered sensing film always shows low sensitivity and slow response. Herein, we report multi-layer TiO2/SnO2 heterojunctions sensing film deposited by sputtering techniques. SnO2 and TiO2 thin film have an approximate thickness of 265.34 nm and 66.28 nm, respectively. The effects of different-layer TiO2/SnO2 heterojunctions and annealing temperatures to sensing film on gas sensing properties were investigated. The different samples with the same surface and annealed temperature exhibit different gas sensing properties, which indicates that more layer heterojunctions may decrease the positive effects of heterojunctions and oxygen adsorptions on the gas sensing properties. The two-layer TiO2/SnO2 heterojunctions sensing film with an annealed temperature of 400 °C in air obtain the best gas sensing properties, which has a response value of 7.54 and response/recovery time of 33/298 s to 50 ppm ethanol at 260 °C. Furthermore, the MEMS gas sensor based on two-layer TiO2/SnO2 heterojunctions sensing film can detect ethanol ranging from 1 ppm to 1000 ppm with excellent linearity. |
abstract_unstemmed |
The fabrication of MEMS gas sensors based on SMO sensing materials has become popular in commercials. However, due to the dense surface, the MEMS gas sensor based on sputtered sensing film always shows low sensitivity and slow response. Herein, we report multi-layer TiO2/SnO2 heterojunctions sensing film deposited by sputtering techniques. SnO2 and TiO2 thin film have an approximate thickness of 265.34 nm and 66.28 nm, respectively. The effects of different-layer TiO2/SnO2 heterojunctions and annealing temperatures to sensing film on gas sensing properties were investigated. The different samples with the same surface and annealed temperature exhibit different gas sensing properties, which indicates that more layer heterojunctions may decrease the positive effects of heterojunctions and oxygen adsorptions on the gas sensing properties. The two-layer TiO2/SnO2 heterojunctions sensing film with an annealed temperature of 400 °C in air obtain the best gas sensing properties, which has a response value of 7.54 and response/recovery time of 33/298 s to 50 ppm ethanol at 260 °C. Furthermore, the MEMS gas sensor based on two-layer TiO2/SnO2 heterojunctions sensing film can detect ethanol ranging from 1 ppm to 1000 ppm with excellent linearity. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_22 GBV_ILN_40 |
title_short |
Influence of multi-layer TiO2/SnO2 heterojunctions on fast and sensitive ethanol detection |
url |
https://doi.org/10.1016/j.vacuum.2022.111620 |
remote_bool |
true |
author2 |
Hu, Zonxin Wang, Tian Wang, Hairong Zhang, Qunming Wei, Xueyong |
author2Str |
Hu, Zonxin Wang, Tian Wang, Hairong Zhang, Qunming Wei, Xueyong |
ppnlink |
ELV011955074 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth |
doi_str |
10.1016/j.vacuum.2022.111620 |
up_date |
2024-07-06T22:51:21.920Z |
_version_ |
1803871879872643072 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV059720840</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626053747.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">221219s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.vacuum.2022.111620</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001981.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV059720840</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0042-207X(22)00742-4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">333.7</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">630</subfield><subfield code="a">640</subfield><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tian, Xin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Influence of multi-layer TiO2/SnO2 heterojunctions on fast and sensitive ethanol detection</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The fabrication of MEMS gas sensors based on SMO sensing materials has become popular in commercials. However, due to the dense surface, the MEMS gas sensor based on sputtered sensing film always shows low sensitivity and slow response. Herein, we report multi-layer TiO2/SnO2 heterojunctions sensing film deposited by sputtering techniques. SnO2 and TiO2 thin film have an approximate thickness of 265.34 nm and 66.28 nm, respectively. The effects of different-layer TiO2/SnO2 heterojunctions and annealing temperatures to sensing film on gas sensing properties were investigated. The different samples with the same surface and annealed temperature exhibit different gas sensing properties, which indicates that more layer heterojunctions may decrease the positive effects of heterojunctions and oxygen adsorptions on the gas sensing properties. The two-layer TiO2/SnO2 heterojunctions sensing film with an annealed temperature of 400 °C in air obtain the best gas sensing properties, which has a response value of 7.54 and response/recovery time of 33/298 s to 50 ppm ethanol at 260 °C. Furthermore, the MEMS gas sensor based on two-layer TiO2/SnO2 heterojunctions sensing film can detect ethanol ranging from 1 ppm to 1000 ppm with excellent linearity.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The fabrication of MEMS gas sensors based on SMO sensing materials has become popular in commercials. However, due to the dense surface, the MEMS gas sensor based on sputtered sensing film always shows low sensitivity and slow response. Herein, we report multi-layer TiO2/SnO2 heterojunctions sensing film deposited by sputtering techniques. SnO2 and TiO2 thin film have an approximate thickness of 265.34 nm and 66.28 nm, respectively. The effects of different-layer TiO2/SnO2 heterojunctions and annealing temperatures to sensing film on gas sensing properties were investigated. The different samples with the same surface and annealed temperature exhibit different gas sensing properties, which indicates that more layer heterojunctions may decrease the positive effects of heterojunctions and oxygen adsorptions on the gas sensing properties. The two-layer TiO2/SnO2 heterojunctions sensing film with an annealed temperature of 400 °C in air obtain the best gas sensing properties, which has a response value of 7.54 and response/recovery time of 33/298 s to 50 ppm ethanol at 260 °C. Furthermore, the MEMS gas sensor based on two-layer TiO2/SnO2 heterojunctions sensing film can detect ethanol ranging from 1 ppm to 1000 ppm with excellent linearity.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TiO2/SnO2 sensing film</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Ethanol</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">High sensitivity</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Gas sensor</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Sputtering</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Multi-layer heterojunctions</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hu, Zonxin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Tian</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Hairong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Qunming</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wei, Xueyong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="t">Reconstructing historical atmospheric mercury deposition in Western Europe using: Misten peat bog cores, Belgium</subfield><subfield code="d">2013transfer abstract</subfield><subfield code="d">surface engineering, surface instrumentation & vacuum technology</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV011955074</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:207</subfield><subfield code="g">year:2023</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.vacuum.2022.111620</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">207</subfield><subfield code="j">2023</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
score |
7.4004793 |