Fabricating a multi-component microfluidic system for exercise-induced endothelial cell mechanobiology guided by hemodynamic similarity
Generating precise in vivo arterial endothelial hemodynamic microenvironments using microfluidics is essential for exploring endothelial mechanobiology. However, a hemodynamic principle guiding the fabrication of microfluidic systems is still lacking. We propose a hemodynamic similarity principle fo...
Ausführliche Beschreibung
Autor*in: |
Na, Jing-Tong [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023transfer abstract |
---|
Schlagwörter: |
Multi-component microfluidic system distributed parameter model |
---|
Übergeordnetes Werk: |
Enthalten in: Optical, water splitting and wettability of titanium nitride/titanium oxynitride bilayer films for hydrogen generation and solar cells applications - Mohamed, S.H. ELSEVIER, 2019, the international journal of pure and applied analytical chemistry, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:253 ; year:2023 ; day:1 ; month:02 ; pages:0 |
Links: |
---|
DOI / URN: |
10.1016/j.talanta.2022.123933 |
---|
Katalog-ID: |
ELV05975690X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV05975690X | ||
003 | DE-627 | ||
005 | 20230626053852.0 | ||
007 | cr uuu---uuuuu | ||
008 | 221219s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.talanta.2022.123933 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001983.pica |
035 | |a (DE-627)ELV05975690X | ||
035 | |a (ELSEVIER)S0039-9140(22)00729-9 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 620 |q VZ |
084 | |a 53.56 |2 bkl | ||
100 | 1 | |a Na, Jing-Tong |e verfasserin |4 aut | |
245 | 1 | 0 | |a Fabricating a multi-component microfluidic system for exercise-induced endothelial cell mechanobiology guided by hemodynamic similarity |
264 | 1 | |c 2023transfer abstract | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Generating precise in vivo arterial endothelial hemodynamic microenvironments using microfluidics is essential for exploring endothelial mechanobiology. However, a hemodynamic principle guiding the fabrication of microfluidic systems is still lacking. We propose a hemodynamic similarity principle for quickly obtaining the input impedance of the microfluidic system in vitro derived from that of the arterial system in vivo to precisely generate the desired endothelial hemodynamic microenvironments. First, based on the equivalent of blood pressure (BP) and wall shear stress (WSS) waveforms, we establish a hemodynamic similarity principle to efficiently map the input impedance in vivo to that in vitro, after which the multi-component microfluidic system is designed and fabricated using a lumped parameter hemodynamic model. Second, numerical simulation and experimental studies are carried out to validate the performance of the designed microfluidic system. Finally, the intracellular Ca2+ responses after exposure to different intensities of exercise-induced BP and WSS waveforms are measured to improve the reliability of EC mechanobiological studies using the designed microfluidic system. Overall, the proposed hemodynamic similarity principle can guide the fabrication of a multi-component microfluidic system for endothelial cell mechanobiology. | ||
520 | |a Generating precise in vivo arterial endothelial hemodynamic microenvironments using microfluidics is essential for exploring endothelial mechanobiology. However, a hemodynamic principle guiding the fabrication of microfluidic systems is still lacking. We propose a hemodynamic similarity principle for quickly obtaining the input impedance of the microfluidic system in vitro derived from that of the arterial system in vivo to precisely generate the desired endothelial hemodynamic microenvironments. First, based on the equivalent of blood pressure (BP) and wall shear stress (WSS) waveforms, we establish a hemodynamic similarity principle to efficiently map the input impedance in vivo to that in vitro, after which the multi-component microfluidic system is designed and fabricated using a lumped parameter hemodynamic model. Second, numerical simulation and experimental studies are carried out to validate the performance of the designed microfluidic system. Finally, the intracellular Ca2+ responses after exposure to different intensities of exercise-induced BP and WSS waveforms are measured to improve the reliability of EC mechanobiological studies using the designed microfluidic system. Overall, the proposed hemodynamic similarity principle can guide the fabrication of a multi-component microfluidic system for endothelial cell mechanobiology. | ||
650 | 7 | |a Input impedance |2 Elsevier | |
650 | 7 | |a Hemodynamic similarity |2 Elsevier | |
650 | 7 | |a Lumped parameter model |2 Elsevier | |
650 | 7 | |a Multi-component microfluidic system distributed parameter model |2 Elsevier | |
650 | 7 | |a Endothelial cell mechanobiology |2 Elsevier | |
700 | 1 | |a Chun-Dong Xue |4 oth | |
700 | 1 | |a Wang, Yan-Xia |4 oth | |
700 | 1 | |a Li, Yong-Jiang |4 oth | |
700 | 1 | |a Wang, Yu |4 oth | |
700 | 1 | |a Liu, Bo |4 oth | |
700 | 1 | |a Qin, Kai-Rong |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Mohamed, S.H. ELSEVIER |t Optical, water splitting and wettability of titanium nitride/titanium oxynitride bilayer films for hydrogen generation and solar cells applications |d 2019 |d the international journal of pure and applied analytical chemistry |g Amsterdam [u.a.] |w (DE-627)ELV003060667 |
773 | 1 | 8 | |g volume:253 |g year:2023 |g day:1 |g month:02 |g pages:0 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.talanta.2022.123933 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
936 | b | k | |a 53.56 |j Halbleitertechnologie |q VZ |
951 | |a AR | ||
952 | |d 253 |j 2023 |b 1 |c 0201 |h 0 |
author_variant |
j t n jtn |
---|---|
matchkey_str |
najingtongchundongxuewangyanxialiyongjia:2023----:arctnautcmoetirfudcytmoeecsidcdnohlaclmcaoilg |
hierarchy_sort_str |
2023transfer abstract |
bklnumber |
53.56 |
publishDate |
2023 |
allfields |
10.1016/j.talanta.2022.123933 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001983.pica (DE-627)ELV05975690X (ELSEVIER)S0039-9140(22)00729-9 DE-627 ger DE-627 rakwb eng 530 620 VZ 53.56 bkl Na, Jing-Tong verfasserin aut Fabricating a multi-component microfluidic system for exercise-induced endothelial cell mechanobiology guided by hemodynamic similarity 2023transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Generating precise in vivo arterial endothelial hemodynamic microenvironments using microfluidics is essential for exploring endothelial mechanobiology. However, a hemodynamic principle guiding the fabrication of microfluidic systems is still lacking. We propose a hemodynamic similarity principle for quickly obtaining the input impedance of the microfluidic system in vitro derived from that of the arterial system in vivo to precisely generate the desired endothelial hemodynamic microenvironments. First, based on the equivalent of blood pressure (BP) and wall shear stress (WSS) waveforms, we establish a hemodynamic similarity principle to efficiently map the input impedance in vivo to that in vitro, after which the multi-component microfluidic system is designed and fabricated using a lumped parameter hemodynamic model. Second, numerical simulation and experimental studies are carried out to validate the performance of the designed microfluidic system. Finally, the intracellular Ca2+ responses after exposure to different intensities of exercise-induced BP and WSS waveforms are measured to improve the reliability of EC mechanobiological studies using the designed microfluidic system. Overall, the proposed hemodynamic similarity principle can guide the fabrication of a multi-component microfluidic system for endothelial cell mechanobiology. Generating precise in vivo arterial endothelial hemodynamic microenvironments using microfluidics is essential for exploring endothelial mechanobiology. However, a hemodynamic principle guiding the fabrication of microfluidic systems is still lacking. We propose a hemodynamic similarity principle for quickly obtaining the input impedance of the microfluidic system in vitro derived from that of the arterial system in vivo to precisely generate the desired endothelial hemodynamic microenvironments. First, based on the equivalent of blood pressure (BP) and wall shear stress (WSS) waveforms, we establish a hemodynamic similarity principle to efficiently map the input impedance in vivo to that in vitro, after which the multi-component microfluidic system is designed and fabricated using a lumped parameter hemodynamic model. Second, numerical simulation and experimental studies are carried out to validate the performance of the designed microfluidic system. Finally, the intracellular Ca2+ responses after exposure to different intensities of exercise-induced BP and WSS waveforms are measured to improve the reliability of EC mechanobiological studies using the designed microfluidic system. Overall, the proposed hemodynamic similarity principle can guide the fabrication of a multi-component microfluidic system for endothelial cell mechanobiology. Input impedance Elsevier Hemodynamic similarity Elsevier Lumped parameter model Elsevier Multi-component microfluidic system distributed parameter model Elsevier Endothelial cell mechanobiology Elsevier Chun-Dong Xue oth Wang, Yan-Xia oth Li, Yong-Jiang oth Wang, Yu oth Liu, Bo oth Qin, Kai-Rong oth Enthalten in Elsevier Science Mohamed, S.H. ELSEVIER Optical, water splitting and wettability of titanium nitride/titanium oxynitride bilayer films for hydrogen generation and solar cells applications 2019 the international journal of pure and applied analytical chemistry Amsterdam [u.a.] (DE-627)ELV003060667 volume:253 year:2023 day:1 month:02 pages:0 https://doi.org/10.1016/j.talanta.2022.123933 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 53.56 Halbleitertechnologie VZ AR 253 2023 1 0201 0 |
spelling |
10.1016/j.talanta.2022.123933 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001983.pica (DE-627)ELV05975690X (ELSEVIER)S0039-9140(22)00729-9 DE-627 ger DE-627 rakwb eng 530 620 VZ 53.56 bkl Na, Jing-Tong verfasserin aut Fabricating a multi-component microfluidic system for exercise-induced endothelial cell mechanobiology guided by hemodynamic similarity 2023transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Generating precise in vivo arterial endothelial hemodynamic microenvironments using microfluidics is essential for exploring endothelial mechanobiology. However, a hemodynamic principle guiding the fabrication of microfluidic systems is still lacking. We propose a hemodynamic similarity principle for quickly obtaining the input impedance of the microfluidic system in vitro derived from that of the arterial system in vivo to precisely generate the desired endothelial hemodynamic microenvironments. First, based on the equivalent of blood pressure (BP) and wall shear stress (WSS) waveforms, we establish a hemodynamic similarity principle to efficiently map the input impedance in vivo to that in vitro, after which the multi-component microfluidic system is designed and fabricated using a lumped parameter hemodynamic model. Second, numerical simulation and experimental studies are carried out to validate the performance of the designed microfluidic system. Finally, the intracellular Ca2+ responses after exposure to different intensities of exercise-induced BP and WSS waveforms are measured to improve the reliability of EC mechanobiological studies using the designed microfluidic system. Overall, the proposed hemodynamic similarity principle can guide the fabrication of a multi-component microfluidic system for endothelial cell mechanobiology. Generating precise in vivo arterial endothelial hemodynamic microenvironments using microfluidics is essential for exploring endothelial mechanobiology. However, a hemodynamic principle guiding the fabrication of microfluidic systems is still lacking. We propose a hemodynamic similarity principle for quickly obtaining the input impedance of the microfluidic system in vitro derived from that of the arterial system in vivo to precisely generate the desired endothelial hemodynamic microenvironments. First, based on the equivalent of blood pressure (BP) and wall shear stress (WSS) waveforms, we establish a hemodynamic similarity principle to efficiently map the input impedance in vivo to that in vitro, after which the multi-component microfluidic system is designed and fabricated using a lumped parameter hemodynamic model. Second, numerical simulation and experimental studies are carried out to validate the performance of the designed microfluidic system. Finally, the intracellular Ca2+ responses after exposure to different intensities of exercise-induced BP and WSS waveforms are measured to improve the reliability of EC mechanobiological studies using the designed microfluidic system. Overall, the proposed hemodynamic similarity principle can guide the fabrication of a multi-component microfluidic system for endothelial cell mechanobiology. Input impedance Elsevier Hemodynamic similarity Elsevier Lumped parameter model Elsevier Multi-component microfluidic system distributed parameter model Elsevier Endothelial cell mechanobiology Elsevier Chun-Dong Xue oth Wang, Yan-Xia oth Li, Yong-Jiang oth Wang, Yu oth Liu, Bo oth Qin, Kai-Rong oth Enthalten in Elsevier Science Mohamed, S.H. ELSEVIER Optical, water splitting and wettability of titanium nitride/titanium oxynitride bilayer films for hydrogen generation and solar cells applications 2019 the international journal of pure and applied analytical chemistry Amsterdam [u.a.] (DE-627)ELV003060667 volume:253 year:2023 day:1 month:02 pages:0 https://doi.org/10.1016/j.talanta.2022.123933 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 53.56 Halbleitertechnologie VZ AR 253 2023 1 0201 0 |
allfields_unstemmed |
10.1016/j.talanta.2022.123933 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001983.pica (DE-627)ELV05975690X (ELSEVIER)S0039-9140(22)00729-9 DE-627 ger DE-627 rakwb eng 530 620 VZ 53.56 bkl Na, Jing-Tong verfasserin aut Fabricating a multi-component microfluidic system for exercise-induced endothelial cell mechanobiology guided by hemodynamic similarity 2023transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Generating precise in vivo arterial endothelial hemodynamic microenvironments using microfluidics is essential for exploring endothelial mechanobiology. However, a hemodynamic principle guiding the fabrication of microfluidic systems is still lacking. We propose a hemodynamic similarity principle for quickly obtaining the input impedance of the microfluidic system in vitro derived from that of the arterial system in vivo to precisely generate the desired endothelial hemodynamic microenvironments. First, based on the equivalent of blood pressure (BP) and wall shear stress (WSS) waveforms, we establish a hemodynamic similarity principle to efficiently map the input impedance in vivo to that in vitro, after which the multi-component microfluidic system is designed and fabricated using a lumped parameter hemodynamic model. Second, numerical simulation and experimental studies are carried out to validate the performance of the designed microfluidic system. Finally, the intracellular Ca2+ responses after exposure to different intensities of exercise-induced BP and WSS waveforms are measured to improve the reliability of EC mechanobiological studies using the designed microfluidic system. Overall, the proposed hemodynamic similarity principle can guide the fabrication of a multi-component microfluidic system for endothelial cell mechanobiology. Generating precise in vivo arterial endothelial hemodynamic microenvironments using microfluidics is essential for exploring endothelial mechanobiology. However, a hemodynamic principle guiding the fabrication of microfluidic systems is still lacking. We propose a hemodynamic similarity principle for quickly obtaining the input impedance of the microfluidic system in vitro derived from that of the arterial system in vivo to precisely generate the desired endothelial hemodynamic microenvironments. First, based on the equivalent of blood pressure (BP) and wall shear stress (WSS) waveforms, we establish a hemodynamic similarity principle to efficiently map the input impedance in vivo to that in vitro, after which the multi-component microfluidic system is designed and fabricated using a lumped parameter hemodynamic model. Second, numerical simulation and experimental studies are carried out to validate the performance of the designed microfluidic system. Finally, the intracellular Ca2+ responses after exposure to different intensities of exercise-induced BP and WSS waveforms are measured to improve the reliability of EC mechanobiological studies using the designed microfluidic system. Overall, the proposed hemodynamic similarity principle can guide the fabrication of a multi-component microfluidic system for endothelial cell mechanobiology. Input impedance Elsevier Hemodynamic similarity Elsevier Lumped parameter model Elsevier Multi-component microfluidic system distributed parameter model Elsevier Endothelial cell mechanobiology Elsevier Chun-Dong Xue oth Wang, Yan-Xia oth Li, Yong-Jiang oth Wang, Yu oth Liu, Bo oth Qin, Kai-Rong oth Enthalten in Elsevier Science Mohamed, S.H. ELSEVIER Optical, water splitting and wettability of titanium nitride/titanium oxynitride bilayer films for hydrogen generation and solar cells applications 2019 the international journal of pure and applied analytical chemistry Amsterdam [u.a.] (DE-627)ELV003060667 volume:253 year:2023 day:1 month:02 pages:0 https://doi.org/10.1016/j.talanta.2022.123933 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 53.56 Halbleitertechnologie VZ AR 253 2023 1 0201 0 |
allfieldsGer |
10.1016/j.talanta.2022.123933 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001983.pica (DE-627)ELV05975690X (ELSEVIER)S0039-9140(22)00729-9 DE-627 ger DE-627 rakwb eng 530 620 VZ 53.56 bkl Na, Jing-Tong verfasserin aut Fabricating a multi-component microfluidic system for exercise-induced endothelial cell mechanobiology guided by hemodynamic similarity 2023transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Generating precise in vivo arterial endothelial hemodynamic microenvironments using microfluidics is essential for exploring endothelial mechanobiology. However, a hemodynamic principle guiding the fabrication of microfluidic systems is still lacking. We propose a hemodynamic similarity principle for quickly obtaining the input impedance of the microfluidic system in vitro derived from that of the arterial system in vivo to precisely generate the desired endothelial hemodynamic microenvironments. First, based on the equivalent of blood pressure (BP) and wall shear stress (WSS) waveforms, we establish a hemodynamic similarity principle to efficiently map the input impedance in vivo to that in vitro, after which the multi-component microfluidic system is designed and fabricated using a lumped parameter hemodynamic model. Second, numerical simulation and experimental studies are carried out to validate the performance of the designed microfluidic system. Finally, the intracellular Ca2+ responses after exposure to different intensities of exercise-induced BP and WSS waveforms are measured to improve the reliability of EC mechanobiological studies using the designed microfluidic system. Overall, the proposed hemodynamic similarity principle can guide the fabrication of a multi-component microfluidic system for endothelial cell mechanobiology. Generating precise in vivo arterial endothelial hemodynamic microenvironments using microfluidics is essential for exploring endothelial mechanobiology. However, a hemodynamic principle guiding the fabrication of microfluidic systems is still lacking. We propose a hemodynamic similarity principle for quickly obtaining the input impedance of the microfluidic system in vitro derived from that of the arterial system in vivo to precisely generate the desired endothelial hemodynamic microenvironments. First, based on the equivalent of blood pressure (BP) and wall shear stress (WSS) waveforms, we establish a hemodynamic similarity principle to efficiently map the input impedance in vivo to that in vitro, after which the multi-component microfluidic system is designed and fabricated using a lumped parameter hemodynamic model. Second, numerical simulation and experimental studies are carried out to validate the performance of the designed microfluidic system. Finally, the intracellular Ca2+ responses after exposure to different intensities of exercise-induced BP and WSS waveforms are measured to improve the reliability of EC mechanobiological studies using the designed microfluidic system. Overall, the proposed hemodynamic similarity principle can guide the fabrication of a multi-component microfluidic system for endothelial cell mechanobiology. Input impedance Elsevier Hemodynamic similarity Elsevier Lumped parameter model Elsevier Multi-component microfluidic system distributed parameter model Elsevier Endothelial cell mechanobiology Elsevier Chun-Dong Xue oth Wang, Yan-Xia oth Li, Yong-Jiang oth Wang, Yu oth Liu, Bo oth Qin, Kai-Rong oth Enthalten in Elsevier Science Mohamed, S.H. ELSEVIER Optical, water splitting and wettability of titanium nitride/titanium oxynitride bilayer films for hydrogen generation and solar cells applications 2019 the international journal of pure and applied analytical chemistry Amsterdam [u.a.] (DE-627)ELV003060667 volume:253 year:2023 day:1 month:02 pages:0 https://doi.org/10.1016/j.talanta.2022.123933 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 53.56 Halbleitertechnologie VZ AR 253 2023 1 0201 0 |
allfieldsSound |
10.1016/j.talanta.2022.123933 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001983.pica (DE-627)ELV05975690X (ELSEVIER)S0039-9140(22)00729-9 DE-627 ger DE-627 rakwb eng 530 620 VZ 53.56 bkl Na, Jing-Tong verfasserin aut Fabricating a multi-component microfluidic system for exercise-induced endothelial cell mechanobiology guided by hemodynamic similarity 2023transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Generating precise in vivo arterial endothelial hemodynamic microenvironments using microfluidics is essential for exploring endothelial mechanobiology. However, a hemodynamic principle guiding the fabrication of microfluidic systems is still lacking. We propose a hemodynamic similarity principle for quickly obtaining the input impedance of the microfluidic system in vitro derived from that of the arterial system in vivo to precisely generate the desired endothelial hemodynamic microenvironments. First, based on the equivalent of blood pressure (BP) and wall shear stress (WSS) waveforms, we establish a hemodynamic similarity principle to efficiently map the input impedance in vivo to that in vitro, after which the multi-component microfluidic system is designed and fabricated using a lumped parameter hemodynamic model. Second, numerical simulation and experimental studies are carried out to validate the performance of the designed microfluidic system. Finally, the intracellular Ca2+ responses after exposure to different intensities of exercise-induced BP and WSS waveforms are measured to improve the reliability of EC mechanobiological studies using the designed microfluidic system. Overall, the proposed hemodynamic similarity principle can guide the fabrication of a multi-component microfluidic system for endothelial cell mechanobiology. Generating precise in vivo arterial endothelial hemodynamic microenvironments using microfluidics is essential for exploring endothelial mechanobiology. However, a hemodynamic principle guiding the fabrication of microfluidic systems is still lacking. We propose a hemodynamic similarity principle for quickly obtaining the input impedance of the microfluidic system in vitro derived from that of the arterial system in vivo to precisely generate the desired endothelial hemodynamic microenvironments. First, based on the equivalent of blood pressure (BP) and wall shear stress (WSS) waveforms, we establish a hemodynamic similarity principle to efficiently map the input impedance in vivo to that in vitro, after which the multi-component microfluidic system is designed and fabricated using a lumped parameter hemodynamic model. Second, numerical simulation and experimental studies are carried out to validate the performance of the designed microfluidic system. Finally, the intracellular Ca2+ responses after exposure to different intensities of exercise-induced BP and WSS waveforms are measured to improve the reliability of EC mechanobiological studies using the designed microfluidic system. Overall, the proposed hemodynamic similarity principle can guide the fabrication of a multi-component microfluidic system for endothelial cell mechanobiology. Input impedance Elsevier Hemodynamic similarity Elsevier Lumped parameter model Elsevier Multi-component microfluidic system distributed parameter model Elsevier Endothelial cell mechanobiology Elsevier Chun-Dong Xue oth Wang, Yan-Xia oth Li, Yong-Jiang oth Wang, Yu oth Liu, Bo oth Qin, Kai-Rong oth Enthalten in Elsevier Science Mohamed, S.H. ELSEVIER Optical, water splitting and wettability of titanium nitride/titanium oxynitride bilayer films for hydrogen generation and solar cells applications 2019 the international journal of pure and applied analytical chemistry Amsterdam [u.a.] (DE-627)ELV003060667 volume:253 year:2023 day:1 month:02 pages:0 https://doi.org/10.1016/j.talanta.2022.123933 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 53.56 Halbleitertechnologie VZ AR 253 2023 1 0201 0 |
language |
English |
source |
Enthalten in Optical, water splitting and wettability of titanium nitride/titanium oxynitride bilayer films for hydrogen generation and solar cells applications Amsterdam [u.a.] volume:253 year:2023 day:1 month:02 pages:0 |
sourceStr |
Enthalten in Optical, water splitting and wettability of titanium nitride/titanium oxynitride bilayer films for hydrogen generation and solar cells applications Amsterdam [u.a.] volume:253 year:2023 day:1 month:02 pages:0 |
format_phy_str_mv |
Article |
bklname |
Halbleitertechnologie |
institution |
findex.gbv.de |
topic_facet |
Input impedance Hemodynamic similarity Lumped parameter model Multi-component microfluidic system distributed parameter model Endothelial cell mechanobiology |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Optical, water splitting and wettability of titanium nitride/titanium oxynitride bilayer films for hydrogen generation and solar cells applications |
authorswithroles_txt_mv |
Na, Jing-Tong @@aut@@ Chun-Dong Xue @@oth@@ Wang, Yan-Xia @@oth@@ Li, Yong-Jiang @@oth@@ Wang, Yu @@oth@@ Liu, Bo @@oth@@ Qin, Kai-Rong @@oth@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
ELV003060667 |
dewey-sort |
3530 |
id |
ELV05975690X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV05975690X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626053852.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">221219s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.talanta.2022.123933</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001983.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV05975690X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0039-9140(22)00729-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.56</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Na, Jing-Tong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fabricating a multi-component microfluidic system for exercise-induced endothelial cell mechanobiology guided by hemodynamic similarity</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Generating precise in vivo arterial endothelial hemodynamic microenvironments using microfluidics is essential for exploring endothelial mechanobiology. However, a hemodynamic principle guiding the fabrication of microfluidic systems is still lacking. We propose a hemodynamic similarity principle for quickly obtaining the input impedance of the microfluidic system in vitro derived from that of the arterial system in vivo to precisely generate the desired endothelial hemodynamic microenvironments. First, based on the equivalent of blood pressure (BP) and wall shear stress (WSS) waveforms, we establish a hemodynamic similarity principle to efficiently map the input impedance in vivo to that in vitro, after which the multi-component microfluidic system is designed and fabricated using a lumped parameter hemodynamic model. Second, numerical simulation and experimental studies are carried out to validate the performance of the designed microfluidic system. Finally, the intracellular Ca2+ responses after exposure to different intensities of exercise-induced BP and WSS waveforms are measured to improve the reliability of EC mechanobiological studies using the designed microfluidic system. Overall, the proposed hemodynamic similarity principle can guide the fabrication of a multi-component microfluidic system for endothelial cell mechanobiology.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Generating precise in vivo arterial endothelial hemodynamic microenvironments using microfluidics is essential for exploring endothelial mechanobiology. However, a hemodynamic principle guiding the fabrication of microfluidic systems is still lacking. We propose a hemodynamic similarity principle for quickly obtaining the input impedance of the microfluidic system in vitro derived from that of the arterial system in vivo to precisely generate the desired endothelial hemodynamic microenvironments. First, based on the equivalent of blood pressure (BP) and wall shear stress (WSS) waveforms, we establish a hemodynamic similarity principle to efficiently map the input impedance in vivo to that in vitro, after which the multi-component microfluidic system is designed and fabricated using a lumped parameter hemodynamic model. Second, numerical simulation and experimental studies are carried out to validate the performance of the designed microfluidic system. Finally, the intracellular Ca2+ responses after exposure to different intensities of exercise-induced BP and WSS waveforms are measured to improve the reliability of EC mechanobiological studies using the designed microfluidic system. Overall, the proposed hemodynamic similarity principle can guide the fabrication of a multi-component microfluidic system for endothelial cell mechanobiology.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Input impedance</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Hemodynamic similarity</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Lumped parameter model</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Multi-component microfluidic system distributed parameter model</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Endothelial cell mechanobiology</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chun-Dong Xue</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Yan-Xia</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Yong-Jiang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Yu</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Bo</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qin, Kai-Rong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Mohamed, S.H. ELSEVIER</subfield><subfield code="t">Optical, water splitting and wettability of titanium nitride/titanium oxynitride bilayer films for hydrogen generation and solar cells applications</subfield><subfield code="d">2019</subfield><subfield code="d">the international journal of pure and applied analytical chemistry</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV003060667</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:253</subfield><subfield code="g">year:2023</subfield><subfield code="g">day:1</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.talanta.2022.123933</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.56</subfield><subfield code="j">Halbleitertechnologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">253</subfield><subfield code="j">2023</subfield><subfield code="b">1</subfield><subfield code="c">0201</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
author |
Na, Jing-Tong |
spellingShingle |
Na, Jing-Tong ddc 530 bkl 53.56 Elsevier Input impedance Elsevier Hemodynamic similarity Elsevier Lumped parameter model Elsevier Multi-component microfluidic system distributed parameter model Elsevier Endothelial cell mechanobiology Fabricating a multi-component microfluidic system for exercise-induced endothelial cell mechanobiology guided by hemodynamic similarity |
authorStr |
Na, Jing-Tong |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV003060667 |
format |
electronic Article |
dewey-ones |
530 - Physics 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
530 620 VZ 53.56 bkl Fabricating a multi-component microfluidic system for exercise-induced endothelial cell mechanobiology guided by hemodynamic similarity Input impedance Elsevier Hemodynamic similarity Elsevier Lumped parameter model Elsevier Multi-component microfluidic system distributed parameter model Elsevier Endothelial cell mechanobiology Elsevier |
topic |
ddc 530 bkl 53.56 Elsevier Input impedance Elsevier Hemodynamic similarity Elsevier Lumped parameter model Elsevier Multi-component microfluidic system distributed parameter model Elsevier Endothelial cell mechanobiology |
topic_unstemmed |
ddc 530 bkl 53.56 Elsevier Input impedance Elsevier Hemodynamic similarity Elsevier Lumped parameter model Elsevier Multi-component microfluidic system distributed parameter model Elsevier Endothelial cell mechanobiology |
topic_browse |
ddc 530 bkl 53.56 Elsevier Input impedance Elsevier Hemodynamic similarity Elsevier Lumped parameter model Elsevier Multi-component microfluidic system distributed parameter model Elsevier Endothelial cell mechanobiology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
c d x cdx y x w yxw y j l yjl y w yw b l bl k r q krq |
hierarchy_parent_title |
Optical, water splitting and wettability of titanium nitride/titanium oxynitride bilayer films for hydrogen generation and solar cells applications |
hierarchy_parent_id |
ELV003060667 |
dewey-tens |
530 - Physics 620 - Engineering |
hierarchy_top_title |
Optical, water splitting and wettability of titanium nitride/titanium oxynitride bilayer films for hydrogen generation and solar cells applications |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV003060667 |
title |
Fabricating a multi-component microfluidic system for exercise-induced endothelial cell mechanobiology guided by hemodynamic similarity |
ctrlnum |
(DE-627)ELV05975690X (ELSEVIER)S0039-9140(22)00729-9 |
title_full |
Fabricating a multi-component microfluidic system for exercise-induced endothelial cell mechanobiology guided by hemodynamic similarity |
author_sort |
Na, Jing-Tong |
journal |
Optical, water splitting and wettability of titanium nitride/titanium oxynitride bilayer films for hydrogen generation and solar cells applications |
journalStr |
Optical, water splitting and wettability of titanium nitride/titanium oxynitride bilayer films for hydrogen generation and solar cells applications |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
container_start_page |
0 |
author_browse |
Na, Jing-Tong |
container_volume |
253 |
class |
530 620 VZ 53.56 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Na, Jing-Tong |
doi_str_mv |
10.1016/j.talanta.2022.123933 |
dewey-full |
530 620 |
title_sort |
fabricating a multi-component microfluidic system for exercise-induced endothelial cell mechanobiology guided by hemodynamic similarity |
title_auth |
Fabricating a multi-component microfluidic system for exercise-induced endothelial cell mechanobiology guided by hemodynamic similarity |
abstract |
Generating precise in vivo arterial endothelial hemodynamic microenvironments using microfluidics is essential for exploring endothelial mechanobiology. However, a hemodynamic principle guiding the fabrication of microfluidic systems is still lacking. We propose a hemodynamic similarity principle for quickly obtaining the input impedance of the microfluidic system in vitro derived from that of the arterial system in vivo to precisely generate the desired endothelial hemodynamic microenvironments. First, based on the equivalent of blood pressure (BP) and wall shear stress (WSS) waveforms, we establish a hemodynamic similarity principle to efficiently map the input impedance in vivo to that in vitro, after which the multi-component microfluidic system is designed and fabricated using a lumped parameter hemodynamic model. Second, numerical simulation and experimental studies are carried out to validate the performance of the designed microfluidic system. Finally, the intracellular Ca2+ responses after exposure to different intensities of exercise-induced BP and WSS waveforms are measured to improve the reliability of EC mechanobiological studies using the designed microfluidic system. Overall, the proposed hemodynamic similarity principle can guide the fabrication of a multi-component microfluidic system for endothelial cell mechanobiology. |
abstractGer |
Generating precise in vivo arterial endothelial hemodynamic microenvironments using microfluidics is essential for exploring endothelial mechanobiology. However, a hemodynamic principle guiding the fabrication of microfluidic systems is still lacking. We propose a hemodynamic similarity principle for quickly obtaining the input impedance of the microfluidic system in vitro derived from that of the arterial system in vivo to precisely generate the desired endothelial hemodynamic microenvironments. First, based on the equivalent of blood pressure (BP) and wall shear stress (WSS) waveforms, we establish a hemodynamic similarity principle to efficiently map the input impedance in vivo to that in vitro, after which the multi-component microfluidic system is designed and fabricated using a lumped parameter hemodynamic model. Second, numerical simulation and experimental studies are carried out to validate the performance of the designed microfluidic system. Finally, the intracellular Ca2+ responses after exposure to different intensities of exercise-induced BP and WSS waveforms are measured to improve the reliability of EC mechanobiological studies using the designed microfluidic system. Overall, the proposed hemodynamic similarity principle can guide the fabrication of a multi-component microfluidic system for endothelial cell mechanobiology. |
abstract_unstemmed |
Generating precise in vivo arterial endothelial hemodynamic microenvironments using microfluidics is essential for exploring endothelial mechanobiology. However, a hemodynamic principle guiding the fabrication of microfluidic systems is still lacking. We propose a hemodynamic similarity principle for quickly obtaining the input impedance of the microfluidic system in vitro derived from that of the arterial system in vivo to precisely generate the desired endothelial hemodynamic microenvironments. First, based on the equivalent of blood pressure (BP) and wall shear stress (WSS) waveforms, we establish a hemodynamic similarity principle to efficiently map the input impedance in vivo to that in vitro, after which the multi-component microfluidic system is designed and fabricated using a lumped parameter hemodynamic model. Second, numerical simulation and experimental studies are carried out to validate the performance of the designed microfluidic system. Finally, the intracellular Ca2+ responses after exposure to different intensities of exercise-induced BP and WSS waveforms are measured to improve the reliability of EC mechanobiological studies using the designed microfluidic system. Overall, the proposed hemodynamic similarity principle can guide the fabrication of a multi-component microfluidic system for endothelial cell mechanobiology. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U |
title_short |
Fabricating a multi-component microfluidic system for exercise-induced endothelial cell mechanobiology guided by hemodynamic similarity |
url |
https://doi.org/10.1016/j.talanta.2022.123933 |
remote_bool |
true |
author2 |
Chun-Dong Xue Wang, Yan-Xia Li, Yong-Jiang Wang, Yu Liu, Bo Qin, Kai-Rong |
author2Str |
Chun-Dong Xue Wang, Yan-Xia Li, Yong-Jiang Wang, Yu Liu, Bo Qin, Kai-Rong |
ppnlink |
ELV003060667 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth |
doi_str |
10.1016/j.talanta.2022.123933 |
up_date |
2024-07-06T22:57:51.328Z |
_version_ |
1803872288196526080 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV05975690X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626053852.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">221219s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.talanta.2022.123933</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001983.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV05975690X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0039-9140(22)00729-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.56</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Na, Jing-Tong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fabricating a multi-component microfluidic system for exercise-induced endothelial cell mechanobiology guided by hemodynamic similarity</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Generating precise in vivo arterial endothelial hemodynamic microenvironments using microfluidics is essential for exploring endothelial mechanobiology. However, a hemodynamic principle guiding the fabrication of microfluidic systems is still lacking. We propose a hemodynamic similarity principle for quickly obtaining the input impedance of the microfluidic system in vitro derived from that of the arterial system in vivo to precisely generate the desired endothelial hemodynamic microenvironments. First, based on the equivalent of blood pressure (BP) and wall shear stress (WSS) waveforms, we establish a hemodynamic similarity principle to efficiently map the input impedance in vivo to that in vitro, after which the multi-component microfluidic system is designed and fabricated using a lumped parameter hemodynamic model. Second, numerical simulation and experimental studies are carried out to validate the performance of the designed microfluidic system. Finally, the intracellular Ca2+ responses after exposure to different intensities of exercise-induced BP and WSS waveforms are measured to improve the reliability of EC mechanobiological studies using the designed microfluidic system. Overall, the proposed hemodynamic similarity principle can guide the fabrication of a multi-component microfluidic system for endothelial cell mechanobiology.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Generating precise in vivo arterial endothelial hemodynamic microenvironments using microfluidics is essential for exploring endothelial mechanobiology. However, a hemodynamic principle guiding the fabrication of microfluidic systems is still lacking. We propose a hemodynamic similarity principle for quickly obtaining the input impedance of the microfluidic system in vitro derived from that of the arterial system in vivo to precisely generate the desired endothelial hemodynamic microenvironments. First, based on the equivalent of blood pressure (BP) and wall shear stress (WSS) waveforms, we establish a hemodynamic similarity principle to efficiently map the input impedance in vivo to that in vitro, after which the multi-component microfluidic system is designed and fabricated using a lumped parameter hemodynamic model. Second, numerical simulation and experimental studies are carried out to validate the performance of the designed microfluidic system. Finally, the intracellular Ca2+ responses after exposure to different intensities of exercise-induced BP and WSS waveforms are measured to improve the reliability of EC mechanobiological studies using the designed microfluidic system. Overall, the proposed hemodynamic similarity principle can guide the fabrication of a multi-component microfluidic system for endothelial cell mechanobiology.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Input impedance</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Hemodynamic similarity</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Lumped parameter model</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Multi-component microfluidic system distributed parameter model</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Endothelial cell mechanobiology</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chun-Dong Xue</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Yan-Xia</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Yong-Jiang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Yu</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Bo</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qin, Kai-Rong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Mohamed, S.H. ELSEVIER</subfield><subfield code="t">Optical, water splitting and wettability of titanium nitride/titanium oxynitride bilayer films for hydrogen generation and solar cells applications</subfield><subfield code="d">2019</subfield><subfield code="d">the international journal of pure and applied analytical chemistry</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV003060667</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:253</subfield><subfield code="g">year:2023</subfield><subfield code="g">day:1</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.talanta.2022.123933</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.56</subfield><subfield code="j">Halbleitertechnologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">253</subfield><subfield code="j">2023</subfield><subfield code="b">1</subfield><subfield code="c">0201</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
score |
7.4014044 |