Construction of the SiC nanowires network structure decorated by MoS
SiC nanowires (SiCnw) are widely combined with ceramic matrix for electromagnetic wave (EMW) absorption due to their good conductive network structure. However, the single loss mechanism limits its further application in the field of EMW absorption. Herein, a novel three-dimensional network of SiCnw...
Ausführliche Beschreibung
Autor*in: |
Bai, Jialin [verfasserIn] Huang, Shijie [verfasserIn] Yao, Xiumin [verfasserIn] Liu, Xuejian [verfasserIn] Huang, Zhengren [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: The chemical engineering journal - Amsterdam : Elsevier, 1997, 469 |
---|---|
Übergeordnetes Werk: |
volume:469 |
DOI / URN: |
10.1016/j.cej.2023.143809 |
---|
Katalog-ID: |
ELV059978163 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV059978163 | ||
003 | DE-627 | ||
005 | 20231012073005.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230629s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.cej.2023.143809 |2 doi | |
035 | |a (DE-627)ELV059978163 | ||
035 | |a (ELSEVIER)S1385-8947(23)02540-8 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 660 |q VZ |
082 | 0 | 4 | |a 660 |q VZ |
084 | |a 58.10 |2 bkl | ||
100 | 1 | |a Bai, Jialin |e verfasserin |0 (orcid)0009-0004-4577-6109 |4 aut | |
245 | 1 | 0 | |a Construction of the SiC nanowires network structure decorated by MoS |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a SiC nanowires (SiCnw) are widely combined with ceramic matrix for electromagnetic wave (EMW) absorption due to their good conductive network structure. However, the single loss mechanism limits its further application in the field of EMW absorption. Herein, a novel three-dimensional network of SiCnw decorated by MoS2 nanoflowers with a “flower-branched” structure was synthesized in the pores of porous Si3N4 ceramics (MoS2/SiCnw/Si3N4) by precursor infiltration and pyrolysis combined with hydrothermal reaction. The morphology, pore structure, and dielectric properties of porous MoS2/SiCnw/Si3N4 ceramics were investigated. The interleaved SiCnw within the pore structure provide a large number of growth sites for the MoS2 nanoflowers, ensuring a uniform distribution of MoS2 nanoflowers without agglomeration. Compared with porous SiCnw/Si3N4 ceramics, porous MoS2/SiCnw/Si3N4 ceramics achieve improved microwave absorption performance with an effective absorption bandwidth of 3.50 GHz at a thickness of 2.38 mm and a minimum reflection loss of −70.48 dB at a thickness of 2.10 mm. The excellent EMW absorption performance is attributed to the interfacial polarization loss caused by the MoS2-SiCnw heterogeneous interface, the conduction loss from the SiCnw conductive network, and the defect-induced dipole polarization loss. This work provides new insight into the development of high performance ceramic-based wave absorbing materials. | ||
650 | 4 | |a “Flower-branched” structure | |
650 | 4 | |a MoS | |
650 | 4 | |a Porous ceramic | |
650 | 4 | |a Microwave absorption | |
700 | 1 | |a Huang, Shijie |e verfasserin |4 aut | |
700 | 1 | |a Yao, Xiumin |e verfasserin |4 aut | |
700 | 1 | |a Liu, Xuejian |e verfasserin |4 aut | |
700 | 1 | |a Huang, Zhengren |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t The chemical engineering journal |d Amsterdam : Elsevier, 1997 |g 469 |h Online-Ressource |w (DE-627)320500322 |w (DE-600)2012137-4 |w (DE-576)098330152 |x 1873-3212 |7 nnns |
773 | 1 | 8 | |g volume:469 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 58.10 |j Verfahrenstechnik: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 469 |
author_variant |
j b jb s h sh x y xy x l xl z h zh |
---|---|
matchkey_str |
article:18733212:2023----::osrcinfhscaoientoktut |
hierarchy_sort_str |
2023 |
bklnumber |
58.10 |
publishDate |
2023 |
allfields |
10.1016/j.cej.2023.143809 doi (DE-627)ELV059978163 (ELSEVIER)S1385-8947(23)02540-8 DE-627 ger DE-627 rda eng 660 VZ 660 VZ 58.10 bkl Bai, Jialin verfasserin (orcid)0009-0004-4577-6109 aut Construction of the SiC nanowires network structure decorated by MoS 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier SiC nanowires (SiCnw) are widely combined with ceramic matrix for electromagnetic wave (EMW) absorption due to their good conductive network structure. However, the single loss mechanism limits its further application in the field of EMW absorption. Herein, a novel three-dimensional network of SiCnw decorated by MoS2 nanoflowers with a “flower-branched” structure was synthesized in the pores of porous Si3N4 ceramics (MoS2/SiCnw/Si3N4) by precursor infiltration and pyrolysis combined with hydrothermal reaction. The morphology, pore structure, and dielectric properties of porous MoS2/SiCnw/Si3N4 ceramics were investigated. The interleaved SiCnw within the pore structure provide a large number of growth sites for the MoS2 nanoflowers, ensuring a uniform distribution of MoS2 nanoflowers without agglomeration. Compared with porous SiCnw/Si3N4 ceramics, porous MoS2/SiCnw/Si3N4 ceramics achieve improved microwave absorption performance with an effective absorption bandwidth of 3.50 GHz at a thickness of 2.38 mm and a minimum reflection loss of −70.48 dB at a thickness of 2.10 mm. The excellent EMW absorption performance is attributed to the interfacial polarization loss caused by the MoS2-SiCnw heterogeneous interface, the conduction loss from the SiCnw conductive network, and the defect-induced dipole polarization loss. This work provides new insight into the development of high performance ceramic-based wave absorbing materials. “Flower-branched” structure MoS Porous ceramic Microwave absorption Huang, Shijie verfasserin aut Yao, Xiumin verfasserin aut Liu, Xuejian verfasserin aut Huang, Zhengren verfasserin aut Enthalten in The chemical engineering journal Amsterdam : Elsevier, 1997 469 Online-Ressource (DE-627)320500322 (DE-600)2012137-4 (DE-576)098330152 1873-3212 nnns volume:469 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 58.10 Verfahrenstechnik: Allgemeines VZ AR 469 |
spelling |
10.1016/j.cej.2023.143809 doi (DE-627)ELV059978163 (ELSEVIER)S1385-8947(23)02540-8 DE-627 ger DE-627 rda eng 660 VZ 660 VZ 58.10 bkl Bai, Jialin verfasserin (orcid)0009-0004-4577-6109 aut Construction of the SiC nanowires network structure decorated by MoS 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier SiC nanowires (SiCnw) are widely combined with ceramic matrix for electromagnetic wave (EMW) absorption due to their good conductive network structure. However, the single loss mechanism limits its further application in the field of EMW absorption. Herein, a novel three-dimensional network of SiCnw decorated by MoS2 nanoflowers with a “flower-branched” structure was synthesized in the pores of porous Si3N4 ceramics (MoS2/SiCnw/Si3N4) by precursor infiltration and pyrolysis combined with hydrothermal reaction. The morphology, pore structure, and dielectric properties of porous MoS2/SiCnw/Si3N4 ceramics were investigated. The interleaved SiCnw within the pore structure provide a large number of growth sites for the MoS2 nanoflowers, ensuring a uniform distribution of MoS2 nanoflowers without agglomeration. Compared with porous SiCnw/Si3N4 ceramics, porous MoS2/SiCnw/Si3N4 ceramics achieve improved microwave absorption performance with an effective absorption bandwidth of 3.50 GHz at a thickness of 2.38 mm and a minimum reflection loss of −70.48 dB at a thickness of 2.10 mm. The excellent EMW absorption performance is attributed to the interfacial polarization loss caused by the MoS2-SiCnw heterogeneous interface, the conduction loss from the SiCnw conductive network, and the defect-induced dipole polarization loss. This work provides new insight into the development of high performance ceramic-based wave absorbing materials. “Flower-branched” structure MoS Porous ceramic Microwave absorption Huang, Shijie verfasserin aut Yao, Xiumin verfasserin aut Liu, Xuejian verfasserin aut Huang, Zhengren verfasserin aut Enthalten in The chemical engineering journal Amsterdam : Elsevier, 1997 469 Online-Ressource (DE-627)320500322 (DE-600)2012137-4 (DE-576)098330152 1873-3212 nnns volume:469 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 58.10 Verfahrenstechnik: Allgemeines VZ AR 469 |
allfields_unstemmed |
10.1016/j.cej.2023.143809 doi (DE-627)ELV059978163 (ELSEVIER)S1385-8947(23)02540-8 DE-627 ger DE-627 rda eng 660 VZ 660 VZ 58.10 bkl Bai, Jialin verfasserin (orcid)0009-0004-4577-6109 aut Construction of the SiC nanowires network structure decorated by MoS 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier SiC nanowires (SiCnw) are widely combined with ceramic matrix for electromagnetic wave (EMW) absorption due to their good conductive network structure. However, the single loss mechanism limits its further application in the field of EMW absorption. Herein, a novel three-dimensional network of SiCnw decorated by MoS2 nanoflowers with a “flower-branched” structure was synthesized in the pores of porous Si3N4 ceramics (MoS2/SiCnw/Si3N4) by precursor infiltration and pyrolysis combined with hydrothermal reaction. The morphology, pore structure, and dielectric properties of porous MoS2/SiCnw/Si3N4 ceramics were investigated. The interleaved SiCnw within the pore structure provide a large number of growth sites for the MoS2 nanoflowers, ensuring a uniform distribution of MoS2 nanoflowers without agglomeration. Compared with porous SiCnw/Si3N4 ceramics, porous MoS2/SiCnw/Si3N4 ceramics achieve improved microwave absorption performance with an effective absorption bandwidth of 3.50 GHz at a thickness of 2.38 mm and a minimum reflection loss of −70.48 dB at a thickness of 2.10 mm. The excellent EMW absorption performance is attributed to the interfacial polarization loss caused by the MoS2-SiCnw heterogeneous interface, the conduction loss from the SiCnw conductive network, and the defect-induced dipole polarization loss. This work provides new insight into the development of high performance ceramic-based wave absorbing materials. “Flower-branched” structure MoS Porous ceramic Microwave absorption Huang, Shijie verfasserin aut Yao, Xiumin verfasserin aut Liu, Xuejian verfasserin aut Huang, Zhengren verfasserin aut Enthalten in The chemical engineering journal Amsterdam : Elsevier, 1997 469 Online-Ressource (DE-627)320500322 (DE-600)2012137-4 (DE-576)098330152 1873-3212 nnns volume:469 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 58.10 Verfahrenstechnik: Allgemeines VZ AR 469 |
allfieldsGer |
10.1016/j.cej.2023.143809 doi (DE-627)ELV059978163 (ELSEVIER)S1385-8947(23)02540-8 DE-627 ger DE-627 rda eng 660 VZ 660 VZ 58.10 bkl Bai, Jialin verfasserin (orcid)0009-0004-4577-6109 aut Construction of the SiC nanowires network structure decorated by MoS 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier SiC nanowires (SiCnw) are widely combined with ceramic matrix for electromagnetic wave (EMW) absorption due to their good conductive network structure. However, the single loss mechanism limits its further application in the field of EMW absorption. Herein, a novel three-dimensional network of SiCnw decorated by MoS2 nanoflowers with a “flower-branched” structure was synthesized in the pores of porous Si3N4 ceramics (MoS2/SiCnw/Si3N4) by precursor infiltration and pyrolysis combined with hydrothermal reaction. The morphology, pore structure, and dielectric properties of porous MoS2/SiCnw/Si3N4 ceramics were investigated. The interleaved SiCnw within the pore structure provide a large number of growth sites for the MoS2 nanoflowers, ensuring a uniform distribution of MoS2 nanoflowers without agglomeration. Compared with porous SiCnw/Si3N4 ceramics, porous MoS2/SiCnw/Si3N4 ceramics achieve improved microwave absorption performance with an effective absorption bandwidth of 3.50 GHz at a thickness of 2.38 mm and a minimum reflection loss of −70.48 dB at a thickness of 2.10 mm. The excellent EMW absorption performance is attributed to the interfacial polarization loss caused by the MoS2-SiCnw heterogeneous interface, the conduction loss from the SiCnw conductive network, and the defect-induced dipole polarization loss. This work provides new insight into the development of high performance ceramic-based wave absorbing materials. “Flower-branched” structure MoS Porous ceramic Microwave absorption Huang, Shijie verfasserin aut Yao, Xiumin verfasserin aut Liu, Xuejian verfasserin aut Huang, Zhengren verfasserin aut Enthalten in The chemical engineering journal Amsterdam : Elsevier, 1997 469 Online-Ressource (DE-627)320500322 (DE-600)2012137-4 (DE-576)098330152 1873-3212 nnns volume:469 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 58.10 Verfahrenstechnik: Allgemeines VZ AR 469 |
allfieldsSound |
10.1016/j.cej.2023.143809 doi (DE-627)ELV059978163 (ELSEVIER)S1385-8947(23)02540-8 DE-627 ger DE-627 rda eng 660 VZ 660 VZ 58.10 bkl Bai, Jialin verfasserin (orcid)0009-0004-4577-6109 aut Construction of the SiC nanowires network structure decorated by MoS 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier SiC nanowires (SiCnw) are widely combined with ceramic matrix for electromagnetic wave (EMW) absorption due to their good conductive network structure. However, the single loss mechanism limits its further application in the field of EMW absorption. Herein, a novel three-dimensional network of SiCnw decorated by MoS2 nanoflowers with a “flower-branched” structure was synthesized in the pores of porous Si3N4 ceramics (MoS2/SiCnw/Si3N4) by precursor infiltration and pyrolysis combined with hydrothermal reaction. The morphology, pore structure, and dielectric properties of porous MoS2/SiCnw/Si3N4 ceramics were investigated. The interleaved SiCnw within the pore structure provide a large number of growth sites for the MoS2 nanoflowers, ensuring a uniform distribution of MoS2 nanoflowers without agglomeration. Compared with porous SiCnw/Si3N4 ceramics, porous MoS2/SiCnw/Si3N4 ceramics achieve improved microwave absorption performance with an effective absorption bandwidth of 3.50 GHz at a thickness of 2.38 mm and a minimum reflection loss of −70.48 dB at a thickness of 2.10 mm. The excellent EMW absorption performance is attributed to the interfacial polarization loss caused by the MoS2-SiCnw heterogeneous interface, the conduction loss from the SiCnw conductive network, and the defect-induced dipole polarization loss. This work provides new insight into the development of high performance ceramic-based wave absorbing materials. “Flower-branched” structure MoS Porous ceramic Microwave absorption Huang, Shijie verfasserin aut Yao, Xiumin verfasserin aut Liu, Xuejian verfasserin aut Huang, Zhengren verfasserin aut Enthalten in The chemical engineering journal Amsterdam : Elsevier, 1997 469 Online-Ressource (DE-627)320500322 (DE-600)2012137-4 (DE-576)098330152 1873-3212 nnns volume:469 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 58.10 Verfahrenstechnik: Allgemeines VZ AR 469 |
language |
English |
source |
Enthalten in The chemical engineering journal 469 volume:469 |
sourceStr |
Enthalten in The chemical engineering journal 469 volume:469 |
format_phy_str_mv |
Article |
bklname |
Verfahrenstechnik: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
“Flower-branched” structure MoS Porous ceramic Microwave absorption |
dewey-raw |
660 |
isfreeaccess_bool |
false |
container_title |
The chemical engineering journal |
authorswithroles_txt_mv |
Bai, Jialin @@aut@@ Huang, Shijie @@aut@@ Yao, Xiumin @@aut@@ Liu, Xuejian @@aut@@ Huang, Zhengren @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
320500322 |
dewey-sort |
3660 |
id |
ELV059978163 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV059978163</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231012073005.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230629s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.cej.2023.143809</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV059978163</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1385-8947(23)02540-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.10</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bai, Jialin</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0009-0004-4577-6109</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Construction of the SiC nanowires network structure decorated by MoS</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">SiC nanowires (SiCnw) are widely combined with ceramic matrix for electromagnetic wave (EMW) absorption due to their good conductive network structure. However, the single loss mechanism limits its further application in the field of EMW absorption. Herein, a novel three-dimensional network of SiCnw decorated by MoS2 nanoflowers with a “flower-branched” structure was synthesized in the pores of porous Si3N4 ceramics (MoS2/SiCnw/Si3N4) by precursor infiltration and pyrolysis combined with hydrothermal reaction. The morphology, pore structure, and dielectric properties of porous MoS2/SiCnw/Si3N4 ceramics were investigated. The interleaved SiCnw within the pore structure provide a large number of growth sites for the MoS2 nanoflowers, ensuring a uniform distribution of MoS2 nanoflowers without agglomeration. Compared with porous SiCnw/Si3N4 ceramics, porous MoS2/SiCnw/Si3N4 ceramics achieve improved microwave absorption performance with an effective absorption bandwidth of 3.50 GHz at a thickness of 2.38 mm and a minimum reflection loss of −70.48 dB at a thickness of 2.10 mm. The excellent EMW absorption performance is attributed to the interfacial polarization loss caused by the MoS2-SiCnw heterogeneous interface, the conduction loss from the SiCnw conductive network, and the defect-induced dipole polarization loss. This work provides new insight into the development of high performance ceramic-based wave absorbing materials.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">“Flower-branched” structure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MoS</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Porous ceramic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microwave absorption</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Shijie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yao, Xiumin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Xuejian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Zhengren</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The chemical engineering journal</subfield><subfield code="d">Amsterdam : Elsevier, 1997</subfield><subfield code="g">469</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320500322</subfield><subfield code="w">(DE-600)2012137-4</subfield><subfield code="w">(DE-576)098330152</subfield><subfield code="x">1873-3212</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:469</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.10</subfield><subfield code="j">Verfahrenstechnik: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">469</subfield></datafield></record></collection>
|
author |
Bai, Jialin |
spellingShingle |
Bai, Jialin ddc 660 bkl 58.10 misc “Flower-branched” structure misc MoS misc Porous ceramic misc Microwave absorption Construction of the SiC nanowires network structure decorated by MoS |
authorStr |
Bai, Jialin |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320500322 |
format |
electronic Article |
dewey-ones |
660 - Chemical engineering |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1873-3212 |
topic_title |
660 VZ 58.10 bkl Construction of the SiC nanowires network structure decorated by MoS “Flower-branched” structure MoS Porous ceramic Microwave absorption |
topic |
ddc 660 bkl 58.10 misc “Flower-branched” structure misc MoS misc Porous ceramic misc Microwave absorption |
topic_unstemmed |
ddc 660 bkl 58.10 misc “Flower-branched” structure misc MoS misc Porous ceramic misc Microwave absorption |
topic_browse |
ddc 660 bkl 58.10 misc “Flower-branched” structure misc MoS misc Porous ceramic misc Microwave absorption |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
The chemical engineering journal |
hierarchy_parent_id |
320500322 |
dewey-tens |
660 - Chemical engineering |
hierarchy_top_title |
The chemical engineering journal |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320500322 (DE-600)2012137-4 (DE-576)098330152 |
title |
Construction of the SiC nanowires network structure decorated by MoS |
ctrlnum |
(DE-627)ELV059978163 (ELSEVIER)S1385-8947(23)02540-8 |
title_full |
Construction of the SiC nanowires network structure decorated by MoS |
author_sort |
Bai, Jialin |
journal |
The chemical engineering journal |
journalStr |
The chemical engineering journal |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Bai, Jialin Huang, Shijie Yao, Xiumin Liu, Xuejian Huang, Zhengren |
container_volume |
469 |
class |
660 VZ 58.10 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Bai, Jialin |
doi_str_mv |
10.1016/j.cej.2023.143809 |
normlink |
(ORCID)0009-0004-4577-6109 |
normlink_prefix_str_mv |
(orcid)0009-0004-4577-6109 |
dewey-full |
660 |
author2-role |
verfasserin |
title_sort |
construction of the sic nanowires network structure decorated by mos |
title_auth |
Construction of the SiC nanowires network structure decorated by MoS |
abstract |
SiC nanowires (SiCnw) are widely combined with ceramic matrix for electromagnetic wave (EMW) absorption due to their good conductive network structure. However, the single loss mechanism limits its further application in the field of EMW absorption. Herein, a novel three-dimensional network of SiCnw decorated by MoS2 nanoflowers with a “flower-branched” structure was synthesized in the pores of porous Si3N4 ceramics (MoS2/SiCnw/Si3N4) by precursor infiltration and pyrolysis combined with hydrothermal reaction. The morphology, pore structure, and dielectric properties of porous MoS2/SiCnw/Si3N4 ceramics were investigated. The interleaved SiCnw within the pore structure provide a large number of growth sites for the MoS2 nanoflowers, ensuring a uniform distribution of MoS2 nanoflowers without agglomeration. Compared with porous SiCnw/Si3N4 ceramics, porous MoS2/SiCnw/Si3N4 ceramics achieve improved microwave absorption performance with an effective absorption bandwidth of 3.50 GHz at a thickness of 2.38 mm and a minimum reflection loss of −70.48 dB at a thickness of 2.10 mm. The excellent EMW absorption performance is attributed to the interfacial polarization loss caused by the MoS2-SiCnw heterogeneous interface, the conduction loss from the SiCnw conductive network, and the defect-induced dipole polarization loss. This work provides new insight into the development of high performance ceramic-based wave absorbing materials. |
abstractGer |
SiC nanowires (SiCnw) are widely combined with ceramic matrix for electromagnetic wave (EMW) absorption due to their good conductive network structure. However, the single loss mechanism limits its further application in the field of EMW absorption. Herein, a novel three-dimensional network of SiCnw decorated by MoS2 nanoflowers with a “flower-branched” structure was synthesized in the pores of porous Si3N4 ceramics (MoS2/SiCnw/Si3N4) by precursor infiltration and pyrolysis combined with hydrothermal reaction. The morphology, pore structure, and dielectric properties of porous MoS2/SiCnw/Si3N4 ceramics were investigated. The interleaved SiCnw within the pore structure provide a large number of growth sites for the MoS2 nanoflowers, ensuring a uniform distribution of MoS2 nanoflowers without agglomeration. Compared with porous SiCnw/Si3N4 ceramics, porous MoS2/SiCnw/Si3N4 ceramics achieve improved microwave absorption performance with an effective absorption bandwidth of 3.50 GHz at a thickness of 2.38 mm and a minimum reflection loss of −70.48 dB at a thickness of 2.10 mm. The excellent EMW absorption performance is attributed to the interfacial polarization loss caused by the MoS2-SiCnw heterogeneous interface, the conduction loss from the SiCnw conductive network, and the defect-induced dipole polarization loss. This work provides new insight into the development of high performance ceramic-based wave absorbing materials. |
abstract_unstemmed |
SiC nanowires (SiCnw) are widely combined with ceramic matrix for electromagnetic wave (EMW) absorption due to their good conductive network structure. However, the single loss mechanism limits its further application in the field of EMW absorption. Herein, a novel three-dimensional network of SiCnw decorated by MoS2 nanoflowers with a “flower-branched” structure was synthesized in the pores of porous Si3N4 ceramics (MoS2/SiCnw/Si3N4) by precursor infiltration and pyrolysis combined with hydrothermal reaction. The morphology, pore structure, and dielectric properties of porous MoS2/SiCnw/Si3N4 ceramics were investigated. The interleaved SiCnw within the pore structure provide a large number of growth sites for the MoS2 nanoflowers, ensuring a uniform distribution of MoS2 nanoflowers without agglomeration. Compared with porous SiCnw/Si3N4 ceramics, porous MoS2/SiCnw/Si3N4 ceramics achieve improved microwave absorption performance with an effective absorption bandwidth of 3.50 GHz at a thickness of 2.38 mm and a minimum reflection loss of −70.48 dB at a thickness of 2.10 mm. The excellent EMW absorption performance is attributed to the interfacial polarization loss caused by the MoS2-SiCnw heterogeneous interface, the conduction loss from the SiCnw conductive network, and the defect-induced dipole polarization loss. This work provides new insight into the development of high performance ceramic-based wave absorbing materials. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Construction of the SiC nanowires network structure decorated by MoS |
remote_bool |
true |
author2 |
Huang, Shijie Yao, Xiumin Liu, Xuejian Huang, Zhengren |
author2Str |
Huang, Shijie Yao, Xiumin Liu, Xuejian Huang, Zhengren |
ppnlink |
320500322 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.cej.2023.143809 |
up_date |
2024-07-06T23:26:09.963Z |
_version_ |
1803874069344419840 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV059978163</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231012073005.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230629s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.cej.2023.143809</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV059978163</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1385-8947(23)02540-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.10</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bai, Jialin</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0009-0004-4577-6109</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Construction of the SiC nanowires network structure decorated by MoS</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">SiC nanowires (SiCnw) are widely combined with ceramic matrix for electromagnetic wave (EMW) absorption due to their good conductive network structure. However, the single loss mechanism limits its further application in the field of EMW absorption. Herein, a novel three-dimensional network of SiCnw decorated by MoS2 nanoflowers with a “flower-branched” structure was synthesized in the pores of porous Si3N4 ceramics (MoS2/SiCnw/Si3N4) by precursor infiltration and pyrolysis combined with hydrothermal reaction. The morphology, pore structure, and dielectric properties of porous MoS2/SiCnw/Si3N4 ceramics were investigated. The interleaved SiCnw within the pore structure provide a large number of growth sites for the MoS2 nanoflowers, ensuring a uniform distribution of MoS2 nanoflowers without agglomeration. Compared with porous SiCnw/Si3N4 ceramics, porous MoS2/SiCnw/Si3N4 ceramics achieve improved microwave absorption performance with an effective absorption bandwidth of 3.50 GHz at a thickness of 2.38 mm and a minimum reflection loss of −70.48 dB at a thickness of 2.10 mm. The excellent EMW absorption performance is attributed to the interfacial polarization loss caused by the MoS2-SiCnw heterogeneous interface, the conduction loss from the SiCnw conductive network, and the defect-induced dipole polarization loss. This work provides new insight into the development of high performance ceramic-based wave absorbing materials.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">“Flower-branched” structure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MoS</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Porous ceramic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microwave absorption</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Shijie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yao, Xiumin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Xuejian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Zhengren</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The chemical engineering journal</subfield><subfield code="d">Amsterdam : Elsevier, 1997</subfield><subfield code="g">469</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320500322</subfield><subfield code="w">(DE-600)2012137-4</subfield><subfield code="w">(DE-576)098330152</subfield><subfield code="x">1873-3212</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:469</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.10</subfield><subfield code="j">Verfahrenstechnik: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">469</subfield></datafield></record></collection>
|
score |
7.402815 |