Isogeometric double-objective shape optimization of free-form surface structures with Kirchhoff–Love shell theory
Free-form surface structures are extensively utilized in practical engineering due to their rich architectural expression and strong visual impact. However, ensuring good mechanical behavior during the generation process of free-form surface structures has become a critical problem in the scientific...
Ausführliche Beschreibung
Autor*in: |
Yang, Feifei [verfasserIn] Yu, Tiantang [verfasserIn] Liu, Zhaowei [verfasserIn] Bui, Tinh Quoc [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Finite elements in analysis and design - Amsterdam : North-Holland, 1985, 223 |
---|---|
Übergeordnetes Werk: |
volume:223 |
DOI / URN: |
10.1016/j.finel.2023.103989 |
---|
Katalog-ID: |
ELV059971355 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV059971355 | ||
003 | DE-627 | ||
005 | 20230926163729.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230628s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.finel.2023.103989 |2 doi | |
035 | |a (DE-627)ELV059971355 | ||
035 | |a (ELSEVIER)S0168-874X(23)00082-3 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |a 600 |q VZ |
084 | |a 50.03 |2 bkl | ||
100 | 1 | |a Yang, Feifei |e verfasserin |4 aut | |
245 | 1 | 0 | |a Isogeometric double-objective shape optimization of free-form surface structures with Kirchhoff–Love shell theory |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Free-form surface structures are extensively utilized in practical engineering due to their rich architectural expression and strong visual impact. However, ensuring good mechanical behavior during the generation process of free-form surface structures has become a critical problem in the scientific community. Isogeometric analysis (IGA) is a widely adopted approach in various fields owing to its numerous advantages, such as geometric accuracy, high-order continuity, high precision, without traditional meshing, and ease of integration with CAD. The presented work adopts the NURBS surfaces to create geometric models, and developes an isogeometric discretization for free-form surfaces by formulating a shell analysis method based on Kirchhoff–Love hypothesis. The structural strain energy and the first natural frequency of the free-form surfaces are selected as the static and dynamic performance evaluation indices. The optimization objectives are to minimize the structural strain energy and maximize the first natural frequency, with the control point coordinates considered as the optimization variable. The double-objective shape optimization of the free-form surface structure is carried out using the particle swarm optimization technique. The effectiveness and performance of the proposed method are verified through five numerical examples, and the mechanical properties of the optimized structure are substantially improved. | ||
650 | 4 | |a Free-form surfaces | |
650 | 4 | |a Isogeometric analysis | |
650 | 4 | |a Particle swarm optimization | |
650 | 4 | |a Strain energy | |
650 | 4 | |a First natural frequency | |
650 | 4 | |a Double-objective optimization | |
700 | 1 | |a Yu, Tiantang |e verfasserin |4 aut | |
700 | 1 | |a Liu, Zhaowei |e verfasserin |4 aut | |
700 | 1 | |a Bui, Tinh Quoc |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Finite elements in analysis and design |d Amsterdam : North-Holland, 1985 |g 223 |h Online-Ressource |w (DE-627)319509028 |w (DE-600)2019309-9 |w (DE-576)096188766 |x 0168-874x |7 nnns |
773 | 1 | 8 | |g volume:223 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 50.03 |j Methoden und Techniken der Ingenieurwissenschaften |q VZ |
951 | |a AR | ||
952 | |d 223 |
author_variant |
f y fy t y ty z l zl t q b tq tqb |
---|---|
matchkey_str |
article:0168874x:2023----::sgoercobebetvsaepiiainfreomufcsrcuew |
hierarchy_sort_str |
2023 |
bklnumber |
50.03 |
publishDate |
2023 |
allfields |
10.1016/j.finel.2023.103989 doi (DE-627)ELV059971355 (ELSEVIER)S0168-874X(23)00082-3 DE-627 ger DE-627 rda eng 510 600 VZ 50.03 bkl Yang, Feifei verfasserin aut Isogeometric double-objective shape optimization of free-form surface structures with Kirchhoff–Love shell theory 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Free-form surface structures are extensively utilized in practical engineering due to their rich architectural expression and strong visual impact. However, ensuring good mechanical behavior during the generation process of free-form surface structures has become a critical problem in the scientific community. Isogeometric analysis (IGA) is a widely adopted approach in various fields owing to its numerous advantages, such as geometric accuracy, high-order continuity, high precision, without traditional meshing, and ease of integration with CAD. The presented work adopts the NURBS surfaces to create geometric models, and developes an isogeometric discretization for free-form surfaces by formulating a shell analysis method based on Kirchhoff–Love hypothesis. The structural strain energy and the first natural frequency of the free-form surfaces are selected as the static and dynamic performance evaluation indices. The optimization objectives are to minimize the structural strain energy and maximize the first natural frequency, with the control point coordinates considered as the optimization variable. The double-objective shape optimization of the free-form surface structure is carried out using the particle swarm optimization technique. The effectiveness and performance of the proposed method are verified through five numerical examples, and the mechanical properties of the optimized structure are substantially improved. Free-form surfaces Isogeometric analysis Particle swarm optimization Strain energy First natural frequency Double-objective optimization Yu, Tiantang verfasserin aut Liu, Zhaowei verfasserin aut Bui, Tinh Quoc verfasserin aut Enthalten in Finite elements in analysis and design Amsterdam : North-Holland, 1985 223 Online-Ressource (DE-627)319509028 (DE-600)2019309-9 (DE-576)096188766 0168-874x nnns volume:223 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.03 Methoden und Techniken der Ingenieurwissenschaften VZ AR 223 |
spelling |
10.1016/j.finel.2023.103989 doi (DE-627)ELV059971355 (ELSEVIER)S0168-874X(23)00082-3 DE-627 ger DE-627 rda eng 510 600 VZ 50.03 bkl Yang, Feifei verfasserin aut Isogeometric double-objective shape optimization of free-form surface structures with Kirchhoff–Love shell theory 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Free-form surface structures are extensively utilized in practical engineering due to their rich architectural expression and strong visual impact. However, ensuring good mechanical behavior during the generation process of free-form surface structures has become a critical problem in the scientific community. Isogeometric analysis (IGA) is a widely adopted approach in various fields owing to its numerous advantages, such as geometric accuracy, high-order continuity, high precision, without traditional meshing, and ease of integration with CAD. The presented work adopts the NURBS surfaces to create geometric models, and developes an isogeometric discretization for free-form surfaces by formulating a shell analysis method based on Kirchhoff–Love hypothesis. The structural strain energy and the first natural frequency of the free-form surfaces are selected as the static and dynamic performance evaluation indices. The optimization objectives are to minimize the structural strain energy and maximize the first natural frequency, with the control point coordinates considered as the optimization variable. The double-objective shape optimization of the free-form surface structure is carried out using the particle swarm optimization technique. The effectiveness and performance of the proposed method are verified through five numerical examples, and the mechanical properties of the optimized structure are substantially improved. Free-form surfaces Isogeometric analysis Particle swarm optimization Strain energy First natural frequency Double-objective optimization Yu, Tiantang verfasserin aut Liu, Zhaowei verfasserin aut Bui, Tinh Quoc verfasserin aut Enthalten in Finite elements in analysis and design Amsterdam : North-Holland, 1985 223 Online-Ressource (DE-627)319509028 (DE-600)2019309-9 (DE-576)096188766 0168-874x nnns volume:223 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.03 Methoden und Techniken der Ingenieurwissenschaften VZ AR 223 |
allfields_unstemmed |
10.1016/j.finel.2023.103989 doi (DE-627)ELV059971355 (ELSEVIER)S0168-874X(23)00082-3 DE-627 ger DE-627 rda eng 510 600 VZ 50.03 bkl Yang, Feifei verfasserin aut Isogeometric double-objective shape optimization of free-form surface structures with Kirchhoff–Love shell theory 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Free-form surface structures are extensively utilized in practical engineering due to their rich architectural expression and strong visual impact. However, ensuring good mechanical behavior during the generation process of free-form surface structures has become a critical problem in the scientific community. Isogeometric analysis (IGA) is a widely adopted approach in various fields owing to its numerous advantages, such as geometric accuracy, high-order continuity, high precision, without traditional meshing, and ease of integration with CAD. The presented work adopts the NURBS surfaces to create geometric models, and developes an isogeometric discretization for free-form surfaces by formulating a shell analysis method based on Kirchhoff–Love hypothesis. The structural strain energy and the first natural frequency of the free-form surfaces are selected as the static and dynamic performance evaluation indices. The optimization objectives are to minimize the structural strain energy and maximize the first natural frequency, with the control point coordinates considered as the optimization variable. The double-objective shape optimization of the free-form surface structure is carried out using the particle swarm optimization technique. The effectiveness and performance of the proposed method are verified through five numerical examples, and the mechanical properties of the optimized structure are substantially improved. Free-form surfaces Isogeometric analysis Particle swarm optimization Strain energy First natural frequency Double-objective optimization Yu, Tiantang verfasserin aut Liu, Zhaowei verfasserin aut Bui, Tinh Quoc verfasserin aut Enthalten in Finite elements in analysis and design Amsterdam : North-Holland, 1985 223 Online-Ressource (DE-627)319509028 (DE-600)2019309-9 (DE-576)096188766 0168-874x nnns volume:223 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.03 Methoden und Techniken der Ingenieurwissenschaften VZ AR 223 |
allfieldsGer |
10.1016/j.finel.2023.103989 doi (DE-627)ELV059971355 (ELSEVIER)S0168-874X(23)00082-3 DE-627 ger DE-627 rda eng 510 600 VZ 50.03 bkl Yang, Feifei verfasserin aut Isogeometric double-objective shape optimization of free-form surface structures with Kirchhoff–Love shell theory 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Free-form surface structures are extensively utilized in practical engineering due to their rich architectural expression and strong visual impact. However, ensuring good mechanical behavior during the generation process of free-form surface structures has become a critical problem in the scientific community. Isogeometric analysis (IGA) is a widely adopted approach in various fields owing to its numerous advantages, such as geometric accuracy, high-order continuity, high precision, without traditional meshing, and ease of integration with CAD. The presented work adopts the NURBS surfaces to create geometric models, and developes an isogeometric discretization for free-form surfaces by formulating a shell analysis method based on Kirchhoff–Love hypothesis. The structural strain energy and the first natural frequency of the free-form surfaces are selected as the static and dynamic performance evaluation indices. The optimization objectives are to minimize the structural strain energy and maximize the first natural frequency, with the control point coordinates considered as the optimization variable. The double-objective shape optimization of the free-form surface structure is carried out using the particle swarm optimization technique. The effectiveness and performance of the proposed method are verified through five numerical examples, and the mechanical properties of the optimized structure are substantially improved. Free-form surfaces Isogeometric analysis Particle swarm optimization Strain energy First natural frequency Double-objective optimization Yu, Tiantang verfasserin aut Liu, Zhaowei verfasserin aut Bui, Tinh Quoc verfasserin aut Enthalten in Finite elements in analysis and design Amsterdam : North-Holland, 1985 223 Online-Ressource (DE-627)319509028 (DE-600)2019309-9 (DE-576)096188766 0168-874x nnns volume:223 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.03 Methoden und Techniken der Ingenieurwissenschaften VZ AR 223 |
allfieldsSound |
10.1016/j.finel.2023.103989 doi (DE-627)ELV059971355 (ELSEVIER)S0168-874X(23)00082-3 DE-627 ger DE-627 rda eng 510 600 VZ 50.03 bkl Yang, Feifei verfasserin aut Isogeometric double-objective shape optimization of free-form surface structures with Kirchhoff–Love shell theory 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Free-form surface structures are extensively utilized in practical engineering due to their rich architectural expression and strong visual impact. However, ensuring good mechanical behavior during the generation process of free-form surface structures has become a critical problem in the scientific community. Isogeometric analysis (IGA) is a widely adopted approach in various fields owing to its numerous advantages, such as geometric accuracy, high-order continuity, high precision, without traditional meshing, and ease of integration with CAD. The presented work adopts the NURBS surfaces to create geometric models, and developes an isogeometric discretization for free-form surfaces by formulating a shell analysis method based on Kirchhoff–Love hypothesis. The structural strain energy and the first natural frequency of the free-form surfaces are selected as the static and dynamic performance evaluation indices. The optimization objectives are to minimize the structural strain energy and maximize the first natural frequency, with the control point coordinates considered as the optimization variable. The double-objective shape optimization of the free-form surface structure is carried out using the particle swarm optimization technique. The effectiveness and performance of the proposed method are verified through five numerical examples, and the mechanical properties of the optimized structure are substantially improved. Free-form surfaces Isogeometric analysis Particle swarm optimization Strain energy First natural frequency Double-objective optimization Yu, Tiantang verfasserin aut Liu, Zhaowei verfasserin aut Bui, Tinh Quoc verfasserin aut Enthalten in Finite elements in analysis and design Amsterdam : North-Holland, 1985 223 Online-Ressource (DE-627)319509028 (DE-600)2019309-9 (DE-576)096188766 0168-874x nnns volume:223 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.03 Methoden und Techniken der Ingenieurwissenschaften VZ AR 223 |
language |
English |
source |
Enthalten in Finite elements in analysis and design 223 volume:223 |
sourceStr |
Enthalten in Finite elements in analysis and design 223 volume:223 |
format_phy_str_mv |
Article |
bklname |
Methoden und Techniken der Ingenieurwissenschaften |
institution |
findex.gbv.de |
topic_facet |
Free-form surfaces Isogeometric analysis Particle swarm optimization Strain energy First natural frequency Double-objective optimization |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Finite elements in analysis and design |
authorswithroles_txt_mv |
Yang, Feifei @@aut@@ Yu, Tiantang @@aut@@ Liu, Zhaowei @@aut@@ Bui, Tinh Quoc @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
319509028 |
dewey-sort |
3510 |
id |
ELV059971355 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV059971355</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230926163729.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230628s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.finel.2023.103989</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV059971355</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0168-874X(23)00082-3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="a">600</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.03</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yang, Feifei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Isogeometric double-objective shape optimization of free-form surface structures with Kirchhoff–Love shell theory</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Free-form surface structures are extensively utilized in practical engineering due to their rich architectural expression and strong visual impact. However, ensuring good mechanical behavior during the generation process of free-form surface structures has become a critical problem in the scientific community. Isogeometric analysis (IGA) is a widely adopted approach in various fields owing to its numerous advantages, such as geometric accuracy, high-order continuity, high precision, without traditional meshing, and ease of integration with CAD. The presented work adopts the NURBS surfaces to create geometric models, and developes an isogeometric discretization for free-form surfaces by formulating a shell analysis method based on Kirchhoff–Love hypothesis. The structural strain energy and the first natural frequency of the free-form surfaces are selected as the static and dynamic performance evaluation indices. The optimization objectives are to minimize the structural strain energy and maximize the first natural frequency, with the control point coordinates considered as the optimization variable. The double-objective shape optimization of the free-form surface structure is carried out using the particle swarm optimization technique. The effectiveness and performance of the proposed method are verified through five numerical examples, and the mechanical properties of the optimized structure are substantially improved.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Free-form surfaces</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Isogeometric analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Particle swarm optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Strain energy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">First natural frequency</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Double-objective optimization</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yu, Tiantang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Zhaowei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bui, Tinh Quoc</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Finite elements in analysis and design</subfield><subfield code="d">Amsterdam : North-Holland, 1985</subfield><subfield code="g">223</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)319509028</subfield><subfield code="w">(DE-600)2019309-9</subfield><subfield code="w">(DE-576)096188766</subfield><subfield code="x">0168-874x</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:223</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.03</subfield><subfield code="j">Methoden und Techniken der Ingenieurwissenschaften</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">223</subfield></datafield></record></collection>
|
author |
Yang, Feifei |
spellingShingle |
Yang, Feifei ddc 510 bkl 50.03 misc Free-form surfaces misc Isogeometric analysis misc Particle swarm optimization misc Strain energy misc First natural frequency misc Double-objective optimization Isogeometric double-objective shape optimization of free-form surface structures with Kirchhoff–Love shell theory |
authorStr |
Yang, Feifei |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)319509028 |
format |
electronic Article |
dewey-ones |
510 - Mathematics 600 - Technology |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0168-874x |
topic_title |
510 600 VZ 50.03 bkl Isogeometric double-objective shape optimization of free-form surface structures with Kirchhoff–Love shell theory Free-form surfaces Isogeometric analysis Particle swarm optimization Strain energy First natural frequency Double-objective optimization |
topic |
ddc 510 bkl 50.03 misc Free-form surfaces misc Isogeometric analysis misc Particle swarm optimization misc Strain energy misc First natural frequency misc Double-objective optimization |
topic_unstemmed |
ddc 510 bkl 50.03 misc Free-form surfaces misc Isogeometric analysis misc Particle swarm optimization misc Strain energy misc First natural frequency misc Double-objective optimization |
topic_browse |
ddc 510 bkl 50.03 misc Free-form surfaces misc Isogeometric analysis misc Particle swarm optimization misc Strain energy misc First natural frequency misc Double-objective optimization |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Finite elements in analysis and design |
hierarchy_parent_id |
319509028 |
dewey-tens |
510 - Mathematics 600 - Technology |
hierarchy_top_title |
Finite elements in analysis and design |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)319509028 (DE-600)2019309-9 (DE-576)096188766 |
title |
Isogeometric double-objective shape optimization of free-form surface structures with Kirchhoff–Love shell theory |
ctrlnum |
(DE-627)ELV059971355 (ELSEVIER)S0168-874X(23)00082-3 |
title_full |
Isogeometric double-objective shape optimization of free-form surface structures with Kirchhoff–Love shell theory |
author_sort |
Yang, Feifei |
journal |
Finite elements in analysis and design |
journalStr |
Finite elements in analysis and design |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Yang, Feifei Yu, Tiantang Liu, Zhaowei Bui, Tinh Quoc |
container_volume |
223 |
class |
510 600 VZ 50.03 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Yang, Feifei |
doi_str_mv |
10.1016/j.finel.2023.103989 |
dewey-full |
510 600 |
author2-role |
verfasserin |
title_sort |
isogeometric double-objective shape optimization of free-form surface structures with kirchhoff–love shell theory |
title_auth |
Isogeometric double-objective shape optimization of free-form surface structures with Kirchhoff–Love shell theory |
abstract |
Free-form surface structures are extensively utilized in practical engineering due to their rich architectural expression and strong visual impact. However, ensuring good mechanical behavior during the generation process of free-form surface structures has become a critical problem in the scientific community. Isogeometric analysis (IGA) is a widely adopted approach in various fields owing to its numerous advantages, such as geometric accuracy, high-order continuity, high precision, without traditional meshing, and ease of integration with CAD. The presented work adopts the NURBS surfaces to create geometric models, and developes an isogeometric discretization for free-form surfaces by formulating a shell analysis method based on Kirchhoff–Love hypothesis. The structural strain energy and the first natural frequency of the free-form surfaces are selected as the static and dynamic performance evaluation indices. The optimization objectives are to minimize the structural strain energy and maximize the first natural frequency, with the control point coordinates considered as the optimization variable. The double-objective shape optimization of the free-form surface structure is carried out using the particle swarm optimization technique. The effectiveness and performance of the proposed method are verified through five numerical examples, and the mechanical properties of the optimized structure are substantially improved. |
abstractGer |
Free-form surface structures are extensively utilized in practical engineering due to their rich architectural expression and strong visual impact. However, ensuring good mechanical behavior during the generation process of free-form surface structures has become a critical problem in the scientific community. Isogeometric analysis (IGA) is a widely adopted approach in various fields owing to its numerous advantages, such as geometric accuracy, high-order continuity, high precision, without traditional meshing, and ease of integration with CAD. The presented work adopts the NURBS surfaces to create geometric models, and developes an isogeometric discretization for free-form surfaces by formulating a shell analysis method based on Kirchhoff–Love hypothesis. The structural strain energy and the first natural frequency of the free-form surfaces are selected as the static and dynamic performance evaluation indices. The optimization objectives are to minimize the structural strain energy and maximize the first natural frequency, with the control point coordinates considered as the optimization variable. The double-objective shape optimization of the free-form surface structure is carried out using the particle swarm optimization technique. The effectiveness and performance of the proposed method are verified through five numerical examples, and the mechanical properties of the optimized structure are substantially improved. |
abstract_unstemmed |
Free-form surface structures are extensively utilized in practical engineering due to their rich architectural expression and strong visual impact. However, ensuring good mechanical behavior during the generation process of free-form surface structures has become a critical problem in the scientific community. Isogeometric analysis (IGA) is a widely adopted approach in various fields owing to its numerous advantages, such as geometric accuracy, high-order continuity, high precision, without traditional meshing, and ease of integration with CAD. The presented work adopts the NURBS surfaces to create geometric models, and developes an isogeometric discretization for free-form surfaces by formulating a shell analysis method based on Kirchhoff–Love hypothesis. The structural strain energy and the first natural frequency of the free-form surfaces are selected as the static and dynamic performance evaluation indices. The optimization objectives are to minimize the structural strain energy and maximize the first natural frequency, with the control point coordinates considered as the optimization variable. The double-objective shape optimization of the free-form surface structure is carried out using the particle swarm optimization technique. The effectiveness and performance of the proposed method are verified through five numerical examples, and the mechanical properties of the optimized structure are substantially improved. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Isogeometric double-objective shape optimization of free-form surface structures with Kirchhoff–Love shell theory |
remote_bool |
true |
author2 |
Yu, Tiantang Liu, Zhaowei Bui, Tinh Quoc |
author2Str |
Yu, Tiantang Liu, Zhaowei Bui, Tinh Quoc |
ppnlink |
319509028 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.finel.2023.103989 |
up_date |
2024-07-06T23:25:49.989Z |
_version_ |
1803874048400162816 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV059971355</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230926163729.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230628s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.finel.2023.103989</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV059971355</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0168-874X(23)00082-3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="a">600</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.03</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yang, Feifei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Isogeometric double-objective shape optimization of free-form surface structures with Kirchhoff–Love shell theory</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Free-form surface structures are extensively utilized in practical engineering due to their rich architectural expression and strong visual impact. However, ensuring good mechanical behavior during the generation process of free-form surface structures has become a critical problem in the scientific community. Isogeometric analysis (IGA) is a widely adopted approach in various fields owing to its numerous advantages, such as geometric accuracy, high-order continuity, high precision, without traditional meshing, and ease of integration with CAD. The presented work adopts the NURBS surfaces to create geometric models, and developes an isogeometric discretization for free-form surfaces by formulating a shell analysis method based on Kirchhoff–Love hypothesis. The structural strain energy and the first natural frequency of the free-form surfaces are selected as the static and dynamic performance evaluation indices. The optimization objectives are to minimize the structural strain energy and maximize the first natural frequency, with the control point coordinates considered as the optimization variable. The double-objective shape optimization of the free-form surface structure is carried out using the particle swarm optimization technique. The effectiveness and performance of the proposed method are verified through five numerical examples, and the mechanical properties of the optimized structure are substantially improved.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Free-form surfaces</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Isogeometric analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Particle swarm optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Strain energy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">First natural frequency</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Double-objective optimization</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yu, Tiantang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Zhaowei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bui, Tinh Quoc</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Finite elements in analysis and design</subfield><subfield code="d">Amsterdam : North-Holland, 1985</subfield><subfield code="g">223</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)319509028</subfield><subfield code="w">(DE-600)2019309-9</subfield><subfield code="w">(DE-576)096188766</subfield><subfield code="x">0168-874x</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:223</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.03</subfield><subfield code="j">Methoden und Techniken der Ingenieurwissenschaften</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">223</subfield></datafield></record></collection>
|
score |
7.401574 |