Promoting photocatalytic nitrogen reduction for aqueous nitrogenous fertilizer from organic wastewater over p-BiOBr/n-Bi 2 MoO 6 hetero-nanofibers
Photocatalytic nitrogen reduction (PNR) is a potential routine for producing aqueous nitrogenous fertilizer via a green chemistry process but is still limited by a relatively poor efficiency. Considering the dynamic coupling of excited electrons and holes, we introduced organic wastewater oxidation...
Ausführliche Beschreibung
Autor*in: |
Wu, Xi [verfasserIn] Zhang, Fang [verfasserIn] Niu, Luyao [verfasserIn] Liu, Jie [verfasserIn] Li, Jing [verfasserIn] Wang, Dan [verfasserIn] Fan, Juanjuan [verfasserIn] Li, Xiaowei [verfasserIn] Shao, Changlu [verfasserIn] Li, Xinghua [verfasserIn] Liu, Yichun [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
Photocatalytic nitrogen reduction |
---|
Übergeordnetes Werk: |
Enthalten in: The chemical engineering journal - Amsterdam : Elsevier, 1997, 470 |
---|---|
Übergeordnetes Werk: |
volume:470 |
DOI / URN: |
10.1016/j.cej.2023.144108 |
---|
Katalog-ID: |
ELV060410388 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV060410388 | ||
003 | DE-627 | ||
005 | 20240110093211.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230713s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.cej.2023.144108 |2 doi | |
035 | |a (DE-627)ELV060410388 | ||
035 | |a (ELSEVIER)S1385-8947(23)02839-5 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 660 |q VZ |
082 | 0 | 4 | |a 660 |q VZ |
084 | |a 58.10 |2 bkl | ||
100 | 1 | |a Wu, Xi |e verfasserin |4 aut | |
245 | 1 | 0 | |a Promoting photocatalytic nitrogen reduction for aqueous nitrogenous fertilizer from organic wastewater over p-BiOBr/n-Bi 2 MoO 6 hetero-nanofibers |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Photocatalytic nitrogen reduction (PNR) is a potential routine for producing aqueous nitrogenous fertilizer via a green chemistry process but is still limited by a relatively poor efficiency. Considering the dynamic coupling of excited electrons and holes, we introduced organic wastewater oxidation process to substitute the sluggish water oxidation for promoting the PNR reaction. We developed p-BiOBr/n-Bi2MoO6 Z-scheme hetero-nanofibers and experimentally studied their interface charge transfer mechanism in detail. Their strong redox ability and high charge separation efficiency enabled efficient PNR with simultaneous organic pollutant degradation. They have exhibited a PNR rate of up to 911.6 µmol g−1 h−1 L−1 in Rhodamine B (RhB) solution, about 2.5 times higher than that in pure water. Meanwhile, their RhB removal rate reached ∼91.2% in the PNR process (i.e., in N2 saturated solution), close to that in the air (∼96.6%) due to the strong oxidation ability of valence band holes. The proper loading ratio of BiOBr on the hetero-nanofibers and their super-long one-dimensional structures were essential for tuning the charge separation and photocatalytic activity. Moreover, the dual-functional system exhibited efficient photocatalytic performance in a natural water matrix and simulated flowing wastewater scene. Based on a comparative plant cultivation study, the system could effectively convert pollutant solutions into aqueous nitrogenous fertilizers that could promote the healthy growth of nitrogenous sensitive plants. The green and sustainable strategy of PNR for aqueous nitrogenous fertilizer from organic wastewater would have broad applications in energy conservation and environmental remediation. | ||
650 | 4 | |a Photocatalytic nitrogen reduction | |
650 | 4 | |a Organic wastewater degradation | |
650 | 4 | |a Nitrogenous fertilizer | |
650 | 4 | |a Z-scheme interface | |
650 | 4 | |a Hetero-nanofibers | |
700 | 1 | |a Zhang, Fang |e verfasserin |4 aut | |
700 | 1 | |a Niu, Luyao |e verfasserin |4 aut | |
700 | 1 | |a Liu, Jie |e verfasserin |4 aut | |
700 | 1 | |a Li, Jing |e verfasserin |4 aut | |
700 | 1 | |a Wang, Dan |e verfasserin |4 aut | |
700 | 1 | |a Fan, Juanjuan |e verfasserin |4 aut | |
700 | 1 | |a Li, Xiaowei |e verfasserin |4 aut | |
700 | 1 | |a Shao, Changlu |e verfasserin |4 aut | |
700 | 1 | |a Li, Xinghua |e verfasserin |4 aut | |
700 | 1 | |a Liu, Yichun |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t The chemical engineering journal |d Amsterdam : Elsevier, 1997 |g 470 |h Online-Ressource |w (DE-627)320500322 |w (DE-600)2012137-4 |w (DE-576)098330152 |x 1873-3212 |7 nnns |
773 | 1 | 8 | |g volume:470 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 58.10 |j Verfahrenstechnik: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 470 |
author_variant |
x w xw f z fz l n ln j l jl j l jl d w dw j f jf x l xl c s cs x l xl y l yl |
---|---|
matchkey_str |
article:18733212:2023----::rmtnpooaayintoerdcinoauosirgnufriiefoogncatwtr |
hierarchy_sort_str |
2023 |
bklnumber |
58.10 |
publishDate |
2023 |
allfields |
10.1016/j.cej.2023.144108 doi (DE-627)ELV060410388 (ELSEVIER)S1385-8947(23)02839-5 DE-627 ger DE-627 rda eng 660 VZ 660 VZ 58.10 bkl Wu, Xi verfasserin aut Promoting photocatalytic nitrogen reduction for aqueous nitrogenous fertilizer from organic wastewater over p-BiOBr/n-Bi 2 MoO 6 hetero-nanofibers 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Photocatalytic nitrogen reduction (PNR) is a potential routine for producing aqueous nitrogenous fertilizer via a green chemistry process but is still limited by a relatively poor efficiency. Considering the dynamic coupling of excited electrons and holes, we introduced organic wastewater oxidation process to substitute the sluggish water oxidation for promoting the PNR reaction. We developed p-BiOBr/n-Bi2MoO6 Z-scheme hetero-nanofibers and experimentally studied their interface charge transfer mechanism in detail. Their strong redox ability and high charge separation efficiency enabled efficient PNR with simultaneous organic pollutant degradation. They have exhibited a PNR rate of up to 911.6 µmol g−1 h−1 L−1 in Rhodamine B (RhB) solution, about 2.5 times higher than that in pure water. Meanwhile, their RhB removal rate reached ∼91.2% in the PNR process (i.e., in N2 saturated solution), close to that in the air (∼96.6%) due to the strong oxidation ability of valence band holes. The proper loading ratio of BiOBr on the hetero-nanofibers and their super-long one-dimensional structures were essential for tuning the charge separation and photocatalytic activity. Moreover, the dual-functional system exhibited efficient photocatalytic performance in a natural water matrix and simulated flowing wastewater scene. Based on a comparative plant cultivation study, the system could effectively convert pollutant solutions into aqueous nitrogenous fertilizers that could promote the healthy growth of nitrogenous sensitive plants. The green and sustainable strategy of PNR for aqueous nitrogenous fertilizer from organic wastewater would have broad applications in energy conservation and environmental remediation. Photocatalytic nitrogen reduction Organic wastewater degradation Nitrogenous fertilizer Z-scheme interface Hetero-nanofibers Zhang, Fang verfasserin aut Niu, Luyao verfasserin aut Liu, Jie verfasserin aut Li, Jing verfasserin aut Wang, Dan verfasserin aut Fan, Juanjuan verfasserin aut Li, Xiaowei verfasserin aut Shao, Changlu verfasserin aut Li, Xinghua verfasserin aut Liu, Yichun verfasserin aut Enthalten in The chemical engineering journal Amsterdam : Elsevier, 1997 470 Online-Ressource (DE-627)320500322 (DE-600)2012137-4 (DE-576)098330152 1873-3212 nnns volume:470 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 58.10 Verfahrenstechnik: Allgemeines VZ AR 470 |
spelling |
10.1016/j.cej.2023.144108 doi (DE-627)ELV060410388 (ELSEVIER)S1385-8947(23)02839-5 DE-627 ger DE-627 rda eng 660 VZ 660 VZ 58.10 bkl Wu, Xi verfasserin aut Promoting photocatalytic nitrogen reduction for aqueous nitrogenous fertilizer from organic wastewater over p-BiOBr/n-Bi 2 MoO 6 hetero-nanofibers 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Photocatalytic nitrogen reduction (PNR) is a potential routine for producing aqueous nitrogenous fertilizer via a green chemistry process but is still limited by a relatively poor efficiency. Considering the dynamic coupling of excited electrons and holes, we introduced organic wastewater oxidation process to substitute the sluggish water oxidation for promoting the PNR reaction. We developed p-BiOBr/n-Bi2MoO6 Z-scheme hetero-nanofibers and experimentally studied their interface charge transfer mechanism in detail. Their strong redox ability and high charge separation efficiency enabled efficient PNR with simultaneous organic pollutant degradation. They have exhibited a PNR rate of up to 911.6 µmol g−1 h−1 L−1 in Rhodamine B (RhB) solution, about 2.5 times higher than that in pure water. Meanwhile, their RhB removal rate reached ∼91.2% in the PNR process (i.e., in N2 saturated solution), close to that in the air (∼96.6%) due to the strong oxidation ability of valence band holes. The proper loading ratio of BiOBr on the hetero-nanofibers and their super-long one-dimensional structures were essential for tuning the charge separation and photocatalytic activity. Moreover, the dual-functional system exhibited efficient photocatalytic performance in a natural water matrix and simulated flowing wastewater scene. Based on a comparative plant cultivation study, the system could effectively convert pollutant solutions into aqueous nitrogenous fertilizers that could promote the healthy growth of nitrogenous sensitive plants. The green and sustainable strategy of PNR for aqueous nitrogenous fertilizer from organic wastewater would have broad applications in energy conservation and environmental remediation. Photocatalytic nitrogen reduction Organic wastewater degradation Nitrogenous fertilizer Z-scheme interface Hetero-nanofibers Zhang, Fang verfasserin aut Niu, Luyao verfasserin aut Liu, Jie verfasserin aut Li, Jing verfasserin aut Wang, Dan verfasserin aut Fan, Juanjuan verfasserin aut Li, Xiaowei verfasserin aut Shao, Changlu verfasserin aut Li, Xinghua verfasserin aut Liu, Yichun verfasserin aut Enthalten in The chemical engineering journal Amsterdam : Elsevier, 1997 470 Online-Ressource (DE-627)320500322 (DE-600)2012137-4 (DE-576)098330152 1873-3212 nnns volume:470 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 58.10 Verfahrenstechnik: Allgemeines VZ AR 470 |
allfields_unstemmed |
10.1016/j.cej.2023.144108 doi (DE-627)ELV060410388 (ELSEVIER)S1385-8947(23)02839-5 DE-627 ger DE-627 rda eng 660 VZ 660 VZ 58.10 bkl Wu, Xi verfasserin aut Promoting photocatalytic nitrogen reduction for aqueous nitrogenous fertilizer from organic wastewater over p-BiOBr/n-Bi 2 MoO 6 hetero-nanofibers 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Photocatalytic nitrogen reduction (PNR) is a potential routine for producing aqueous nitrogenous fertilizer via a green chemistry process but is still limited by a relatively poor efficiency. Considering the dynamic coupling of excited electrons and holes, we introduced organic wastewater oxidation process to substitute the sluggish water oxidation for promoting the PNR reaction. We developed p-BiOBr/n-Bi2MoO6 Z-scheme hetero-nanofibers and experimentally studied their interface charge transfer mechanism in detail. Their strong redox ability and high charge separation efficiency enabled efficient PNR with simultaneous organic pollutant degradation. They have exhibited a PNR rate of up to 911.6 µmol g−1 h−1 L−1 in Rhodamine B (RhB) solution, about 2.5 times higher than that in pure water. Meanwhile, their RhB removal rate reached ∼91.2% in the PNR process (i.e., in N2 saturated solution), close to that in the air (∼96.6%) due to the strong oxidation ability of valence band holes. The proper loading ratio of BiOBr on the hetero-nanofibers and their super-long one-dimensional structures were essential for tuning the charge separation and photocatalytic activity. Moreover, the dual-functional system exhibited efficient photocatalytic performance in a natural water matrix and simulated flowing wastewater scene. Based on a comparative plant cultivation study, the system could effectively convert pollutant solutions into aqueous nitrogenous fertilizers that could promote the healthy growth of nitrogenous sensitive plants. The green and sustainable strategy of PNR for aqueous nitrogenous fertilizer from organic wastewater would have broad applications in energy conservation and environmental remediation. Photocatalytic nitrogen reduction Organic wastewater degradation Nitrogenous fertilizer Z-scheme interface Hetero-nanofibers Zhang, Fang verfasserin aut Niu, Luyao verfasserin aut Liu, Jie verfasserin aut Li, Jing verfasserin aut Wang, Dan verfasserin aut Fan, Juanjuan verfasserin aut Li, Xiaowei verfasserin aut Shao, Changlu verfasserin aut Li, Xinghua verfasserin aut Liu, Yichun verfasserin aut Enthalten in The chemical engineering journal Amsterdam : Elsevier, 1997 470 Online-Ressource (DE-627)320500322 (DE-600)2012137-4 (DE-576)098330152 1873-3212 nnns volume:470 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 58.10 Verfahrenstechnik: Allgemeines VZ AR 470 |
allfieldsGer |
10.1016/j.cej.2023.144108 doi (DE-627)ELV060410388 (ELSEVIER)S1385-8947(23)02839-5 DE-627 ger DE-627 rda eng 660 VZ 660 VZ 58.10 bkl Wu, Xi verfasserin aut Promoting photocatalytic nitrogen reduction for aqueous nitrogenous fertilizer from organic wastewater over p-BiOBr/n-Bi 2 MoO 6 hetero-nanofibers 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Photocatalytic nitrogen reduction (PNR) is a potential routine for producing aqueous nitrogenous fertilizer via a green chemistry process but is still limited by a relatively poor efficiency. Considering the dynamic coupling of excited electrons and holes, we introduced organic wastewater oxidation process to substitute the sluggish water oxidation for promoting the PNR reaction. We developed p-BiOBr/n-Bi2MoO6 Z-scheme hetero-nanofibers and experimentally studied their interface charge transfer mechanism in detail. Their strong redox ability and high charge separation efficiency enabled efficient PNR with simultaneous organic pollutant degradation. They have exhibited a PNR rate of up to 911.6 µmol g−1 h−1 L−1 in Rhodamine B (RhB) solution, about 2.5 times higher than that in pure water. Meanwhile, their RhB removal rate reached ∼91.2% in the PNR process (i.e., in N2 saturated solution), close to that in the air (∼96.6%) due to the strong oxidation ability of valence band holes. The proper loading ratio of BiOBr on the hetero-nanofibers and their super-long one-dimensional structures were essential for tuning the charge separation and photocatalytic activity. Moreover, the dual-functional system exhibited efficient photocatalytic performance in a natural water matrix and simulated flowing wastewater scene. Based on a comparative plant cultivation study, the system could effectively convert pollutant solutions into aqueous nitrogenous fertilizers that could promote the healthy growth of nitrogenous sensitive plants. The green and sustainable strategy of PNR for aqueous nitrogenous fertilizer from organic wastewater would have broad applications in energy conservation and environmental remediation. Photocatalytic nitrogen reduction Organic wastewater degradation Nitrogenous fertilizer Z-scheme interface Hetero-nanofibers Zhang, Fang verfasserin aut Niu, Luyao verfasserin aut Liu, Jie verfasserin aut Li, Jing verfasserin aut Wang, Dan verfasserin aut Fan, Juanjuan verfasserin aut Li, Xiaowei verfasserin aut Shao, Changlu verfasserin aut Li, Xinghua verfasserin aut Liu, Yichun verfasserin aut Enthalten in The chemical engineering journal Amsterdam : Elsevier, 1997 470 Online-Ressource (DE-627)320500322 (DE-600)2012137-4 (DE-576)098330152 1873-3212 nnns volume:470 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 58.10 Verfahrenstechnik: Allgemeines VZ AR 470 |
allfieldsSound |
10.1016/j.cej.2023.144108 doi (DE-627)ELV060410388 (ELSEVIER)S1385-8947(23)02839-5 DE-627 ger DE-627 rda eng 660 VZ 660 VZ 58.10 bkl Wu, Xi verfasserin aut Promoting photocatalytic nitrogen reduction for aqueous nitrogenous fertilizer from organic wastewater over p-BiOBr/n-Bi 2 MoO 6 hetero-nanofibers 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Photocatalytic nitrogen reduction (PNR) is a potential routine for producing aqueous nitrogenous fertilizer via a green chemistry process but is still limited by a relatively poor efficiency. Considering the dynamic coupling of excited electrons and holes, we introduced organic wastewater oxidation process to substitute the sluggish water oxidation for promoting the PNR reaction. We developed p-BiOBr/n-Bi2MoO6 Z-scheme hetero-nanofibers and experimentally studied their interface charge transfer mechanism in detail. Their strong redox ability and high charge separation efficiency enabled efficient PNR with simultaneous organic pollutant degradation. They have exhibited a PNR rate of up to 911.6 µmol g−1 h−1 L−1 in Rhodamine B (RhB) solution, about 2.5 times higher than that in pure water. Meanwhile, their RhB removal rate reached ∼91.2% in the PNR process (i.e., in N2 saturated solution), close to that in the air (∼96.6%) due to the strong oxidation ability of valence band holes. The proper loading ratio of BiOBr on the hetero-nanofibers and their super-long one-dimensional structures were essential for tuning the charge separation and photocatalytic activity. Moreover, the dual-functional system exhibited efficient photocatalytic performance in a natural water matrix and simulated flowing wastewater scene. Based on a comparative plant cultivation study, the system could effectively convert pollutant solutions into aqueous nitrogenous fertilizers that could promote the healthy growth of nitrogenous sensitive plants. The green and sustainable strategy of PNR for aqueous nitrogenous fertilizer from organic wastewater would have broad applications in energy conservation and environmental remediation. Photocatalytic nitrogen reduction Organic wastewater degradation Nitrogenous fertilizer Z-scheme interface Hetero-nanofibers Zhang, Fang verfasserin aut Niu, Luyao verfasserin aut Liu, Jie verfasserin aut Li, Jing verfasserin aut Wang, Dan verfasserin aut Fan, Juanjuan verfasserin aut Li, Xiaowei verfasserin aut Shao, Changlu verfasserin aut Li, Xinghua verfasserin aut Liu, Yichun verfasserin aut Enthalten in The chemical engineering journal Amsterdam : Elsevier, 1997 470 Online-Ressource (DE-627)320500322 (DE-600)2012137-4 (DE-576)098330152 1873-3212 nnns volume:470 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 58.10 Verfahrenstechnik: Allgemeines VZ AR 470 |
language |
English |
source |
Enthalten in The chemical engineering journal 470 volume:470 |
sourceStr |
Enthalten in The chemical engineering journal 470 volume:470 |
format_phy_str_mv |
Article |
bklname |
Verfahrenstechnik: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Photocatalytic nitrogen reduction Organic wastewater degradation Nitrogenous fertilizer Z-scheme interface Hetero-nanofibers |
dewey-raw |
660 |
isfreeaccess_bool |
false |
container_title |
The chemical engineering journal |
authorswithroles_txt_mv |
Wu, Xi @@aut@@ Zhang, Fang @@aut@@ Niu, Luyao @@aut@@ Liu, Jie @@aut@@ Li, Jing @@aut@@ Wang, Dan @@aut@@ Fan, Juanjuan @@aut@@ Li, Xiaowei @@aut@@ Shao, Changlu @@aut@@ Li, Xinghua @@aut@@ Liu, Yichun @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
320500322 |
dewey-sort |
3660 |
id |
ELV060410388 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV060410388</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240110093211.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230713s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.cej.2023.144108</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV060410388</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1385-8947(23)02839-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.10</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wu, Xi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Promoting photocatalytic nitrogen reduction for aqueous nitrogenous fertilizer from organic wastewater over p-BiOBr/n-Bi 2 MoO 6 hetero-nanofibers</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Photocatalytic nitrogen reduction (PNR) is a potential routine for producing aqueous nitrogenous fertilizer via a green chemistry process but is still limited by a relatively poor efficiency. Considering the dynamic coupling of excited electrons and holes, we introduced organic wastewater oxidation process to substitute the sluggish water oxidation for promoting the PNR reaction. We developed p-BiOBr/n-Bi2MoO6 Z-scheme hetero-nanofibers and experimentally studied their interface charge transfer mechanism in detail. Their strong redox ability and high charge separation efficiency enabled efficient PNR with simultaneous organic pollutant degradation. They have exhibited a PNR rate of up to 911.6 µmol g−1 h−1 L−1 in Rhodamine B (RhB) solution, about 2.5 times higher than that in pure water. Meanwhile, their RhB removal rate reached ∼91.2% in the PNR process (i.e., in N2 saturated solution), close to that in the air (∼96.6%) due to the strong oxidation ability of valence band holes. The proper loading ratio of BiOBr on the hetero-nanofibers and their super-long one-dimensional structures were essential for tuning the charge separation and photocatalytic activity. Moreover, the dual-functional system exhibited efficient photocatalytic performance in a natural water matrix and simulated flowing wastewater scene. Based on a comparative plant cultivation study, the system could effectively convert pollutant solutions into aqueous nitrogenous fertilizers that could promote the healthy growth of nitrogenous sensitive plants. The green and sustainable strategy of PNR for aqueous nitrogenous fertilizer from organic wastewater would have broad applications in energy conservation and environmental remediation.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Photocatalytic nitrogen reduction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Organic wastewater degradation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nitrogenous fertilizer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Z-scheme interface</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hetero-nanofibers</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Fang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Niu, Luyao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Jie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Jing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Dan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fan, Juanjuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Xiaowei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shao, Changlu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Xinghua</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Yichun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The chemical engineering journal</subfield><subfield code="d">Amsterdam : Elsevier, 1997</subfield><subfield code="g">470</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320500322</subfield><subfield code="w">(DE-600)2012137-4</subfield><subfield code="w">(DE-576)098330152</subfield><subfield code="x">1873-3212</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.10</subfield><subfield code="j">Verfahrenstechnik: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">470</subfield></datafield></record></collection>
|
author |
Wu, Xi |
spellingShingle |
Wu, Xi ddc 660 bkl 58.10 misc Photocatalytic nitrogen reduction misc Organic wastewater degradation misc Nitrogenous fertilizer misc Z-scheme interface misc Hetero-nanofibers Promoting photocatalytic nitrogen reduction for aqueous nitrogenous fertilizer from organic wastewater over p-BiOBr/n-Bi 2 MoO 6 hetero-nanofibers |
authorStr |
Wu, Xi |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320500322 |
format |
electronic Article |
dewey-ones |
660 - Chemical engineering |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1873-3212 |
topic_title |
660 VZ 58.10 bkl Promoting photocatalytic nitrogen reduction for aqueous nitrogenous fertilizer from organic wastewater over p-BiOBr/n-Bi 2 MoO 6 hetero-nanofibers Photocatalytic nitrogen reduction Organic wastewater degradation Nitrogenous fertilizer Z-scheme interface Hetero-nanofibers |
topic |
ddc 660 bkl 58.10 misc Photocatalytic nitrogen reduction misc Organic wastewater degradation misc Nitrogenous fertilizer misc Z-scheme interface misc Hetero-nanofibers |
topic_unstemmed |
ddc 660 bkl 58.10 misc Photocatalytic nitrogen reduction misc Organic wastewater degradation misc Nitrogenous fertilizer misc Z-scheme interface misc Hetero-nanofibers |
topic_browse |
ddc 660 bkl 58.10 misc Photocatalytic nitrogen reduction misc Organic wastewater degradation misc Nitrogenous fertilizer misc Z-scheme interface misc Hetero-nanofibers |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
The chemical engineering journal |
hierarchy_parent_id |
320500322 |
dewey-tens |
660 - Chemical engineering |
hierarchy_top_title |
The chemical engineering journal |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320500322 (DE-600)2012137-4 (DE-576)098330152 |
title |
Promoting photocatalytic nitrogen reduction for aqueous nitrogenous fertilizer from organic wastewater over p-BiOBr/n-Bi 2 MoO 6 hetero-nanofibers |
ctrlnum |
(DE-627)ELV060410388 (ELSEVIER)S1385-8947(23)02839-5 |
title_full |
Promoting photocatalytic nitrogen reduction for aqueous nitrogenous fertilizer from organic wastewater over p-BiOBr/n-Bi 2 MoO 6 hetero-nanofibers |
author_sort |
Wu, Xi |
journal |
The chemical engineering journal |
journalStr |
The chemical engineering journal |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Wu, Xi Zhang, Fang Niu, Luyao Liu, Jie Li, Jing Wang, Dan Fan, Juanjuan Li, Xiaowei Shao, Changlu Li, Xinghua Liu, Yichun |
container_volume |
470 |
class |
660 VZ 58.10 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Wu, Xi |
doi_str_mv |
10.1016/j.cej.2023.144108 |
dewey-full |
660 |
author2-role |
verfasserin |
title_sort |
promoting photocatalytic nitrogen reduction for aqueous nitrogenous fertilizer from organic wastewater over p-biobr/n-bi 2 moo 6 hetero-nanofibers |
title_auth |
Promoting photocatalytic nitrogen reduction for aqueous nitrogenous fertilizer from organic wastewater over p-BiOBr/n-Bi 2 MoO 6 hetero-nanofibers |
abstract |
Photocatalytic nitrogen reduction (PNR) is a potential routine for producing aqueous nitrogenous fertilizer via a green chemistry process but is still limited by a relatively poor efficiency. Considering the dynamic coupling of excited electrons and holes, we introduced organic wastewater oxidation process to substitute the sluggish water oxidation for promoting the PNR reaction. We developed p-BiOBr/n-Bi2MoO6 Z-scheme hetero-nanofibers and experimentally studied their interface charge transfer mechanism in detail. Their strong redox ability and high charge separation efficiency enabled efficient PNR with simultaneous organic pollutant degradation. They have exhibited a PNR rate of up to 911.6 µmol g−1 h−1 L−1 in Rhodamine B (RhB) solution, about 2.5 times higher than that in pure water. Meanwhile, their RhB removal rate reached ∼91.2% in the PNR process (i.e., in N2 saturated solution), close to that in the air (∼96.6%) due to the strong oxidation ability of valence band holes. The proper loading ratio of BiOBr on the hetero-nanofibers and their super-long one-dimensional structures were essential for tuning the charge separation and photocatalytic activity. Moreover, the dual-functional system exhibited efficient photocatalytic performance in a natural water matrix and simulated flowing wastewater scene. Based on a comparative plant cultivation study, the system could effectively convert pollutant solutions into aqueous nitrogenous fertilizers that could promote the healthy growth of nitrogenous sensitive plants. The green and sustainable strategy of PNR for aqueous nitrogenous fertilizer from organic wastewater would have broad applications in energy conservation and environmental remediation. |
abstractGer |
Photocatalytic nitrogen reduction (PNR) is a potential routine for producing aqueous nitrogenous fertilizer via a green chemistry process but is still limited by a relatively poor efficiency. Considering the dynamic coupling of excited electrons and holes, we introduced organic wastewater oxidation process to substitute the sluggish water oxidation for promoting the PNR reaction. We developed p-BiOBr/n-Bi2MoO6 Z-scheme hetero-nanofibers and experimentally studied their interface charge transfer mechanism in detail. Their strong redox ability and high charge separation efficiency enabled efficient PNR with simultaneous organic pollutant degradation. They have exhibited a PNR rate of up to 911.6 µmol g−1 h−1 L−1 in Rhodamine B (RhB) solution, about 2.5 times higher than that in pure water. Meanwhile, their RhB removal rate reached ∼91.2% in the PNR process (i.e., in N2 saturated solution), close to that in the air (∼96.6%) due to the strong oxidation ability of valence band holes. The proper loading ratio of BiOBr on the hetero-nanofibers and their super-long one-dimensional structures were essential for tuning the charge separation and photocatalytic activity. Moreover, the dual-functional system exhibited efficient photocatalytic performance in a natural water matrix and simulated flowing wastewater scene. Based on a comparative plant cultivation study, the system could effectively convert pollutant solutions into aqueous nitrogenous fertilizers that could promote the healthy growth of nitrogenous sensitive plants. The green and sustainable strategy of PNR for aqueous nitrogenous fertilizer from organic wastewater would have broad applications in energy conservation and environmental remediation. |
abstract_unstemmed |
Photocatalytic nitrogen reduction (PNR) is a potential routine for producing aqueous nitrogenous fertilizer via a green chemistry process but is still limited by a relatively poor efficiency. Considering the dynamic coupling of excited electrons and holes, we introduced organic wastewater oxidation process to substitute the sluggish water oxidation for promoting the PNR reaction. We developed p-BiOBr/n-Bi2MoO6 Z-scheme hetero-nanofibers and experimentally studied their interface charge transfer mechanism in detail. Their strong redox ability and high charge separation efficiency enabled efficient PNR with simultaneous organic pollutant degradation. They have exhibited a PNR rate of up to 911.6 µmol g−1 h−1 L−1 in Rhodamine B (RhB) solution, about 2.5 times higher than that in pure water. Meanwhile, their RhB removal rate reached ∼91.2% in the PNR process (i.e., in N2 saturated solution), close to that in the air (∼96.6%) due to the strong oxidation ability of valence band holes. The proper loading ratio of BiOBr on the hetero-nanofibers and their super-long one-dimensional structures were essential for tuning the charge separation and photocatalytic activity. Moreover, the dual-functional system exhibited efficient photocatalytic performance in a natural water matrix and simulated flowing wastewater scene. Based on a comparative plant cultivation study, the system could effectively convert pollutant solutions into aqueous nitrogenous fertilizers that could promote the healthy growth of nitrogenous sensitive plants. The green and sustainable strategy of PNR for aqueous nitrogenous fertilizer from organic wastewater would have broad applications in energy conservation and environmental remediation. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Promoting photocatalytic nitrogen reduction for aqueous nitrogenous fertilizer from organic wastewater over p-BiOBr/n-Bi 2 MoO 6 hetero-nanofibers |
remote_bool |
true |
author2 |
Zhang, Fang Niu, Luyao Liu, Jie Li, Jing Wang, Dan Fan, Juanjuan Li, Xiaowei Shao, Changlu Li, Xinghua Liu, Yichun |
author2Str |
Zhang, Fang Niu, Luyao Liu, Jie Li, Jing Wang, Dan Fan, Juanjuan Li, Xiaowei Shao, Changlu Li, Xinghua Liu, Yichun |
ppnlink |
320500322 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.cej.2023.144108 |
up_date |
2024-07-06T23:51:01.148Z |
_version_ |
1803875632965222400 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV060410388</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240110093211.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230713s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.cej.2023.144108</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV060410388</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1385-8947(23)02839-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.10</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wu, Xi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Promoting photocatalytic nitrogen reduction for aqueous nitrogenous fertilizer from organic wastewater over p-BiOBr/n-Bi 2 MoO 6 hetero-nanofibers</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Photocatalytic nitrogen reduction (PNR) is a potential routine for producing aqueous nitrogenous fertilizer via a green chemistry process but is still limited by a relatively poor efficiency. Considering the dynamic coupling of excited electrons and holes, we introduced organic wastewater oxidation process to substitute the sluggish water oxidation for promoting the PNR reaction. We developed p-BiOBr/n-Bi2MoO6 Z-scheme hetero-nanofibers and experimentally studied their interface charge transfer mechanism in detail. Their strong redox ability and high charge separation efficiency enabled efficient PNR with simultaneous organic pollutant degradation. They have exhibited a PNR rate of up to 911.6 µmol g−1 h−1 L−1 in Rhodamine B (RhB) solution, about 2.5 times higher than that in pure water. Meanwhile, their RhB removal rate reached ∼91.2% in the PNR process (i.e., in N2 saturated solution), close to that in the air (∼96.6%) due to the strong oxidation ability of valence band holes. The proper loading ratio of BiOBr on the hetero-nanofibers and their super-long one-dimensional structures were essential for tuning the charge separation and photocatalytic activity. Moreover, the dual-functional system exhibited efficient photocatalytic performance in a natural water matrix and simulated flowing wastewater scene. Based on a comparative plant cultivation study, the system could effectively convert pollutant solutions into aqueous nitrogenous fertilizers that could promote the healthy growth of nitrogenous sensitive plants. The green and sustainable strategy of PNR for aqueous nitrogenous fertilizer from organic wastewater would have broad applications in energy conservation and environmental remediation.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Photocatalytic nitrogen reduction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Organic wastewater degradation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nitrogenous fertilizer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Z-scheme interface</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hetero-nanofibers</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Fang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Niu, Luyao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Jie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Jing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Dan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fan, Juanjuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Xiaowei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shao, Changlu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Xinghua</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Yichun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The chemical engineering journal</subfield><subfield code="d">Amsterdam : Elsevier, 1997</subfield><subfield code="g">470</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320500322</subfield><subfield code="w">(DE-600)2012137-4</subfield><subfield code="w">(DE-576)098330152</subfield><subfield code="x">1873-3212</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.10</subfield><subfield code="j">Verfahrenstechnik: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">470</subfield></datafield></record></collection>
|
score |
7.4011936 |