To improve device performance of self-driven heterojunction photodetectors by inserting a thin layer of silver nanoparticles into the electron-transporting layer
Lead selenide colloidal quantum dots (CQDs) are widely used in infrared photodetectors due to their size-dependent bandgap tunability, facile solution-processing techniques and low cost. Heterojunctions (HJs) are usually used to construct device to facilitate the separation of excitons and the trans...
Ausführliche Beschreibung
Autor*in: |
Sun, Feiyang [verfasserIn] Yang, Shengyi [verfasserIn] Zhang, Zhenheng [verfasserIn] Muhammad, Sulaman [verfasserIn] Ge, Zhenhua [verfasserIn] Hu, Jinming [verfasserIn] Li, Chunyang [verfasserIn] Wu, Ying [verfasserIn] Liu, Xiaoxuan [verfasserIn] Zou, Bingsuo [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Materials chemistry and physics - New York, NY [u.a.] : Elsevier, 1983, 306 |
---|---|
Übergeordnetes Werk: |
volume:306 |
DOI / URN: |
10.1016/j.matchemphys.2023.128096 |
---|
Katalog-ID: |
ELV059963662 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV059963662 | ||
003 | DE-627 | ||
005 | 20230927071633.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230628s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.matchemphys.2023.128096 |2 doi | |
035 | |a (DE-627)ELV059963662 | ||
035 | |a (ELSEVIER)S0254-0584(23)00804-0 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 540 |a 530 |q VZ |
084 | |a ASIEN |q DE-1a |2 fid | ||
084 | |a 6,25 |2 ssgn | ||
084 | |a 35.90 |2 bkl | ||
084 | |a 33.61 |2 bkl | ||
084 | |a 51.00 |2 bkl | ||
100 | 1 | |a Sun, Feiyang |e verfasserin |0 (orcid)0009-0005-2003-7104 |4 aut | |
245 | 1 | 0 | |a To improve device performance of self-driven heterojunction photodetectors by inserting a thin layer of silver nanoparticles into the electron-transporting layer |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Lead selenide colloidal quantum dots (CQDs) are widely used in infrared photodetectors due to their size-dependent bandgap tunability, facile solution-processing techniques and low cost. Heterojunctions (HJs) are usually used to construct device to facilitate the separation of excitons and the transportation of photogenerated carriers. Based on the solution-processed HJ photodetector ITO/ZnO/PbSe/Ag, in which PbSe CQDs layer acts as the active layer and ZnO nanoparticles (NPs) layer as the electron-transporting layer, a greatly enhanced-performance was obtained after inserting 10 nm Ag NPs layer within the ZnO NPs layer close to the HJ ZnO/PbSe interface. By optimizing the concentration of Ag NPs solutions and the location of Ag NPs thin layer in ZnO film, the maximum responsivity of the self-driven HJ photodetector ITO/ZnO(50 nm):Ag-NPs(10 nm):ZnO(50 nm)/PbSe(300 nm)/Ag reaches to 6.25 mA/W with a specific detectivity D* of 5.17 × 10 11 Jones under 8.5 μ W / c m ² 1550 nm illumination at zero bias. Further, the underlain physical mechanisms for the enhanced-performance were discussed in details. In this way, it provides a very efficient method for enhanced-performance self-driven HJ photodetectors by inserting a thin layer of metal NPs into the electron-transporting layer close to the heterojunction interface. | ||
650 | 4 | |a Colloidal quantum dots | |
650 | 4 | |a Ag nanoparticles | |
650 | 4 | |a Self-driven infrared photodetectors | |
650 | 4 | |a Heterojunction interface | |
650 | 4 | |a Electron-transporting layer | |
700 | 1 | |a Yang, Shengyi |e verfasserin |0 (orcid)0000-0001-5038-491X |4 aut | |
700 | 1 | |a Zhang, Zhenheng |e verfasserin |4 aut | |
700 | 1 | |a Muhammad, Sulaman |e verfasserin |4 aut | |
700 | 1 | |a Ge, Zhenhua |e verfasserin |4 aut | |
700 | 1 | |a Hu, Jinming |e verfasserin |4 aut | |
700 | 1 | |a Li, Chunyang |e verfasserin |4 aut | |
700 | 1 | |a Wu, Ying |e verfasserin |0 (orcid)0000-0002-5458-0165 |4 aut | |
700 | 1 | |a Liu, Xiaoxuan |e verfasserin |4 aut | |
700 | 1 | |a Zou, Bingsuo |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Materials chemistry and physics |d New York, NY [u.a.] : Elsevier, 1983 |g 306 |h Online-Ressource |w (DE-627)302719350 |w (DE-600)1491959-X |w (DE-576)096806435 |7 nnns |
773 | 1 | 8 | |g volume:306 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a FID-ASIEN | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 35.90 |j Festkörperchemie |q VZ |
936 | b | k | |a 33.61 |j Festkörperphysik |q VZ |
936 | b | k | |a 51.00 |j Werkstoffkunde: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 306 |
author_variant |
f s fs s y sy z z zz s m sm z g zg j h jh c l cl y w yw x l xl b z bz |
---|---|
matchkey_str |
sunfeiyangyangshengyizhangzhenhengmuhamm:2023----:omrvdvcpromnefefrvneeoucinhtdtcosynetnahnaeoslennpri |
hierarchy_sort_str |
2023 |
bklnumber |
35.90 33.61 51.00 |
publishDate |
2023 |
allfields |
10.1016/j.matchemphys.2023.128096 doi (DE-627)ELV059963662 (ELSEVIER)S0254-0584(23)00804-0 DE-627 ger DE-627 rda eng 540 530 VZ ASIEN DE-1a fid 6,25 ssgn 35.90 bkl 33.61 bkl 51.00 bkl Sun, Feiyang verfasserin (orcid)0009-0005-2003-7104 aut To improve device performance of self-driven heterojunction photodetectors by inserting a thin layer of silver nanoparticles into the electron-transporting layer 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Lead selenide colloidal quantum dots (CQDs) are widely used in infrared photodetectors due to their size-dependent bandgap tunability, facile solution-processing techniques and low cost. Heterojunctions (HJs) are usually used to construct device to facilitate the separation of excitons and the transportation of photogenerated carriers. Based on the solution-processed HJ photodetector ITO/ZnO/PbSe/Ag, in which PbSe CQDs layer acts as the active layer and ZnO nanoparticles (NPs) layer as the electron-transporting layer, a greatly enhanced-performance was obtained after inserting 10 nm Ag NPs layer within the ZnO NPs layer close to the HJ ZnO/PbSe interface. By optimizing the concentration of Ag NPs solutions and the location of Ag NPs thin layer in ZnO film, the maximum responsivity of the self-driven HJ photodetector ITO/ZnO(50 nm):Ag-NPs(10 nm):ZnO(50 nm)/PbSe(300 nm)/Ag reaches to 6.25 mA/W with a specific detectivity D* of 5.17 × 10 11 Jones under 8.5 μ W / c m ² 1550 nm illumination at zero bias. Further, the underlain physical mechanisms for the enhanced-performance were discussed in details. In this way, it provides a very efficient method for enhanced-performance self-driven HJ photodetectors by inserting a thin layer of metal NPs into the electron-transporting layer close to the heterojunction interface. Colloidal quantum dots Ag nanoparticles Self-driven infrared photodetectors Heterojunction interface Electron-transporting layer Yang, Shengyi verfasserin (orcid)0000-0001-5038-491X aut Zhang, Zhenheng verfasserin aut Muhammad, Sulaman verfasserin aut Ge, Zhenhua verfasserin aut Hu, Jinming verfasserin aut Li, Chunyang verfasserin aut Wu, Ying verfasserin (orcid)0000-0002-5458-0165 aut Liu, Xiaoxuan verfasserin aut Zou, Bingsuo verfasserin aut Enthalten in Materials chemistry and physics New York, NY [u.a.] : Elsevier, 1983 306 Online-Ressource (DE-627)302719350 (DE-600)1491959-X (DE-576)096806435 nnns volume:306 GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-ASIEN SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 35.90 Festkörperchemie VZ 33.61 Festkörperphysik VZ 51.00 Werkstoffkunde: Allgemeines VZ AR 306 |
spelling |
10.1016/j.matchemphys.2023.128096 doi (DE-627)ELV059963662 (ELSEVIER)S0254-0584(23)00804-0 DE-627 ger DE-627 rda eng 540 530 VZ ASIEN DE-1a fid 6,25 ssgn 35.90 bkl 33.61 bkl 51.00 bkl Sun, Feiyang verfasserin (orcid)0009-0005-2003-7104 aut To improve device performance of self-driven heterojunction photodetectors by inserting a thin layer of silver nanoparticles into the electron-transporting layer 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Lead selenide colloidal quantum dots (CQDs) are widely used in infrared photodetectors due to their size-dependent bandgap tunability, facile solution-processing techniques and low cost. Heterojunctions (HJs) are usually used to construct device to facilitate the separation of excitons and the transportation of photogenerated carriers. Based on the solution-processed HJ photodetector ITO/ZnO/PbSe/Ag, in which PbSe CQDs layer acts as the active layer and ZnO nanoparticles (NPs) layer as the electron-transporting layer, a greatly enhanced-performance was obtained after inserting 10 nm Ag NPs layer within the ZnO NPs layer close to the HJ ZnO/PbSe interface. By optimizing the concentration of Ag NPs solutions and the location of Ag NPs thin layer in ZnO film, the maximum responsivity of the self-driven HJ photodetector ITO/ZnO(50 nm):Ag-NPs(10 nm):ZnO(50 nm)/PbSe(300 nm)/Ag reaches to 6.25 mA/W with a specific detectivity D* of 5.17 × 10 11 Jones under 8.5 μ W / c m ² 1550 nm illumination at zero bias. Further, the underlain physical mechanisms for the enhanced-performance were discussed in details. In this way, it provides a very efficient method for enhanced-performance self-driven HJ photodetectors by inserting a thin layer of metal NPs into the electron-transporting layer close to the heterojunction interface. Colloidal quantum dots Ag nanoparticles Self-driven infrared photodetectors Heterojunction interface Electron-transporting layer Yang, Shengyi verfasserin (orcid)0000-0001-5038-491X aut Zhang, Zhenheng verfasserin aut Muhammad, Sulaman verfasserin aut Ge, Zhenhua verfasserin aut Hu, Jinming verfasserin aut Li, Chunyang verfasserin aut Wu, Ying verfasserin (orcid)0000-0002-5458-0165 aut Liu, Xiaoxuan verfasserin aut Zou, Bingsuo verfasserin aut Enthalten in Materials chemistry and physics New York, NY [u.a.] : Elsevier, 1983 306 Online-Ressource (DE-627)302719350 (DE-600)1491959-X (DE-576)096806435 nnns volume:306 GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-ASIEN SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 35.90 Festkörperchemie VZ 33.61 Festkörperphysik VZ 51.00 Werkstoffkunde: Allgemeines VZ AR 306 |
allfields_unstemmed |
10.1016/j.matchemphys.2023.128096 doi (DE-627)ELV059963662 (ELSEVIER)S0254-0584(23)00804-0 DE-627 ger DE-627 rda eng 540 530 VZ ASIEN DE-1a fid 6,25 ssgn 35.90 bkl 33.61 bkl 51.00 bkl Sun, Feiyang verfasserin (orcid)0009-0005-2003-7104 aut To improve device performance of self-driven heterojunction photodetectors by inserting a thin layer of silver nanoparticles into the electron-transporting layer 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Lead selenide colloidal quantum dots (CQDs) are widely used in infrared photodetectors due to their size-dependent bandgap tunability, facile solution-processing techniques and low cost. Heterojunctions (HJs) are usually used to construct device to facilitate the separation of excitons and the transportation of photogenerated carriers. Based on the solution-processed HJ photodetector ITO/ZnO/PbSe/Ag, in which PbSe CQDs layer acts as the active layer and ZnO nanoparticles (NPs) layer as the electron-transporting layer, a greatly enhanced-performance was obtained after inserting 10 nm Ag NPs layer within the ZnO NPs layer close to the HJ ZnO/PbSe interface. By optimizing the concentration of Ag NPs solutions and the location of Ag NPs thin layer in ZnO film, the maximum responsivity of the self-driven HJ photodetector ITO/ZnO(50 nm):Ag-NPs(10 nm):ZnO(50 nm)/PbSe(300 nm)/Ag reaches to 6.25 mA/W with a specific detectivity D* of 5.17 × 10 11 Jones under 8.5 μ W / c m ² 1550 nm illumination at zero bias. Further, the underlain physical mechanisms for the enhanced-performance were discussed in details. In this way, it provides a very efficient method for enhanced-performance self-driven HJ photodetectors by inserting a thin layer of metal NPs into the electron-transporting layer close to the heterojunction interface. Colloidal quantum dots Ag nanoparticles Self-driven infrared photodetectors Heterojunction interface Electron-transporting layer Yang, Shengyi verfasserin (orcid)0000-0001-5038-491X aut Zhang, Zhenheng verfasserin aut Muhammad, Sulaman verfasserin aut Ge, Zhenhua verfasserin aut Hu, Jinming verfasserin aut Li, Chunyang verfasserin aut Wu, Ying verfasserin (orcid)0000-0002-5458-0165 aut Liu, Xiaoxuan verfasserin aut Zou, Bingsuo verfasserin aut Enthalten in Materials chemistry and physics New York, NY [u.a.] : Elsevier, 1983 306 Online-Ressource (DE-627)302719350 (DE-600)1491959-X (DE-576)096806435 nnns volume:306 GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-ASIEN SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 35.90 Festkörperchemie VZ 33.61 Festkörperphysik VZ 51.00 Werkstoffkunde: Allgemeines VZ AR 306 |
allfieldsGer |
10.1016/j.matchemphys.2023.128096 doi (DE-627)ELV059963662 (ELSEVIER)S0254-0584(23)00804-0 DE-627 ger DE-627 rda eng 540 530 VZ ASIEN DE-1a fid 6,25 ssgn 35.90 bkl 33.61 bkl 51.00 bkl Sun, Feiyang verfasserin (orcid)0009-0005-2003-7104 aut To improve device performance of self-driven heterojunction photodetectors by inserting a thin layer of silver nanoparticles into the electron-transporting layer 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Lead selenide colloidal quantum dots (CQDs) are widely used in infrared photodetectors due to their size-dependent bandgap tunability, facile solution-processing techniques and low cost. Heterojunctions (HJs) are usually used to construct device to facilitate the separation of excitons and the transportation of photogenerated carriers. Based on the solution-processed HJ photodetector ITO/ZnO/PbSe/Ag, in which PbSe CQDs layer acts as the active layer and ZnO nanoparticles (NPs) layer as the electron-transporting layer, a greatly enhanced-performance was obtained after inserting 10 nm Ag NPs layer within the ZnO NPs layer close to the HJ ZnO/PbSe interface. By optimizing the concentration of Ag NPs solutions and the location of Ag NPs thin layer in ZnO film, the maximum responsivity of the self-driven HJ photodetector ITO/ZnO(50 nm):Ag-NPs(10 nm):ZnO(50 nm)/PbSe(300 nm)/Ag reaches to 6.25 mA/W with a specific detectivity D* of 5.17 × 10 11 Jones under 8.5 μ W / c m ² 1550 nm illumination at zero bias. Further, the underlain physical mechanisms for the enhanced-performance were discussed in details. In this way, it provides a very efficient method for enhanced-performance self-driven HJ photodetectors by inserting a thin layer of metal NPs into the electron-transporting layer close to the heterojunction interface. Colloidal quantum dots Ag nanoparticles Self-driven infrared photodetectors Heterojunction interface Electron-transporting layer Yang, Shengyi verfasserin (orcid)0000-0001-5038-491X aut Zhang, Zhenheng verfasserin aut Muhammad, Sulaman verfasserin aut Ge, Zhenhua verfasserin aut Hu, Jinming verfasserin aut Li, Chunyang verfasserin aut Wu, Ying verfasserin (orcid)0000-0002-5458-0165 aut Liu, Xiaoxuan verfasserin aut Zou, Bingsuo verfasserin aut Enthalten in Materials chemistry and physics New York, NY [u.a.] : Elsevier, 1983 306 Online-Ressource (DE-627)302719350 (DE-600)1491959-X (DE-576)096806435 nnns volume:306 GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-ASIEN SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 35.90 Festkörperchemie VZ 33.61 Festkörperphysik VZ 51.00 Werkstoffkunde: Allgemeines VZ AR 306 |
allfieldsSound |
10.1016/j.matchemphys.2023.128096 doi (DE-627)ELV059963662 (ELSEVIER)S0254-0584(23)00804-0 DE-627 ger DE-627 rda eng 540 530 VZ ASIEN DE-1a fid 6,25 ssgn 35.90 bkl 33.61 bkl 51.00 bkl Sun, Feiyang verfasserin (orcid)0009-0005-2003-7104 aut To improve device performance of self-driven heterojunction photodetectors by inserting a thin layer of silver nanoparticles into the electron-transporting layer 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Lead selenide colloidal quantum dots (CQDs) are widely used in infrared photodetectors due to their size-dependent bandgap tunability, facile solution-processing techniques and low cost. Heterojunctions (HJs) are usually used to construct device to facilitate the separation of excitons and the transportation of photogenerated carriers. Based on the solution-processed HJ photodetector ITO/ZnO/PbSe/Ag, in which PbSe CQDs layer acts as the active layer and ZnO nanoparticles (NPs) layer as the electron-transporting layer, a greatly enhanced-performance was obtained after inserting 10 nm Ag NPs layer within the ZnO NPs layer close to the HJ ZnO/PbSe interface. By optimizing the concentration of Ag NPs solutions and the location of Ag NPs thin layer in ZnO film, the maximum responsivity of the self-driven HJ photodetector ITO/ZnO(50 nm):Ag-NPs(10 nm):ZnO(50 nm)/PbSe(300 nm)/Ag reaches to 6.25 mA/W with a specific detectivity D* of 5.17 × 10 11 Jones under 8.5 μ W / c m ² 1550 nm illumination at zero bias. Further, the underlain physical mechanisms for the enhanced-performance were discussed in details. In this way, it provides a very efficient method for enhanced-performance self-driven HJ photodetectors by inserting a thin layer of metal NPs into the electron-transporting layer close to the heterojunction interface. Colloidal quantum dots Ag nanoparticles Self-driven infrared photodetectors Heterojunction interface Electron-transporting layer Yang, Shengyi verfasserin (orcid)0000-0001-5038-491X aut Zhang, Zhenheng verfasserin aut Muhammad, Sulaman verfasserin aut Ge, Zhenhua verfasserin aut Hu, Jinming verfasserin aut Li, Chunyang verfasserin aut Wu, Ying verfasserin (orcid)0000-0002-5458-0165 aut Liu, Xiaoxuan verfasserin aut Zou, Bingsuo verfasserin aut Enthalten in Materials chemistry and physics New York, NY [u.a.] : Elsevier, 1983 306 Online-Ressource (DE-627)302719350 (DE-600)1491959-X (DE-576)096806435 nnns volume:306 GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-ASIEN SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 35.90 Festkörperchemie VZ 33.61 Festkörperphysik VZ 51.00 Werkstoffkunde: Allgemeines VZ AR 306 |
language |
English |
source |
Enthalten in Materials chemistry and physics 306 volume:306 |
sourceStr |
Enthalten in Materials chemistry and physics 306 volume:306 |
format_phy_str_mv |
Article |
bklname |
Festkörperchemie Festkörperphysik Werkstoffkunde: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Colloidal quantum dots Ag nanoparticles Self-driven infrared photodetectors Heterojunction interface Electron-transporting layer |
dewey-raw |
540 |
isfreeaccess_bool |
false |
container_title |
Materials chemistry and physics |
authorswithroles_txt_mv |
Sun, Feiyang @@aut@@ Yang, Shengyi @@aut@@ Zhang, Zhenheng @@aut@@ Muhammad, Sulaman @@aut@@ Ge, Zhenhua @@aut@@ Hu, Jinming @@aut@@ Li, Chunyang @@aut@@ Wu, Ying @@aut@@ Liu, Xiaoxuan @@aut@@ Zou, Bingsuo @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
302719350 |
dewey-sort |
3540 |
id |
ELV059963662 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV059963662</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230927071633.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230628s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.matchemphys.2023.128096</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV059963662</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0254-0584(23)00804-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ASIEN</subfield><subfield code="q">DE-1a</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">6,25</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.90</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.61</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sun, Feiyang</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0009-0005-2003-7104</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">To improve device performance of self-driven heterojunction photodetectors by inserting a thin layer of silver nanoparticles into the electron-transporting layer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Lead selenide colloidal quantum dots (CQDs) are widely used in infrared photodetectors due to their size-dependent bandgap tunability, facile solution-processing techniques and low cost. Heterojunctions (HJs) are usually used to construct device to facilitate the separation of excitons and the transportation of photogenerated carriers. Based on the solution-processed HJ photodetector ITO/ZnO/PbSe/Ag, in which PbSe CQDs layer acts as the active layer and ZnO nanoparticles (NPs) layer as the electron-transporting layer, a greatly enhanced-performance was obtained after inserting 10 nm Ag NPs layer within the ZnO NPs layer close to the HJ ZnO/PbSe interface. By optimizing the concentration of Ag NPs solutions and the location of Ag NPs thin layer in ZnO film, the maximum responsivity of the self-driven HJ photodetector ITO/ZnO(50 nm):Ag-NPs(10 nm):ZnO(50 nm)/PbSe(300 nm)/Ag reaches to 6.25 mA/W with a specific detectivity D* of 5.17 × 10 11 Jones under 8.5 μ W / c m ² 1550 nm illumination at zero bias. Further, the underlain physical mechanisms for the enhanced-performance were discussed in details. In this way, it provides a very efficient method for enhanced-performance self-driven HJ photodetectors by inserting a thin layer of metal NPs into the electron-transporting layer close to the heterojunction interface.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Colloidal quantum dots</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ag nanoparticles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Self-driven infrared photodetectors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heterojunction interface</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electron-transporting layer</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Shengyi</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-5038-491X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Zhenheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Muhammad, Sulaman</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ge, Zhenhua</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hu, Jinming</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Chunyang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Ying</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-5458-0165</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Xiaoxuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zou, Bingsuo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Materials chemistry and physics</subfield><subfield code="d">New York, NY [u.a.] : Elsevier, 1983</subfield><subfield code="g">306</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)302719350</subfield><subfield code="w">(DE-600)1491959-X</subfield><subfield code="w">(DE-576)096806435</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-ASIEN</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.90</subfield><subfield code="j">Festkörperchemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.61</subfield><subfield code="j">Festkörperphysik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.00</subfield><subfield code="j">Werkstoffkunde: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">306</subfield></datafield></record></collection>
|
author |
Sun, Feiyang |
spellingShingle |
Sun, Feiyang ddc 540 fid ASIEN ssgn 6,25 bkl 35.90 bkl 33.61 bkl 51.00 misc Colloidal quantum dots misc Ag nanoparticles misc Self-driven infrared photodetectors misc Heterojunction interface misc Electron-transporting layer To improve device performance of self-driven heterojunction photodetectors by inserting a thin layer of silver nanoparticles into the electron-transporting layer |
authorStr |
Sun, Feiyang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)302719350 |
format |
electronic Article |
dewey-ones |
540 - Chemistry & allied sciences 530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
540 530 VZ ASIEN DE-1a fid 6,25 ssgn 35.90 bkl 33.61 bkl 51.00 bkl To improve device performance of self-driven heterojunction photodetectors by inserting a thin layer of silver nanoparticles into the electron-transporting layer Colloidal quantum dots Ag nanoparticles Self-driven infrared photodetectors Heterojunction interface Electron-transporting layer |
topic |
ddc 540 fid ASIEN ssgn 6,25 bkl 35.90 bkl 33.61 bkl 51.00 misc Colloidal quantum dots misc Ag nanoparticles misc Self-driven infrared photodetectors misc Heterojunction interface misc Electron-transporting layer |
topic_unstemmed |
ddc 540 fid ASIEN ssgn 6,25 bkl 35.90 bkl 33.61 bkl 51.00 misc Colloidal quantum dots misc Ag nanoparticles misc Self-driven infrared photodetectors misc Heterojunction interface misc Electron-transporting layer |
topic_browse |
ddc 540 fid ASIEN ssgn 6,25 bkl 35.90 bkl 33.61 bkl 51.00 misc Colloidal quantum dots misc Ag nanoparticles misc Self-driven infrared photodetectors misc Heterojunction interface misc Electron-transporting layer |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Materials chemistry and physics |
hierarchy_parent_id |
302719350 |
dewey-tens |
540 - Chemistry 530 - Physics |
hierarchy_top_title |
Materials chemistry and physics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)302719350 (DE-600)1491959-X (DE-576)096806435 |
title |
To improve device performance of self-driven heterojunction photodetectors by inserting a thin layer of silver nanoparticles into the electron-transporting layer |
ctrlnum |
(DE-627)ELV059963662 (ELSEVIER)S0254-0584(23)00804-0 |
title_full |
To improve device performance of self-driven heterojunction photodetectors by inserting a thin layer of silver nanoparticles into the electron-transporting layer |
author_sort |
Sun, Feiyang |
journal |
Materials chemistry and physics |
journalStr |
Materials chemistry and physics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Sun, Feiyang Yang, Shengyi Zhang, Zhenheng Muhammad, Sulaman Ge, Zhenhua Hu, Jinming Li, Chunyang Wu, Ying Liu, Xiaoxuan Zou, Bingsuo |
container_volume |
306 |
class |
540 530 VZ ASIEN DE-1a fid 6,25 ssgn 35.90 bkl 33.61 bkl 51.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Sun, Feiyang |
doi_str_mv |
10.1016/j.matchemphys.2023.128096 |
normlink |
(ORCID)0009-0005-2003-7104 (ORCID)0000-0001-5038-491X (ORCID)0000-0002-5458-0165 |
normlink_prefix_str_mv |
(orcid)0009-0005-2003-7104 (orcid)0000-0001-5038-491X (orcid)0000-0002-5458-0165 |
dewey-full |
540 530 |
author2-role |
verfasserin |
title_sort |
to improve device performance of self-driven heterojunction photodetectors by inserting a thin layer of silver nanoparticles into the electron-transporting layer |
title_auth |
To improve device performance of self-driven heterojunction photodetectors by inserting a thin layer of silver nanoparticles into the electron-transporting layer |
abstract |
Lead selenide colloidal quantum dots (CQDs) are widely used in infrared photodetectors due to their size-dependent bandgap tunability, facile solution-processing techniques and low cost. Heterojunctions (HJs) are usually used to construct device to facilitate the separation of excitons and the transportation of photogenerated carriers. Based on the solution-processed HJ photodetector ITO/ZnO/PbSe/Ag, in which PbSe CQDs layer acts as the active layer and ZnO nanoparticles (NPs) layer as the electron-transporting layer, a greatly enhanced-performance was obtained after inserting 10 nm Ag NPs layer within the ZnO NPs layer close to the HJ ZnO/PbSe interface. By optimizing the concentration of Ag NPs solutions and the location of Ag NPs thin layer in ZnO film, the maximum responsivity of the self-driven HJ photodetector ITO/ZnO(50 nm):Ag-NPs(10 nm):ZnO(50 nm)/PbSe(300 nm)/Ag reaches to 6.25 mA/W with a specific detectivity D* of 5.17 × 10 11 Jones under 8.5 μ W / c m ² 1550 nm illumination at zero bias. Further, the underlain physical mechanisms for the enhanced-performance were discussed in details. In this way, it provides a very efficient method for enhanced-performance self-driven HJ photodetectors by inserting a thin layer of metal NPs into the electron-transporting layer close to the heterojunction interface. |
abstractGer |
Lead selenide colloidal quantum dots (CQDs) are widely used in infrared photodetectors due to their size-dependent bandgap tunability, facile solution-processing techniques and low cost. Heterojunctions (HJs) are usually used to construct device to facilitate the separation of excitons and the transportation of photogenerated carriers. Based on the solution-processed HJ photodetector ITO/ZnO/PbSe/Ag, in which PbSe CQDs layer acts as the active layer and ZnO nanoparticles (NPs) layer as the electron-transporting layer, a greatly enhanced-performance was obtained after inserting 10 nm Ag NPs layer within the ZnO NPs layer close to the HJ ZnO/PbSe interface. By optimizing the concentration of Ag NPs solutions and the location of Ag NPs thin layer in ZnO film, the maximum responsivity of the self-driven HJ photodetector ITO/ZnO(50 nm):Ag-NPs(10 nm):ZnO(50 nm)/PbSe(300 nm)/Ag reaches to 6.25 mA/W with a specific detectivity D* of 5.17 × 10 11 Jones under 8.5 μ W / c m ² 1550 nm illumination at zero bias. Further, the underlain physical mechanisms for the enhanced-performance were discussed in details. In this way, it provides a very efficient method for enhanced-performance self-driven HJ photodetectors by inserting a thin layer of metal NPs into the electron-transporting layer close to the heterojunction interface. |
abstract_unstemmed |
Lead selenide colloidal quantum dots (CQDs) are widely used in infrared photodetectors due to their size-dependent bandgap tunability, facile solution-processing techniques and low cost. Heterojunctions (HJs) are usually used to construct device to facilitate the separation of excitons and the transportation of photogenerated carriers. Based on the solution-processed HJ photodetector ITO/ZnO/PbSe/Ag, in which PbSe CQDs layer acts as the active layer and ZnO nanoparticles (NPs) layer as the electron-transporting layer, a greatly enhanced-performance was obtained after inserting 10 nm Ag NPs layer within the ZnO NPs layer close to the HJ ZnO/PbSe interface. By optimizing the concentration of Ag NPs solutions and the location of Ag NPs thin layer in ZnO film, the maximum responsivity of the self-driven HJ photodetector ITO/ZnO(50 nm):Ag-NPs(10 nm):ZnO(50 nm)/PbSe(300 nm)/Ag reaches to 6.25 mA/W with a specific detectivity D* of 5.17 × 10 11 Jones under 8.5 μ W / c m ² 1550 nm illumination at zero bias. Further, the underlain physical mechanisms for the enhanced-performance were discussed in details. In this way, it provides a very efficient method for enhanced-performance self-driven HJ photodetectors by inserting a thin layer of metal NPs into the electron-transporting layer close to the heterojunction interface. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-ASIEN SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
To improve device performance of self-driven heterojunction photodetectors by inserting a thin layer of silver nanoparticles into the electron-transporting layer |
remote_bool |
true |
author2 |
Yang, Shengyi Zhang, Zhenheng Muhammad, Sulaman Ge, Zhenhua Hu, Jinming Li, Chunyang Wu, Ying Liu, Xiaoxuan Zou, Bingsuo |
author2Str |
Yang, Shengyi Zhang, Zhenheng Muhammad, Sulaman Ge, Zhenhua Hu, Jinming Li, Chunyang Wu, Ying Liu, Xiaoxuan Zou, Bingsuo |
ppnlink |
302719350 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.matchemphys.2023.128096 |
up_date |
2024-07-06T23:25:09.666Z |
_version_ |
1803874006120529920 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV059963662</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230927071633.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230628s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.matchemphys.2023.128096</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV059963662</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0254-0584(23)00804-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ASIEN</subfield><subfield code="q">DE-1a</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">6,25</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.90</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.61</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sun, Feiyang</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0009-0005-2003-7104</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">To improve device performance of self-driven heterojunction photodetectors by inserting a thin layer of silver nanoparticles into the electron-transporting layer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Lead selenide colloidal quantum dots (CQDs) are widely used in infrared photodetectors due to their size-dependent bandgap tunability, facile solution-processing techniques and low cost. Heterojunctions (HJs) are usually used to construct device to facilitate the separation of excitons and the transportation of photogenerated carriers. Based on the solution-processed HJ photodetector ITO/ZnO/PbSe/Ag, in which PbSe CQDs layer acts as the active layer and ZnO nanoparticles (NPs) layer as the electron-transporting layer, a greatly enhanced-performance was obtained after inserting 10 nm Ag NPs layer within the ZnO NPs layer close to the HJ ZnO/PbSe interface. By optimizing the concentration of Ag NPs solutions and the location of Ag NPs thin layer in ZnO film, the maximum responsivity of the self-driven HJ photodetector ITO/ZnO(50 nm):Ag-NPs(10 nm):ZnO(50 nm)/PbSe(300 nm)/Ag reaches to 6.25 mA/W with a specific detectivity D* of 5.17 × 10 11 Jones under 8.5 μ W / c m ² 1550 nm illumination at zero bias. Further, the underlain physical mechanisms for the enhanced-performance were discussed in details. In this way, it provides a very efficient method for enhanced-performance self-driven HJ photodetectors by inserting a thin layer of metal NPs into the electron-transporting layer close to the heterojunction interface.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Colloidal quantum dots</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ag nanoparticles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Self-driven infrared photodetectors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heterojunction interface</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electron-transporting layer</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Shengyi</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-5038-491X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Zhenheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Muhammad, Sulaman</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ge, Zhenhua</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hu, Jinming</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Chunyang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Ying</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-5458-0165</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Xiaoxuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zou, Bingsuo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Materials chemistry and physics</subfield><subfield code="d">New York, NY [u.a.] : Elsevier, 1983</subfield><subfield code="g">306</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)302719350</subfield><subfield code="w">(DE-600)1491959-X</subfield><subfield code="w">(DE-576)096806435</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-ASIEN</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.90</subfield><subfield code="j">Festkörperchemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.61</subfield><subfield code="j">Festkörperphysik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.00</subfield><subfield code="j">Werkstoffkunde: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">306</subfield></datafield></record></collection>
|
score |
7.4000835 |