Oxidation coupling of terminal alkynes over CuPd bimetallic alloy enhanced by optimized charge transfer and alloy structure
Homocoupling of terminal alkynes is an effective approach for the synthesis of 1,3-diyne, which is an important building block for numerous fine chemicals and pharmaceuticals. However, this reaction frequently encounters difficulties in catalyst recovery, and requires the addition of base or organic...
Ausführliche Beschreibung
Autor*in: |
Shen, Qi [verfasserIn] Jin, Chengkai [verfasserIn] Xing, Yaxin [verfasserIn] Jia, Zengli [verfasserIn] Zhang, Yuangong [verfasserIn] Feng, Gang [verfasserIn] Wen, Xin [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: The chemical engineering journal - Amsterdam : Elsevier, 1997, 470 |
---|---|
Übergeordnetes Werk: |
volume:470 |
DOI / URN: |
10.1016/j.cej.2023.144193 |
---|
Katalog-ID: |
ELV060411880 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV060411880 | ||
003 | DE-627 | ||
005 | 20240110093212.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230713s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.cej.2023.144193 |2 doi | |
035 | |a (DE-627)ELV060411880 | ||
035 | |a (ELSEVIER)S1385-8947(23)02924-8 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 660 |q VZ |
082 | 0 | 4 | |a 660 |q VZ |
084 | |a 58.10 |2 bkl | ||
100 | 1 | |a Shen, Qi |e verfasserin |4 aut | |
245 | 1 | 0 | |a Oxidation coupling of terminal alkynes over CuPd bimetallic alloy enhanced by optimized charge transfer and alloy structure |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Homocoupling of terminal alkynes is an effective approach for the synthesis of 1,3-diyne, which is an important building block for numerous fine chemicals and pharmaceuticals. However, this reaction frequently encounters difficulties in catalyst recovery, and requires the addition of base or organic ligands, limiting their practical applications. Herein, we developed an efficient and recyclable CuPd bimetallic nanoalloy catalyst, which exhibited superior activity and selectivity in the homocoupling of terminal alkynes under mild conditions without any additives. In contrast to the low activity of monometallic Cu or Pd catalysts, a full conversion with a 100% selectivity for 1,3-diyne was achieved on bimetallic Cu2Pd1-400 nanoalloy with an extremely high activity. The comprehensive characterizations clearly evidenced that the alloying Cu with Pd was found to perturb the Cu electronic structure, and the positively charged Cu on the step and edge sites of CuPd nanoalloy catalyzed the homocoupling reaction via Cu-acetylide intermediates, and the density functional theory calculations revealed that the desorption of 1,3-diyne on CuPd nanoalloy was the rate-determining step for the whole reaction. This work provides a viable strategy for the rational design and fabrication of other nanoalloy catalysts for the green synthesis related to terminal alkyne oxidation. | ||
650 | 4 | |a PdCu nanoalloy | |
650 | 4 | |a Homocoupling of terminal alkyne | |
650 | 4 | |a Positively charged Cu | |
650 | 4 | |a Catalytic mechanism | |
650 | 4 | |a Green synthesis | |
700 | 1 | |a Jin, Chengkai |e verfasserin |4 aut | |
700 | 1 | |a Xing, Yaxin |e verfasserin |4 aut | |
700 | 1 | |a Jia, Zengli |e verfasserin |4 aut | |
700 | 1 | |a Zhang, Yuangong |e verfasserin |4 aut | |
700 | 1 | |a Feng, Gang |e verfasserin |0 (orcid)0000-0003-4828-5108 |4 aut | |
700 | 1 | |a Wen, Xin |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t The chemical engineering journal |d Amsterdam : Elsevier, 1997 |g 470 |h Online-Ressource |w (DE-627)320500322 |w (DE-600)2012137-4 |w (DE-576)098330152 |x 1873-3212 |7 nnns |
773 | 1 | 8 | |g volume:470 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 58.10 |j Verfahrenstechnik: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 470 |
author_variant |
q s qs c j cj y x yx z j zj y z yz g f gf x w xw |
---|---|
matchkey_str |
article:18733212:2023----::xdtoculnotriaaknsvrudiealcloehnebotmzdh |
hierarchy_sort_str |
2023 |
bklnumber |
58.10 |
publishDate |
2023 |
allfields |
10.1016/j.cej.2023.144193 doi (DE-627)ELV060411880 (ELSEVIER)S1385-8947(23)02924-8 DE-627 ger DE-627 rda eng 660 VZ 660 VZ 58.10 bkl Shen, Qi verfasserin aut Oxidation coupling of terminal alkynes over CuPd bimetallic alloy enhanced by optimized charge transfer and alloy structure 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Homocoupling of terminal alkynes is an effective approach for the synthesis of 1,3-diyne, which is an important building block for numerous fine chemicals and pharmaceuticals. However, this reaction frequently encounters difficulties in catalyst recovery, and requires the addition of base or organic ligands, limiting their practical applications. Herein, we developed an efficient and recyclable CuPd bimetallic nanoalloy catalyst, which exhibited superior activity and selectivity in the homocoupling of terminal alkynes under mild conditions without any additives. In contrast to the low activity of monometallic Cu or Pd catalysts, a full conversion with a 100% selectivity for 1,3-diyne was achieved on bimetallic Cu2Pd1-400 nanoalloy with an extremely high activity. The comprehensive characterizations clearly evidenced that the alloying Cu with Pd was found to perturb the Cu electronic structure, and the positively charged Cu on the step and edge sites of CuPd nanoalloy catalyzed the homocoupling reaction via Cu-acetylide intermediates, and the density functional theory calculations revealed that the desorption of 1,3-diyne on CuPd nanoalloy was the rate-determining step for the whole reaction. This work provides a viable strategy for the rational design and fabrication of other nanoalloy catalysts for the green synthesis related to terminal alkyne oxidation. PdCu nanoalloy Homocoupling of terminal alkyne Positively charged Cu Catalytic mechanism Green synthesis Jin, Chengkai verfasserin aut Xing, Yaxin verfasserin aut Jia, Zengli verfasserin aut Zhang, Yuangong verfasserin aut Feng, Gang verfasserin (orcid)0000-0003-4828-5108 aut Wen, Xin verfasserin aut Enthalten in The chemical engineering journal Amsterdam : Elsevier, 1997 470 Online-Ressource (DE-627)320500322 (DE-600)2012137-4 (DE-576)098330152 1873-3212 nnns volume:470 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 58.10 Verfahrenstechnik: Allgemeines VZ AR 470 |
spelling |
10.1016/j.cej.2023.144193 doi (DE-627)ELV060411880 (ELSEVIER)S1385-8947(23)02924-8 DE-627 ger DE-627 rda eng 660 VZ 660 VZ 58.10 bkl Shen, Qi verfasserin aut Oxidation coupling of terminal alkynes over CuPd bimetallic alloy enhanced by optimized charge transfer and alloy structure 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Homocoupling of terminal alkynes is an effective approach for the synthesis of 1,3-diyne, which is an important building block for numerous fine chemicals and pharmaceuticals. However, this reaction frequently encounters difficulties in catalyst recovery, and requires the addition of base or organic ligands, limiting their practical applications. Herein, we developed an efficient and recyclable CuPd bimetallic nanoalloy catalyst, which exhibited superior activity and selectivity in the homocoupling of terminal alkynes under mild conditions without any additives. In contrast to the low activity of monometallic Cu or Pd catalysts, a full conversion with a 100% selectivity for 1,3-diyne was achieved on bimetallic Cu2Pd1-400 nanoalloy with an extremely high activity. The comprehensive characterizations clearly evidenced that the alloying Cu with Pd was found to perturb the Cu electronic structure, and the positively charged Cu on the step and edge sites of CuPd nanoalloy catalyzed the homocoupling reaction via Cu-acetylide intermediates, and the density functional theory calculations revealed that the desorption of 1,3-diyne on CuPd nanoalloy was the rate-determining step for the whole reaction. This work provides a viable strategy for the rational design and fabrication of other nanoalloy catalysts for the green synthesis related to terminal alkyne oxidation. PdCu nanoalloy Homocoupling of terminal alkyne Positively charged Cu Catalytic mechanism Green synthesis Jin, Chengkai verfasserin aut Xing, Yaxin verfasserin aut Jia, Zengli verfasserin aut Zhang, Yuangong verfasserin aut Feng, Gang verfasserin (orcid)0000-0003-4828-5108 aut Wen, Xin verfasserin aut Enthalten in The chemical engineering journal Amsterdam : Elsevier, 1997 470 Online-Ressource (DE-627)320500322 (DE-600)2012137-4 (DE-576)098330152 1873-3212 nnns volume:470 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 58.10 Verfahrenstechnik: Allgemeines VZ AR 470 |
allfields_unstemmed |
10.1016/j.cej.2023.144193 doi (DE-627)ELV060411880 (ELSEVIER)S1385-8947(23)02924-8 DE-627 ger DE-627 rda eng 660 VZ 660 VZ 58.10 bkl Shen, Qi verfasserin aut Oxidation coupling of terminal alkynes over CuPd bimetallic alloy enhanced by optimized charge transfer and alloy structure 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Homocoupling of terminal alkynes is an effective approach for the synthesis of 1,3-diyne, which is an important building block for numerous fine chemicals and pharmaceuticals. However, this reaction frequently encounters difficulties in catalyst recovery, and requires the addition of base or organic ligands, limiting their practical applications. Herein, we developed an efficient and recyclable CuPd bimetallic nanoalloy catalyst, which exhibited superior activity and selectivity in the homocoupling of terminal alkynes under mild conditions without any additives. In contrast to the low activity of monometallic Cu or Pd catalysts, a full conversion with a 100% selectivity for 1,3-diyne was achieved on bimetallic Cu2Pd1-400 nanoalloy with an extremely high activity. The comprehensive characterizations clearly evidenced that the alloying Cu with Pd was found to perturb the Cu electronic structure, and the positively charged Cu on the step and edge sites of CuPd nanoalloy catalyzed the homocoupling reaction via Cu-acetylide intermediates, and the density functional theory calculations revealed that the desorption of 1,3-diyne on CuPd nanoalloy was the rate-determining step for the whole reaction. This work provides a viable strategy for the rational design and fabrication of other nanoalloy catalysts for the green synthesis related to terminal alkyne oxidation. PdCu nanoalloy Homocoupling of terminal alkyne Positively charged Cu Catalytic mechanism Green synthesis Jin, Chengkai verfasserin aut Xing, Yaxin verfasserin aut Jia, Zengli verfasserin aut Zhang, Yuangong verfasserin aut Feng, Gang verfasserin (orcid)0000-0003-4828-5108 aut Wen, Xin verfasserin aut Enthalten in The chemical engineering journal Amsterdam : Elsevier, 1997 470 Online-Ressource (DE-627)320500322 (DE-600)2012137-4 (DE-576)098330152 1873-3212 nnns volume:470 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 58.10 Verfahrenstechnik: Allgemeines VZ AR 470 |
allfieldsGer |
10.1016/j.cej.2023.144193 doi (DE-627)ELV060411880 (ELSEVIER)S1385-8947(23)02924-8 DE-627 ger DE-627 rda eng 660 VZ 660 VZ 58.10 bkl Shen, Qi verfasserin aut Oxidation coupling of terminal alkynes over CuPd bimetallic alloy enhanced by optimized charge transfer and alloy structure 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Homocoupling of terminal alkynes is an effective approach for the synthesis of 1,3-diyne, which is an important building block for numerous fine chemicals and pharmaceuticals. However, this reaction frequently encounters difficulties in catalyst recovery, and requires the addition of base or organic ligands, limiting their practical applications. Herein, we developed an efficient and recyclable CuPd bimetallic nanoalloy catalyst, which exhibited superior activity and selectivity in the homocoupling of terminal alkynes under mild conditions without any additives. In contrast to the low activity of monometallic Cu or Pd catalysts, a full conversion with a 100% selectivity for 1,3-diyne was achieved on bimetallic Cu2Pd1-400 nanoalloy with an extremely high activity. The comprehensive characterizations clearly evidenced that the alloying Cu with Pd was found to perturb the Cu electronic structure, and the positively charged Cu on the step and edge sites of CuPd nanoalloy catalyzed the homocoupling reaction via Cu-acetylide intermediates, and the density functional theory calculations revealed that the desorption of 1,3-diyne on CuPd nanoalloy was the rate-determining step for the whole reaction. This work provides a viable strategy for the rational design and fabrication of other nanoalloy catalysts for the green synthesis related to terminal alkyne oxidation. PdCu nanoalloy Homocoupling of terminal alkyne Positively charged Cu Catalytic mechanism Green synthesis Jin, Chengkai verfasserin aut Xing, Yaxin verfasserin aut Jia, Zengli verfasserin aut Zhang, Yuangong verfasserin aut Feng, Gang verfasserin (orcid)0000-0003-4828-5108 aut Wen, Xin verfasserin aut Enthalten in The chemical engineering journal Amsterdam : Elsevier, 1997 470 Online-Ressource (DE-627)320500322 (DE-600)2012137-4 (DE-576)098330152 1873-3212 nnns volume:470 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 58.10 Verfahrenstechnik: Allgemeines VZ AR 470 |
allfieldsSound |
10.1016/j.cej.2023.144193 doi (DE-627)ELV060411880 (ELSEVIER)S1385-8947(23)02924-8 DE-627 ger DE-627 rda eng 660 VZ 660 VZ 58.10 bkl Shen, Qi verfasserin aut Oxidation coupling of terminal alkynes over CuPd bimetallic alloy enhanced by optimized charge transfer and alloy structure 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Homocoupling of terminal alkynes is an effective approach for the synthesis of 1,3-diyne, which is an important building block for numerous fine chemicals and pharmaceuticals. However, this reaction frequently encounters difficulties in catalyst recovery, and requires the addition of base or organic ligands, limiting their practical applications. Herein, we developed an efficient and recyclable CuPd bimetallic nanoalloy catalyst, which exhibited superior activity and selectivity in the homocoupling of terminal alkynes under mild conditions without any additives. In contrast to the low activity of monometallic Cu or Pd catalysts, a full conversion with a 100% selectivity for 1,3-diyne was achieved on bimetallic Cu2Pd1-400 nanoalloy with an extremely high activity. The comprehensive characterizations clearly evidenced that the alloying Cu with Pd was found to perturb the Cu electronic structure, and the positively charged Cu on the step and edge sites of CuPd nanoalloy catalyzed the homocoupling reaction via Cu-acetylide intermediates, and the density functional theory calculations revealed that the desorption of 1,3-diyne on CuPd nanoalloy was the rate-determining step for the whole reaction. This work provides a viable strategy for the rational design and fabrication of other nanoalloy catalysts for the green synthesis related to terminal alkyne oxidation. PdCu nanoalloy Homocoupling of terminal alkyne Positively charged Cu Catalytic mechanism Green synthesis Jin, Chengkai verfasserin aut Xing, Yaxin verfasserin aut Jia, Zengli verfasserin aut Zhang, Yuangong verfasserin aut Feng, Gang verfasserin (orcid)0000-0003-4828-5108 aut Wen, Xin verfasserin aut Enthalten in The chemical engineering journal Amsterdam : Elsevier, 1997 470 Online-Ressource (DE-627)320500322 (DE-600)2012137-4 (DE-576)098330152 1873-3212 nnns volume:470 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 58.10 Verfahrenstechnik: Allgemeines VZ AR 470 |
language |
English |
source |
Enthalten in The chemical engineering journal 470 volume:470 |
sourceStr |
Enthalten in The chemical engineering journal 470 volume:470 |
format_phy_str_mv |
Article |
bklname |
Verfahrenstechnik: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
PdCu nanoalloy Homocoupling of terminal alkyne Positively charged Cu Catalytic mechanism Green synthesis |
dewey-raw |
660 |
isfreeaccess_bool |
false |
container_title |
The chemical engineering journal |
authorswithroles_txt_mv |
Shen, Qi @@aut@@ Jin, Chengkai @@aut@@ Xing, Yaxin @@aut@@ Jia, Zengli @@aut@@ Zhang, Yuangong @@aut@@ Feng, Gang @@aut@@ Wen, Xin @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
320500322 |
dewey-sort |
3660 |
id |
ELV060411880 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV060411880</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240110093212.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230713s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.cej.2023.144193</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV060411880</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1385-8947(23)02924-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.10</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Shen, Qi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Oxidation coupling of terminal alkynes over CuPd bimetallic alloy enhanced by optimized charge transfer and alloy structure</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Homocoupling of terminal alkynes is an effective approach for the synthesis of 1,3-diyne, which is an important building block for numerous fine chemicals and pharmaceuticals. However, this reaction frequently encounters difficulties in catalyst recovery, and requires the addition of base or organic ligands, limiting their practical applications. Herein, we developed an efficient and recyclable CuPd bimetallic nanoalloy catalyst, which exhibited superior activity and selectivity in the homocoupling of terminal alkynes under mild conditions without any additives. In contrast to the low activity of monometallic Cu or Pd catalysts, a full conversion with a 100% selectivity for 1,3-diyne was achieved on bimetallic Cu2Pd1-400 nanoalloy with an extremely high activity. The comprehensive characterizations clearly evidenced that the alloying Cu with Pd was found to perturb the Cu electronic structure, and the positively charged Cu on the step and edge sites of CuPd nanoalloy catalyzed the homocoupling reaction via Cu-acetylide intermediates, and the density functional theory calculations revealed that the desorption of 1,3-diyne on CuPd nanoalloy was the rate-determining step for the whole reaction. This work provides a viable strategy for the rational design and fabrication of other nanoalloy catalysts for the green synthesis related to terminal alkyne oxidation.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">PdCu nanoalloy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Homocoupling of terminal alkyne</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Positively charged Cu</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Catalytic mechanism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Green synthesis</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jin, Chengkai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xing, Yaxin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jia, Zengli</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Yuangong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Feng, Gang</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-4828-5108</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wen, Xin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The chemical engineering journal</subfield><subfield code="d">Amsterdam : Elsevier, 1997</subfield><subfield code="g">470</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320500322</subfield><subfield code="w">(DE-600)2012137-4</subfield><subfield code="w">(DE-576)098330152</subfield><subfield code="x">1873-3212</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.10</subfield><subfield code="j">Verfahrenstechnik: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">470</subfield></datafield></record></collection>
|
author |
Shen, Qi |
spellingShingle |
Shen, Qi ddc 660 bkl 58.10 misc PdCu nanoalloy misc Homocoupling of terminal alkyne misc Positively charged Cu misc Catalytic mechanism misc Green synthesis Oxidation coupling of terminal alkynes over CuPd bimetallic alloy enhanced by optimized charge transfer and alloy structure |
authorStr |
Shen, Qi |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320500322 |
format |
electronic Article |
dewey-ones |
660 - Chemical engineering |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1873-3212 |
topic_title |
660 VZ 58.10 bkl Oxidation coupling of terminal alkynes over CuPd bimetallic alloy enhanced by optimized charge transfer and alloy structure PdCu nanoalloy Homocoupling of terminal alkyne Positively charged Cu Catalytic mechanism Green synthesis |
topic |
ddc 660 bkl 58.10 misc PdCu nanoalloy misc Homocoupling of terminal alkyne misc Positively charged Cu misc Catalytic mechanism misc Green synthesis |
topic_unstemmed |
ddc 660 bkl 58.10 misc PdCu nanoalloy misc Homocoupling of terminal alkyne misc Positively charged Cu misc Catalytic mechanism misc Green synthesis |
topic_browse |
ddc 660 bkl 58.10 misc PdCu nanoalloy misc Homocoupling of terminal alkyne misc Positively charged Cu misc Catalytic mechanism misc Green synthesis |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
The chemical engineering journal |
hierarchy_parent_id |
320500322 |
dewey-tens |
660 - Chemical engineering |
hierarchy_top_title |
The chemical engineering journal |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320500322 (DE-600)2012137-4 (DE-576)098330152 |
title |
Oxidation coupling of terminal alkynes over CuPd bimetallic alloy enhanced by optimized charge transfer and alloy structure |
ctrlnum |
(DE-627)ELV060411880 (ELSEVIER)S1385-8947(23)02924-8 |
title_full |
Oxidation coupling of terminal alkynes over CuPd bimetallic alloy enhanced by optimized charge transfer and alloy structure |
author_sort |
Shen, Qi |
journal |
The chemical engineering journal |
journalStr |
The chemical engineering journal |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Shen, Qi Jin, Chengkai Xing, Yaxin Jia, Zengli Zhang, Yuangong Feng, Gang Wen, Xin |
container_volume |
470 |
class |
660 VZ 58.10 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Shen, Qi |
doi_str_mv |
10.1016/j.cej.2023.144193 |
normlink |
(ORCID)0000-0003-4828-5108 |
normlink_prefix_str_mv |
(orcid)0000-0003-4828-5108 |
dewey-full |
660 |
author2-role |
verfasserin |
title_sort |
oxidation coupling of terminal alkynes over cupd bimetallic alloy enhanced by optimized charge transfer and alloy structure |
title_auth |
Oxidation coupling of terminal alkynes over CuPd bimetallic alloy enhanced by optimized charge transfer and alloy structure |
abstract |
Homocoupling of terminal alkynes is an effective approach for the synthesis of 1,3-diyne, which is an important building block for numerous fine chemicals and pharmaceuticals. However, this reaction frequently encounters difficulties in catalyst recovery, and requires the addition of base or organic ligands, limiting their practical applications. Herein, we developed an efficient and recyclable CuPd bimetallic nanoalloy catalyst, which exhibited superior activity and selectivity in the homocoupling of terminal alkynes under mild conditions without any additives. In contrast to the low activity of monometallic Cu or Pd catalysts, a full conversion with a 100% selectivity for 1,3-diyne was achieved on bimetallic Cu2Pd1-400 nanoalloy with an extremely high activity. The comprehensive characterizations clearly evidenced that the alloying Cu with Pd was found to perturb the Cu electronic structure, and the positively charged Cu on the step and edge sites of CuPd nanoalloy catalyzed the homocoupling reaction via Cu-acetylide intermediates, and the density functional theory calculations revealed that the desorption of 1,3-diyne on CuPd nanoalloy was the rate-determining step for the whole reaction. This work provides a viable strategy for the rational design and fabrication of other nanoalloy catalysts for the green synthesis related to terminal alkyne oxidation. |
abstractGer |
Homocoupling of terminal alkynes is an effective approach for the synthesis of 1,3-diyne, which is an important building block for numerous fine chemicals and pharmaceuticals. However, this reaction frequently encounters difficulties in catalyst recovery, and requires the addition of base or organic ligands, limiting their practical applications. Herein, we developed an efficient and recyclable CuPd bimetallic nanoalloy catalyst, which exhibited superior activity and selectivity in the homocoupling of terminal alkynes under mild conditions without any additives. In contrast to the low activity of monometallic Cu or Pd catalysts, a full conversion with a 100% selectivity for 1,3-diyne was achieved on bimetallic Cu2Pd1-400 nanoalloy with an extremely high activity. The comprehensive characterizations clearly evidenced that the alloying Cu with Pd was found to perturb the Cu electronic structure, and the positively charged Cu on the step and edge sites of CuPd nanoalloy catalyzed the homocoupling reaction via Cu-acetylide intermediates, and the density functional theory calculations revealed that the desorption of 1,3-diyne on CuPd nanoalloy was the rate-determining step for the whole reaction. This work provides a viable strategy for the rational design and fabrication of other nanoalloy catalysts for the green synthesis related to terminal alkyne oxidation. |
abstract_unstemmed |
Homocoupling of terminal alkynes is an effective approach for the synthesis of 1,3-diyne, which is an important building block for numerous fine chemicals and pharmaceuticals. However, this reaction frequently encounters difficulties in catalyst recovery, and requires the addition of base or organic ligands, limiting their practical applications. Herein, we developed an efficient and recyclable CuPd bimetallic nanoalloy catalyst, which exhibited superior activity and selectivity in the homocoupling of terminal alkynes under mild conditions without any additives. In contrast to the low activity of monometallic Cu or Pd catalysts, a full conversion with a 100% selectivity for 1,3-diyne was achieved on bimetallic Cu2Pd1-400 nanoalloy with an extremely high activity. The comprehensive characterizations clearly evidenced that the alloying Cu with Pd was found to perturb the Cu electronic structure, and the positively charged Cu on the step and edge sites of CuPd nanoalloy catalyzed the homocoupling reaction via Cu-acetylide intermediates, and the density functional theory calculations revealed that the desorption of 1,3-diyne on CuPd nanoalloy was the rate-determining step for the whole reaction. This work provides a viable strategy for the rational design and fabrication of other nanoalloy catalysts for the green synthesis related to terminal alkyne oxidation. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Oxidation coupling of terminal alkynes over CuPd bimetallic alloy enhanced by optimized charge transfer and alloy structure |
remote_bool |
true |
author2 |
Jin, Chengkai Xing, Yaxin Jia, Zengli Zhang, Yuangong Feng, Gang Wen, Xin |
author2Str |
Jin, Chengkai Xing, Yaxin Jia, Zengli Zhang, Yuangong Feng, Gang Wen, Xin |
ppnlink |
320500322 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.cej.2023.144193 |
up_date |
2024-07-06T23:51:11.092Z |
_version_ |
1803875643392262144 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV060411880</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240110093212.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230713s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.cej.2023.144193</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV060411880</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1385-8947(23)02924-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.10</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Shen, Qi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Oxidation coupling of terminal alkynes over CuPd bimetallic alloy enhanced by optimized charge transfer and alloy structure</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Homocoupling of terminal alkynes is an effective approach for the synthesis of 1,3-diyne, which is an important building block for numerous fine chemicals and pharmaceuticals. However, this reaction frequently encounters difficulties in catalyst recovery, and requires the addition of base or organic ligands, limiting their practical applications. Herein, we developed an efficient and recyclable CuPd bimetallic nanoalloy catalyst, which exhibited superior activity and selectivity in the homocoupling of terminal alkynes under mild conditions without any additives. In contrast to the low activity of monometallic Cu or Pd catalysts, a full conversion with a 100% selectivity for 1,3-diyne was achieved on bimetallic Cu2Pd1-400 nanoalloy with an extremely high activity. The comprehensive characterizations clearly evidenced that the alloying Cu with Pd was found to perturb the Cu electronic structure, and the positively charged Cu on the step and edge sites of CuPd nanoalloy catalyzed the homocoupling reaction via Cu-acetylide intermediates, and the density functional theory calculations revealed that the desorption of 1,3-diyne on CuPd nanoalloy was the rate-determining step for the whole reaction. This work provides a viable strategy for the rational design and fabrication of other nanoalloy catalysts for the green synthesis related to terminal alkyne oxidation.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">PdCu nanoalloy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Homocoupling of terminal alkyne</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Positively charged Cu</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Catalytic mechanism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Green synthesis</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jin, Chengkai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xing, Yaxin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jia, Zengli</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Yuangong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Feng, Gang</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-4828-5108</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wen, Xin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The chemical engineering journal</subfield><subfield code="d">Amsterdam : Elsevier, 1997</subfield><subfield code="g">470</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320500322</subfield><subfield code="w">(DE-600)2012137-4</subfield><subfield code="w">(DE-576)098330152</subfield><subfield code="x">1873-3212</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.10</subfield><subfield code="j">Verfahrenstechnik: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">470</subfield></datafield></record></collection>
|
score |
7.402011 |