Enable the proactively load-balanced control plane for SDN via intelligent switch-to-controller selection strategy
The novelty of the software-defined network(SDN) is to separate the control plane and the data plane for easier manipulation of the network. The distributed control plane is designed to achieve more powerful computation capacity and address the single-point failure problem. However, it also poses a...
Ausführliche Beschreibung
Autor*in: |
Zhou, Yuwen [verfasserIn] Ren, Bangbang [verfasserIn] Xie, Junjie [verfasserIn] Luo, Lailong [verfasserIn] Guo, Deke [verfasserIn] Zhou, Xiaobo [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Computer networks - Amsterdam [u.a.] : Elsevier, 1976, 233 |
---|---|
Übergeordnetes Werk: |
volume:233 |
DOI / URN: |
10.1016/j.comnet.2023.109867 |
---|
Katalog-ID: |
ELV060389001 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV060389001 | ||
003 | DE-627 | ||
005 | 20230927093806.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230713s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.comnet.2023.109867 |2 doi | |
035 | |a (DE-627)ELV060389001 | ||
035 | |a (ELSEVIER)S1389-1286(23)00312-2 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |a 620 |q VZ |
084 | |a 54.32 |2 bkl | ||
084 | |a 53.76 |2 bkl | ||
100 | 1 | |a Zhou, Yuwen |e verfasserin |4 aut | |
245 | 1 | 0 | |a Enable the proactively load-balanced control plane for SDN via intelligent switch-to-controller selection strategy |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The novelty of the software-defined network(SDN) is to separate the control plane and the data plane for easier manipulation of the network. The distributed control plane is designed to achieve more powerful computation capacity and address the single-point failure problem. However, it also poses a new challenge that how to arrange switch-controller associations effectively. The direct static configuration cannot adapt the time-varying requests from switches well, and it would result in imbalance problems on the control plane and cause long-tail latency. Thus, it is necessary to take proper actions to adjust the switch-to-controller association dynamically. Existing controller-based load balancing methods need to communicate with the switches frequently and incur not only high assumptions of the rare control channel of SDN but also high computation costs. In this paper, we provide a switch-based solution that puts Reinforcement Learning agents on all Switches (RLoS). Instead of setting static rules predefined by operators, RLoS makes each switch actively select the best controller. RLoS treats every switch as an independent agent with its own neural network and parameters. With the carefully designed training algorithm, the agents could choose their preferable controllers via their local information. The results show that even with partial observation, the RLoS still can achieve considerable improvement in the load balance among all controllers compared with those controller-based association benchmarks. Our RLoS could decrease the maximum response latency among controllers by about 5 % ∼ 15 % under different scenarios on average. | ||
650 | 4 | |a Distributed controllers | |
650 | 4 | |a Load balance | |
650 | 4 | |a Software defined network | |
650 | 4 | |a Multi-agent reinforcement learning | |
700 | 1 | |a Ren, Bangbang |e verfasserin |4 aut | |
700 | 1 | |a Xie, Junjie |e verfasserin |4 aut | |
700 | 1 | |a Luo, Lailong |e verfasserin |4 aut | |
700 | 1 | |a Guo, Deke |e verfasserin |4 aut | |
700 | 1 | |a Zhou, Xiaobo |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Computer networks |d Amsterdam [u.a.] : Elsevier, 1976 |g 233 |h Online-Ressource |w (DE-627)306652749 |w (DE-600)1499744-7 |w (DE-576)081954360 |7 nnns |
773 | 1 | 8 | |g volume:233 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 54.32 |j Rechnerkommunikation |q VZ |
936 | b | k | |a 53.76 |j Kommunikationsdienste |j Fernmeldetechnik |q VZ |
951 | |a AR | ||
952 | |d 233 |
author_variant |
y z yz b r br j x jx l l ll d g dg x z xz |
---|---|
matchkey_str |
zhouyuwenrenbangbangxiejunjieluolailongg:2023----:nbehpocieyodaacdotopaeosniitlietwtho |
hierarchy_sort_str |
2023 |
bklnumber |
54.32 53.76 |
publishDate |
2023 |
allfields |
10.1016/j.comnet.2023.109867 doi (DE-627)ELV060389001 (ELSEVIER)S1389-1286(23)00312-2 DE-627 ger DE-627 rda eng 004 620 VZ 54.32 bkl 53.76 bkl Zhou, Yuwen verfasserin aut Enable the proactively load-balanced control plane for SDN via intelligent switch-to-controller selection strategy 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The novelty of the software-defined network(SDN) is to separate the control plane and the data plane for easier manipulation of the network. The distributed control plane is designed to achieve more powerful computation capacity and address the single-point failure problem. However, it also poses a new challenge that how to arrange switch-controller associations effectively. The direct static configuration cannot adapt the time-varying requests from switches well, and it would result in imbalance problems on the control plane and cause long-tail latency. Thus, it is necessary to take proper actions to adjust the switch-to-controller association dynamically. Existing controller-based load balancing methods need to communicate with the switches frequently and incur not only high assumptions of the rare control channel of SDN but also high computation costs. In this paper, we provide a switch-based solution that puts Reinforcement Learning agents on all Switches (RLoS). Instead of setting static rules predefined by operators, RLoS makes each switch actively select the best controller. RLoS treats every switch as an independent agent with its own neural network and parameters. With the carefully designed training algorithm, the agents could choose their preferable controllers via their local information. The results show that even with partial observation, the RLoS still can achieve considerable improvement in the load balance among all controllers compared with those controller-based association benchmarks. Our RLoS could decrease the maximum response latency among controllers by about 5 % ∼ 15 % under different scenarios on average. Distributed controllers Load balance Software defined network Multi-agent reinforcement learning Ren, Bangbang verfasserin aut Xie, Junjie verfasserin aut Luo, Lailong verfasserin aut Guo, Deke verfasserin aut Zhou, Xiaobo verfasserin aut Enthalten in Computer networks Amsterdam [u.a.] : Elsevier, 1976 233 Online-Ressource (DE-627)306652749 (DE-600)1499744-7 (DE-576)081954360 nnns volume:233 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 54.32 Rechnerkommunikation VZ 53.76 Kommunikationsdienste Fernmeldetechnik VZ AR 233 |
spelling |
10.1016/j.comnet.2023.109867 doi (DE-627)ELV060389001 (ELSEVIER)S1389-1286(23)00312-2 DE-627 ger DE-627 rda eng 004 620 VZ 54.32 bkl 53.76 bkl Zhou, Yuwen verfasserin aut Enable the proactively load-balanced control plane for SDN via intelligent switch-to-controller selection strategy 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The novelty of the software-defined network(SDN) is to separate the control plane and the data plane for easier manipulation of the network. The distributed control plane is designed to achieve more powerful computation capacity and address the single-point failure problem. However, it also poses a new challenge that how to arrange switch-controller associations effectively. The direct static configuration cannot adapt the time-varying requests from switches well, and it would result in imbalance problems on the control plane and cause long-tail latency. Thus, it is necessary to take proper actions to adjust the switch-to-controller association dynamically. Existing controller-based load balancing methods need to communicate with the switches frequently and incur not only high assumptions of the rare control channel of SDN but also high computation costs. In this paper, we provide a switch-based solution that puts Reinforcement Learning agents on all Switches (RLoS). Instead of setting static rules predefined by operators, RLoS makes each switch actively select the best controller. RLoS treats every switch as an independent agent with its own neural network and parameters. With the carefully designed training algorithm, the agents could choose their preferable controllers via their local information. The results show that even with partial observation, the RLoS still can achieve considerable improvement in the load balance among all controllers compared with those controller-based association benchmarks. Our RLoS could decrease the maximum response latency among controllers by about 5 % ∼ 15 % under different scenarios on average. Distributed controllers Load balance Software defined network Multi-agent reinforcement learning Ren, Bangbang verfasserin aut Xie, Junjie verfasserin aut Luo, Lailong verfasserin aut Guo, Deke verfasserin aut Zhou, Xiaobo verfasserin aut Enthalten in Computer networks Amsterdam [u.a.] : Elsevier, 1976 233 Online-Ressource (DE-627)306652749 (DE-600)1499744-7 (DE-576)081954360 nnns volume:233 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 54.32 Rechnerkommunikation VZ 53.76 Kommunikationsdienste Fernmeldetechnik VZ AR 233 |
allfields_unstemmed |
10.1016/j.comnet.2023.109867 doi (DE-627)ELV060389001 (ELSEVIER)S1389-1286(23)00312-2 DE-627 ger DE-627 rda eng 004 620 VZ 54.32 bkl 53.76 bkl Zhou, Yuwen verfasserin aut Enable the proactively load-balanced control plane for SDN via intelligent switch-to-controller selection strategy 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The novelty of the software-defined network(SDN) is to separate the control plane and the data plane for easier manipulation of the network. The distributed control plane is designed to achieve more powerful computation capacity and address the single-point failure problem. However, it also poses a new challenge that how to arrange switch-controller associations effectively. The direct static configuration cannot adapt the time-varying requests from switches well, and it would result in imbalance problems on the control plane and cause long-tail latency. Thus, it is necessary to take proper actions to adjust the switch-to-controller association dynamically. Existing controller-based load balancing methods need to communicate with the switches frequently and incur not only high assumptions of the rare control channel of SDN but also high computation costs. In this paper, we provide a switch-based solution that puts Reinforcement Learning agents on all Switches (RLoS). Instead of setting static rules predefined by operators, RLoS makes each switch actively select the best controller. RLoS treats every switch as an independent agent with its own neural network and parameters. With the carefully designed training algorithm, the agents could choose their preferable controllers via their local information. The results show that even with partial observation, the RLoS still can achieve considerable improvement in the load balance among all controllers compared with those controller-based association benchmarks. Our RLoS could decrease the maximum response latency among controllers by about 5 % ∼ 15 % under different scenarios on average. Distributed controllers Load balance Software defined network Multi-agent reinforcement learning Ren, Bangbang verfasserin aut Xie, Junjie verfasserin aut Luo, Lailong verfasserin aut Guo, Deke verfasserin aut Zhou, Xiaobo verfasserin aut Enthalten in Computer networks Amsterdam [u.a.] : Elsevier, 1976 233 Online-Ressource (DE-627)306652749 (DE-600)1499744-7 (DE-576)081954360 nnns volume:233 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 54.32 Rechnerkommunikation VZ 53.76 Kommunikationsdienste Fernmeldetechnik VZ AR 233 |
allfieldsGer |
10.1016/j.comnet.2023.109867 doi (DE-627)ELV060389001 (ELSEVIER)S1389-1286(23)00312-2 DE-627 ger DE-627 rda eng 004 620 VZ 54.32 bkl 53.76 bkl Zhou, Yuwen verfasserin aut Enable the proactively load-balanced control plane for SDN via intelligent switch-to-controller selection strategy 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The novelty of the software-defined network(SDN) is to separate the control plane and the data plane for easier manipulation of the network. The distributed control plane is designed to achieve more powerful computation capacity and address the single-point failure problem. However, it also poses a new challenge that how to arrange switch-controller associations effectively. The direct static configuration cannot adapt the time-varying requests from switches well, and it would result in imbalance problems on the control plane and cause long-tail latency. Thus, it is necessary to take proper actions to adjust the switch-to-controller association dynamically. Existing controller-based load balancing methods need to communicate with the switches frequently and incur not only high assumptions of the rare control channel of SDN but also high computation costs. In this paper, we provide a switch-based solution that puts Reinforcement Learning agents on all Switches (RLoS). Instead of setting static rules predefined by operators, RLoS makes each switch actively select the best controller. RLoS treats every switch as an independent agent with its own neural network and parameters. With the carefully designed training algorithm, the agents could choose their preferable controllers via their local information. The results show that even with partial observation, the RLoS still can achieve considerable improvement in the load balance among all controllers compared with those controller-based association benchmarks. Our RLoS could decrease the maximum response latency among controllers by about 5 % ∼ 15 % under different scenarios on average. Distributed controllers Load balance Software defined network Multi-agent reinforcement learning Ren, Bangbang verfasserin aut Xie, Junjie verfasserin aut Luo, Lailong verfasserin aut Guo, Deke verfasserin aut Zhou, Xiaobo verfasserin aut Enthalten in Computer networks Amsterdam [u.a.] : Elsevier, 1976 233 Online-Ressource (DE-627)306652749 (DE-600)1499744-7 (DE-576)081954360 nnns volume:233 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 54.32 Rechnerkommunikation VZ 53.76 Kommunikationsdienste Fernmeldetechnik VZ AR 233 |
allfieldsSound |
10.1016/j.comnet.2023.109867 doi (DE-627)ELV060389001 (ELSEVIER)S1389-1286(23)00312-2 DE-627 ger DE-627 rda eng 004 620 VZ 54.32 bkl 53.76 bkl Zhou, Yuwen verfasserin aut Enable the proactively load-balanced control plane for SDN via intelligent switch-to-controller selection strategy 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The novelty of the software-defined network(SDN) is to separate the control plane and the data plane for easier manipulation of the network. The distributed control plane is designed to achieve more powerful computation capacity and address the single-point failure problem. However, it also poses a new challenge that how to arrange switch-controller associations effectively. The direct static configuration cannot adapt the time-varying requests from switches well, and it would result in imbalance problems on the control plane and cause long-tail latency. Thus, it is necessary to take proper actions to adjust the switch-to-controller association dynamically. Existing controller-based load balancing methods need to communicate with the switches frequently and incur not only high assumptions of the rare control channel of SDN but also high computation costs. In this paper, we provide a switch-based solution that puts Reinforcement Learning agents on all Switches (RLoS). Instead of setting static rules predefined by operators, RLoS makes each switch actively select the best controller. RLoS treats every switch as an independent agent with its own neural network and parameters. With the carefully designed training algorithm, the agents could choose their preferable controllers via their local information. The results show that even with partial observation, the RLoS still can achieve considerable improvement in the load balance among all controllers compared with those controller-based association benchmarks. Our RLoS could decrease the maximum response latency among controllers by about 5 % ∼ 15 % under different scenarios on average. Distributed controllers Load balance Software defined network Multi-agent reinforcement learning Ren, Bangbang verfasserin aut Xie, Junjie verfasserin aut Luo, Lailong verfasserin aut Guo, Deke verfasserin aut Zhou, Xiaobo verfasserin aut Enthalten in Computer networks Amsterdam [u.a.] : Elsevier, 1976 233 Online-Ressource (DE-627)306652749 (DE-600)1499744-7 (DE-576)081954360 nnns volume:233 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 54.32 Rechnerkommunikation VZ 53.76 Kommunikationsdienste Fernmeldetechnik VZ AR 233 |
language |
English |
source |
Enthalten in Computer networks 233 volume:233 |
sourceStr |
Enthalten in Computer networks 233 volume:233 |
format_phy_str_mv |
Article |
bklname |
Rechnerkommunikation Kommunikationsdienste Fernmeldetechnik |
institution |
findex.gbv.de |
topic_facet |
Distributed controllers Load balance Software defined network Multi-agent reinforcement learning |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Computer networks |
authorswithroles_txt_mv |
Zhou, Yuwen @@aut@@ Ren, Bangbang @@aut@@ Xie, Junjie @@aut@@ Luo, Lailong @@aut@@ Guo, Deke @@aut@@ Zhou, Xiaobo @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
306652749 |
dewey-sort |
14 |
id |
ELV060389001 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV060389001</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230927093806.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230713s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.comnet.2023.109867</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV060389001</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1389-1286(23)00312-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.32</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.76</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhou, Yuwen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Enable the proactively load-balanced control plane for SDN via intelligent switch-to-controller selection strategy</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The novelty of the software-defined network(SDN) is to separate the control plane and the data plane for easier manipulation of the network. The distributed control plane is designed to achieve more powerful computation capacity and address the single-point failure problem. However, it also poses a new challenge that how to arrange switch-controller associations effectively. The direct static configuration cannot adapt the time-varying requests from switches well, and it would result in imbalance problems on the control plane and cause long-tail latency. Thus, it is necessary to take proper actions to adjust the switch-to-controller association dynamically. Existing controller-based load balancing methods need to communicate with the switches frequently and incur not only high assumptions of the rare control channel of SDN but also high computation costs. In this paper, we provide a switch-based solution that puts Reinforcement Learning agents on all Switches (RLoS). Instead of setting static rules predefined by operators, RLoS makes each switch actively select the best controller. RLoS treats every switch as an independent agent with its own neural network and parameters. With the carefully designed training algorithm, the agents could choose their preferable controllers via their local information. The results show that even with partial observation, the RLoS still can achieve considerable improvement in the load balance among all controllers compared with those controller-based association benchmarks. Our RLoS could decrease the maximum response latency among controllers by about 5 % ∼ 15 % under different scenarios on average.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distributed controllers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Load balance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Software defined network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multi-agent reinforcement learning</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ren, Bangbang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xie, Junjie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Luo, Lailong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guo, Deke</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhou, Xiaobo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Computer networks</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1976</subfield><subfield code="g">233</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)306652749</subfield><subfield code="w">(DE-600)1499744-7</subfield><subfield code="w">(DE-576)081954360</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:233</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.32</subfield><subfield code="j">Rechnerkommunikation</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.76</subfield><subfield code="j">Kommunikationsdienste</subfield><subfield code="j">Fernmeldetechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">233</subfield></datafield></record></collection>
|
author |
Zhou, Yuwen |
spellingShingle |
Zhou, Yuwen ddc 004 bkl 54.32 bkl 53.76 misc Distributed controllers misc Load balance misc Software defined network misc Multi-agent reinforcement learning Enable the proactively load-balanced control plane for SDN via intelligent switch-to-controller selection strategy |
authorStr |
Zhou, Yuwen |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)306652749 |
format |
electronic Article |
dewey-ones |
004 - Data processing & computer science 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
004 620 VZ 54.32 bkl 53.76 bkl Enable the proactively load-balanced control plane for SDN via intelligent switch-to-controller selection strategy Distributed controllers Load balance Software defined network Multi-agent reinforcement learning |
topic |
ddc 004 bkl 54.32 bkl 53.76 misc Distributed controllers misc Load balance misc Software defined network misc Multi-agent reinforcement learning |
topic_unstemmed |
ddc 004 bkl 54.32 bkl 53.76 misc Distributed controllers misc Load balance misc Software defined network misc Multi-agent reinforcement learning |
topic_browse |
ddc 004 bkl 54.32 bkl 53.76 misc Distributed controllers misc Load balance misc Software defined network misc Multi-agent reinforcement learning |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Computer networks |
hierarchy_parent_id |
306652749 |
dewey-tens |
000 - Computer science, knowledge & systems 620 - Engineering |
hierarchy_top_title |
Computer networks |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)306652749 (DE-600)1499744-7 (DE-576)081954360 |
title |
Enable the proactively load-balanced control plane for SDN via intelligent switch-to-controller selection strategy |
ctrlnum |
(DE-627)ELV060389001 (ELSEVIER)S1389-1286(23)00312-2 |
title_full |
Enable the proactively load-balanced control plane for SDN via intelligent switch-to-controller selection strategy |
author_sort |
Zhou, Yuwen |
journal |
Computer networks |
journalStr |
Computer networks |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works 600 - Technology |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Zhou, Yuwen Ren, Bangbang Xie, Junjie Luo, Lailong Guo, Deke Zhou, Xiaobo |
container_volume |
233 |
class |
004 620 VZ 54.32 bkl 53.76 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Zhou, Yuwen |
doi_str_mv |
10.1016/j.comnet.2023.109867 |
dewey-full |
004 620 |
author2-role |
verfasserin |
title_sort |
enable the proactively load-balanced control plane for sdn via intelligent switch-to-controller selection strategy |
title_auth |
Enable the proactively load-balanced control plane for SDN via intelligent switch-to-controller selection strategy |
abstract |
The novelty of the software-defined network(SDN) is to separate the control plane and the data plane for easier manipulation of the network. The distributed control plane is designed to achieve more powerful computation capacity and address the single-point failure problem. However, it also poses a new challenge that how to arrange switch-controller associations effectively. The direct static configuration cannot adapt the time-varying requests from switches well, and it would result in imbalance problems on the control plane and cause long-tail latency. Thus, it is necessary to take proper actions to adjust the switch-to-controller association dynamically. Existing controller-based load balancing methods need to communicate with the switches frequently and incur not only high assumptions of the rare control channel of SDN but also high computation costs. In this paper, we provide a switch-based solution that puts Reinforcement Learning agents on all Switches (RLoS). Instead of setting static rules predefined by operators, RLoS makes each switch actively select the best controller. RLoS treats every switch as an independent agent with its own neural network and parameters. With the carefully designed training algorithm, the agents could choose their preferable controllers via their local information. The results show that even with partial observation, the RLoS still can achieve considerable improvement in the load balance among all controllers compared with those controller-based association benchmarks. Our RLoS could decrease the maximum response latency among controllers by about 5 % ∼ 15 % under different scenarios on average. |
abstractGer |
The novelty of the software-defined network(SDN) is to separate the control plane and the data plane for easier manipulation of the network. The distributed control plane is designed to achieve more powerful computation capacity and address the single-point failure problem. However, it also poses a new challenge that how to arrange switch-controller associations effectively. The direct static configuration cannot adapt the time-varying requests from switches well, and it would result in imbalance problems on the control plane and cause long-tail latency. Thus, it is necessary to take proper actions to adjust the switch-to-controller association dynamically. Existing controller-based load balancing methods need to communicate with the switches frequently and incur not only high assumptions of the rare control channel of SDN but also high computation costs. In this paper, we provide a switch-based solution that puts Reinforcement Learning agents on all Switches (RLoS). Instead of setting static rules predefined by operators, RLoS makes each switch actively select the best controller. RLoS treats every switch as an independent agent with its own neural network and parameters. With the carefully designed training algorithm, the agents could choose their preferable controllers via their local information. The results show that even with partial observation, the RLoS still can achieve considerable improvement in the load balance among all controllers compared with those controller-based association benchmarks. Our RLoS could decrease the maximum response latency among controllers by about 5 % ∼ 15 % under different scenarios on average. |
abstract_unstemmed |
The novelty of the software-defined network(SDN) is to separate the control plane and the data plane for easier manipulation of the network. The distributed control plane is designed to achieve more powerful computation capacity and address the single-point failure problem. However, it also poses a new challenge that how to arrange switch-controller associations effectively. The direct static configuration cannot adapt the time-varying requests from switches well, and it would result in imbalance problems on the control plane and cause long-tail latency. Thus, it is necessary to take proper actions to adjust the switch-to-controller association dynamically. Existing controller-based load balancing methods need to communicate with the switches frequently and incur not only high assumptions of the rare control channel of SDN but also high computation costs. In this paper, we provide a switch-based solution that puts Reinforcement Learning agents on all Switches (RLoS). Instead of setting static rules predefined by operators, RLoS makes each switch actively select the best controller. RLoS treats every switch as an independent agent with its own neural network and parameters. With the carefully designed training algorithm, the agents could choose their preferable controllers via their local information. The results show that even with partial observation, the RLoS still can achieve considerable improvement in the load balance among all controllers compared with those controller-based association benchmarks. Our RLoS could decrease the maximum response latency among controllers by about 5 % ∼ 15 % under different scenarios on average. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Enable the proactively load-balanced control plane for SDN via intelligent switch-to-controller selection strategy |
remote_bool |
true |
author2 |
Ren, Bangbang Xie, Junjie Luo, Lailong Guo, Deke Zhou, Xiaobo |
author2Str |
Ren, Bangbang Xie, Junjie Luo, Lailong Guo, Deke Zhou, Xiaobo |
ppnlink |
306652749 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.comnet.2023.109867 |
up_date |
2024-07-06T23:49:40.141Z |
_version_ |
1803875548023226368 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV060389001</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230927093806.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230713s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.comnet.2023.109867</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV060389001</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1389-1286(23)00312-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.32</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.76</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhou, Yuwen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Enable the proactively load-balanced control plane for SDN via intelligent switch-to-controller selection strategy</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The novelty of the software-defined network(SDN) is to separate the control plane and the data plane for easier manipulation of the network. The distributed control plane is designed to achieve more powerful computation capacity and address the single-point failure problem. However, it also poses a new challenge that how to arrange switch-controller associations effectively. The direct static configuration cannot adapt the time-varying requests from switches well, and it would result in imbalance problems on the control plane and cause long-tail latency. Thus, it is necessary to take proper actions to adjust the switch-to-controller association dynamically. Existing controller-based load balancing methods need to communicate with the switches frequently and incur not only high assumptions of the rare control channel of SDN but also high computation costs. In this paper, we provide a switch-based solution that puts Reinforcement Learning agents on all Switches (RLoS). Instead of setting static rules predefined by operators, RLoS makes each switch actively select the best controller. RLoS treats every switch as an independent agent with its own neural network and parameters. With the carefully designed training algorithm, the agents could choose their preferable controllers via their local information. The results show that even with partial observation, the RLoS still can achieve considerable improvement in the load balance among all controllers compared with those controller-based association benchmarks. Our RLoS could decrease the maximum response latency among controllers by about 5 % ∼ 15 % under different scenarios on average.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distributed controllers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Load balance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Software defined network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multi-agent reinforcement learning</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ren, Bangbang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xie, Junjie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Luo, Lailong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guo, Deke</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhou, Xiaobo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Computer networks</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1976</subfield><subfield code="g">233</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)306652749</subfield><subfield code="w">(DE-600)1499744-7</subfield><subfield code="w">(DE-576)081954360</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:233</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.32</subfield><subfield code="j">Rechnerkommunikation</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.76</subfield><subfield code="j">Kommunikationsdienste</subfield><subfield code="j">Fernmeldetechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">233</subfield></datafield></record></collection>
|
score |
7.402793 |