Distance to criticality undergoes critical transition before epileptic seizure attacks
Epilepsy is a common neurological disorder characterized by recurring seizures, but its underlying mechanisms remain poorly understood. Despite extensive research, there are still gaps in our knowledge about the relationship between brain dynamics and seizures. In this study, our aim is to address t...
Ausführliche Beschreibung
Autor*in: |
Liu, Shun [verfasserIn] Li, Fali [verfasserIn] Wan, Feng [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Brain research bulletin - Amsterdam [u.a.] : Elsevier Science, 1976, 200 |
---|---|
Übergeordnetes Werk: |
volume:200 |
DOI / URN: |
10.1016/j.brainresbull.2023.110684 |
---|
Katalog-ID: |
ELV060586680 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV060586680 | ||
003 | DE-627 | ||
005 | 20230926163056.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230718s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.brainresbull.2023.110684 |2 doi | |
035 | |a (DE-627)ELV060586680 | ||
035 | |a (ELSEVIER)S0361-9230(23)00109-0 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 610 |a 150 |q VZ |
084 | |a 44.90 |2 bkl | ||
100 | 1 | |a Liu, Shun |e verfasserin |4 aut | |
245 | 1 | 0 | |a Distance to criticality undergoes critical transition before epileptic seizure attacks |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Epilepsy is a common neurological disorder characterized by recurring seizures, but its underlying mechanisms remain poorly understood. Despite extensive research, there are still gaps in our knowledge about the relationship between brain dynamics and seizures. In this study, our aim is to address these gaps by proposing a novel approach to assess the role of brain network dynamics in the onset of seizures. Specifically, we investigate the relationship between brain dynamics and seizures by tracking the distance to criticality. Our hypothesis is that this distance plays a crucial role in brain state changes and that seizures may be related to critical transitions of this distance. To test this hypothesis, we develop a method to measure the evolution of the brain network’s distance to the critical dynamic systems (i.e., the distance to the tipping point, DTP) using dynamic network biomarker theory and random matrix theory. The results show that the DTP of the brain decreases significantly immediately after onset of an epileptic seizure, suggesting that the brain loses its well-defined quasi-critical state during seizures. We refer to this phenomenon as the “criticality of the criticality” (COC). Furthermore, we observe that DTP exhibits a shape transition before and after the onset of the seizures. This phenomenon suggests the possibility of early warning signal (EWS) identification in the dynamic sequence of DTP, which could be utilized for seizure prediction. Our results show that the Hurst exponent, skewness, kurtosis, autocorrelation, and variance of the DTP sequence are potential EWS features. This study advances our understanding of the relationship between brain dynamics and seizures and highlights the potential for using criticality-based measures to predict and prevent seizures. | ||
650 | 4 | |a Epileptic seizures | |
650 | 4 | |a Electroencephalogram (EEG) | |
650 | 4 | |a Brain network | |
650 | 4 | |a Criticality | |
700 | 1 | |a Li, Fali |e verfasserin |4 aut | |
700 | 1 | |a Wan, Feng |e verfasserin |0 (orcid)0000-0002-9359-0737 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Brain research bulletin |d Amsterdam [u.a.] : Elsevier Science, 1976 |g 200 |h Online-Ressource |w (DE-627)320433676 |w (DE-600)2004068-4 |w (DE-576)090954653 |x 1873-2747 |7 nnns |
773 | 1 | 8 | |g volume:200 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 44.90 |j Neurologie |q VZ |
951 | |a AR | ||
952 | |d 200 |
author_variant |
s l sl f l fl f w fw |
---|---|
matchkey_str |
article:18732747:2023----::itneortcltudrosrtclrniineoep |
hierarchy_sort_str |
2023 |
bklnumber |
44.90 |
publishDate |
2023 |
allfields |
10.1016/j.brainresbull.2023.110684 doi (DE-627)ELV060586680 (ELSEVIER)S0361-9230(23)00109-0 DE-627 ger DE-627 rda eng 610 150 VZ 44.90 bkl Liu, Shun verfasserin aut Distance to criticality undergoes critical transition before epileptic seizure attacks 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Epilepsy is a common neurological disorder characterized by recurring seizures, but its underlying mechanisms remain poorly understood. Despite extensive research, there are still gaps in our knowledge about the relationship between brain dynamics and seizures. In this study, our aim is to address these gaps by proposing a novel approach to assess the role of brain network dynamics in the onset of seizures. Specifically, we investigate the relationship between brain dynamics and seizures by tracking the distance to criticality. Our hypothesis is that this distance plays a crucial role in brain state changes and that seizures may be related to critical transitions of this distance. To test this hypothesis, we develop a method to measure the evolution of the brain network’s distance to the critical dynamic systems (i.e., the distance to the tipping point, DTP) using dynamic network biomarker theory and random matrix theory. The results show that the DTP of the brain decreases significantly immediately after onset of an epileptic seizure, suggesting that the brain loses its well-defined quasi-critical state during seizures. We refer to this phenomenon as the “criticality of the criticality” (COC). Furthermore, we observe that DTP exhibits a shape transition before and after the onset of the seizures. This phenomenon suggests the possibility of early warning signal (EWS) identification in the dynamic sequence of DTP, which could be utilized for seizure prediction. Our results show that the Hurst exponent, skewness, kurtosis, autocorrelation, and variance of the DTP sequence are potential EWS features. This study advances our understanding of the relationship between brain dynamics and seizures and highlights the potential for using criticality-based measures to predict and prevent seizures. Epileptic seizures Electroencephalogram (EEG) Brain network Criticality Li, Fali verfasserin aut Wan, Feng verfasserin (orcid)0000-0002-9359-0737 aut Enthalten in Brain research bulletin Amsterdam [u.a.] : Elsevier Science, 1976 200 Online-Ressource (DE-627)320433676 (DE-600)2004068-4 (DE-576)090954653 1873-2747 nnns volume:200 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 44.90 Neurologie VZ AR 200 |
spelling |
10.1016/j.brainresbull.2023.110684 doi (DE-627)ELV060586680 (ELSEVIER)S0361-9230(23)00109-0 DE-627 ger DE-627 rda eng 610 150 VZ 44.90 bkl Liu, Shun verfasserin aut Distance to criticality undergoes critical transition before epileptic seizure attacks 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Epilepsy is a common neurological disorder characterized by recurring seizures, but its underlying mechanisms remain poorly understood. Despite extensive research, there are still gaps in our knowledge about the relationship between brain dynamics and seizures. In this study, our aim is to address these gaps by proposing a novel approach to assess the role of brain network dynamics in the onset of seizures. Specifically, we investigate the relationship between brain dynamics and seizures by tracking the distance to criticality. Our hypothesis is that this distance plays a crucial role in brain state changes and that seizures may be related to critical transitions of this distance. To test this hypothesis, we develop a method to measure the evolution of the brain network’s distance to the critical dynamic systems (i.e., the distance to the tipping point, DTP) using dynamic network biomarker theory and random matrix theory. The results show that the DTP of the brain decreases significantly immediately after onset of an epileptic seizure, suggesting that the brain loses its well-defined quasi-critical state during seizures. We refer to this phenomenon as the “criticality of the criticality” (COC). Furthermore, we observe that DTP exhibits a shape transition before and after the onset of the seizures. This phenomenon suggests the possibility of early warning signal (EWS) identification in the dynamic sequence of DTP, which could be utilized for seizure prediction. Our results show that the Hurst exponent, skewness, kurtosis, autocorrelation, and variance of the DTP sequence are potential EWS features. This study advances our understanding of the relationship between brain dynamics and seizures and highlights the potential for using criticality-based measures to predict and prevent seizures. Epileptic seizures Electroencephalogram (EEG) Brain network Criticality Li, Fali verfasserin aut Wan, Feng verfasserin (orcid)0000-0002-9359-0737 aut Enthalten in Brain research bulletin Amsterdam [u.a.] : Elsevier Science, 1976 200 Online-Ressource (DE-627)320433676 (DE-600)2004068-4 (DE-576)090954653 1873-2747 nnns volume:200 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 44.90 Neurologie VZ AR 200 |
allfields_unstemmed |
10.1016/j.brainresbull.2023.110684 doi (DE-627)ELV060586680 (ELSEVIER)S0361-9230(23)00109-0 DE-627 ger DE-627 rda eng 610 150 VZ 44.90 bkl Liu, Shun verfasserin aut Distance to criticality undergoes critical transition before epileptic seizure attacks 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Epilepsy is a common neurological disorder characterized by recurring seizures, but its underlying mechanisms remain poorly understood. Despite extensive research, there are still gaps in our knowledge about the relationship between brain dynamics and seizures. In this study, our aim is to address these gaps by proposing a novel approach to assess the role of brain network dynamics in the onset of seizures. Specifically, we investigate the relationship between brain dynamics and seizures by tracking the distance to criticality. Our hypothesis is that this distance plays a crucial role in brain state changes and that seizures may be related to critical transitions of this distance. To test this hypothesis, we develop a method to measure the evolution of the brain network’s distance to the critical dynamic systems (i.e., the distance to the tipping point, DTP) using dynamic network biomarker theory and random matrix theory. The results show that the DTP of the brain decreases significantly immediately after onset of an epileptic seizure, suggesting that the brain loses its well-defined quasi-critical state during seizures. We refer to this phenomenon as the “criticality of the criticality” (COC). Furthermore, we observe that DTP exhibits a shape transition before and after the onset of the seizures. This phenomenon suggests the possibility of early warning signal (EWS) identification in the dynamic sequence of DTP, which could be utilized for seizure prediction. Our results show that the Hurst exponent, skewness, kurtosis, autocorrelation, and variance of the DTP sequence are potential EWS features. This study advances our understanding of the relationship between brain dynamics and seizures and highlights the potential for using criticality-based measures to predict and prevent seizures. Epileptic seizures Electroencephalogram (EEG) Brain network Criticality Li, Fali verfasserin aut Wan, Feng verfasserin (orcid)0000-0002-9359-0737 aut Enthalten in Brain research bulletin Amsterdam [u.a.] : Elsevier Science, 1976 200 Online-Ressource (DE-627)320433676 (DE-600)2004068-4 (DE-576)090954653 1873-2747 nnns volume:200 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 44.90 Neurologie VZ AR 200 |
allfieldsGer |
10.1016/j.brainresbull.2023.110684 doi (DE-627)ELV060586680 (ELSEVIER)S0361-9230(23)00109-0 DE-627 ger DE-627 rda eng 610 150 VZ 44.90 bkl Liu, Shun verfasserin aut Distance to criticality undergoes critical transition before epileptic seizure attacks 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Epilepsy is a common neurological disorder characterized by recurring seizures, but its underlying mechanisms remain poorly understood. Despite extensive research, there are still gaps in our knowledge about the relationship between brain dynamics and seizures. In this study, our aim is to address these gaps by proposing a novel approach to assess the role of brain network dynamics in the onset of seizures. Specifically, we investigate the relationship between brain dynamics and seizures by tracking the distance to criticality. Our hypothesis is that this distance plays a crucial role in brain state changes and that seizures may be related to critical transitions of this distance. To test this hypothesis, we develop a method to measure the evolution of the brain network’s distance to the critical dynamic systems (i.e., the distance to the tipping point, DTP) using dynamic network biomarker theory and random matrix theory. The results show that the DTP of the brain decreases significantly immediately after onset of an epileptic seizure, suggesting that the brain loses its well-defined quasi-critical state during seizures. We refer to this phenomenon as the “criticality of the criticality” (COC). Furthermore, we observe that DTP exhibits a shape transition before and after the onset of the seizures. This phenomenon suggests the possibility of early warning signal (EWS) identification in the dynamic sequence of DTP, which could be utilized for seizure prediction. Our results show that the Hurst exponent, skewness, kurtosis, autocorrelation, and variance of the DTP sequence are potential EWS features. This study advances our understanding of the relationship between brain dynamics and seizures and highlights the potential for using criticality-based measures to predict and prevent seizures. Epileptic seizures Electroencephalogram (EEG) Brain network Criticality Li, Fali verfasserin aut Wan, Feng verfasserin (orcid)0000-0002-9359-0737 aut Enthalten in Brain research bulletin Amsterdam [u.a.] : Elsevier Science, 1976 200 Online-Ressource (DE-627)320433676 (DE-600)2004068-4 (DE-576)090954653 1873-2747 nnns volume:200 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 44.90 Neurologie VZ AR 200 |
allfieldsSound |
10.1016/j.brainresbull.2023.110684 doi (DE-627)ELV060586680 (ELSEVIER)S0361-9230(23)00109-0 DE-627 ger DE-627 rda eng 610 150 VZ 44.90 bkl Liu, Shun verfasserin aut Distance to criticality undergoes critical transition before epileptic seizure attacks 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Epilepsy is a common neurological disorder characterized by recurring seizures, but its underlying mechanisms remain poorly understood. Despite extensive research, there are still gaps in our knowledge about the relationship between brain dynamics and seizures. In this study, our aim is to address these gaps by proposing a novel approach to assess the role of brain network dynamics in the onset of seizures. Specifically, we investigate the relationship between brain dynamics and seizures by tracking the distance to criticality. Our hypothesis is that this distance plays a crucial role in brain state changes and that seizures may be related to critical transitions of this distance. To test this hypothesis, we develop a method to measure the evolution of the brain network’s distance to the critical dynamic systems (i.e., the distance to the tipping point, DTP) using dynamic network biomarker theory and random matrix theory. The results show that the DTP of the brain decreases significantly immediately after onset of an epileptic seizure, suggesting that the brain loses its well-defined quasi-critical state during seizures. We refer to this phenomenon as the “criticality of the criticality” (COC). Furthermore, we observe that DTP exhibits a shape transition before and after the onset of the seizures. This phenomenon suggests the possibility of early warning signal (EWS) identification in the dynamic sequence of DTP, which could be utilized for seizure prediction. Our results show that the Hurst exponent, skewness, kurtosis, autocorrelation, and variance of the DTP sequence are potential EWS features. This study advances our understanding of the relationship between brain dynamics and seizures and highlights the potential for using criticality-based measures to predict and prevent seizures. Epileptic seizures Electroencephalogram (EEG) Brain network Criticality Li, Fali verfasserin aut Wan, Feng verfasserin (orcid)0000-0002-9359-0737 aut Enthalten in Brain research bulletin Amsterdam [u.a.] : Elsevier Science, 1976 200 Online-Ressource (DE-627)320433676 (DE-600)2004068-4 (DE-576)090954653 1873-2747 nnns volume:200 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 44.90 Neurologie VZ AR 200 |
language |
English |
source |
Enthalten in Brain research bulletin 200 volume:200 |
sourceStr |
Enthalten in Brain research bulletin 200 volume:200 |
format_phy_str_mv |
Article |
bklname |
Neurologie |
institution |
findex.gbv.de |
topic_facet |
Epileptic seizures Electroencephalogram (EEG) Brain network Criticality |
dewey-raw |
610 |
isfreeaccess_bool |
false |
container_title |
Brain research bulletin |
authorswithroles_txt_mv |
Liu, Shun @@aut@@ Li, Fali @@aut@@ Wan, Feng @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
320433676 |
dewey-sort |
3610 |
id |
ELV060586680 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV060586680</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230926163056.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230718s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.brainresbull.2023.110684</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV060586680</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0361-9230(23)00109-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="a">150</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.90</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liu, Shun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Distance to criticality undergoes critical transition before epileptic seizure attacks</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Epilepsy is a common neurological disorder characterized by recurring seizures, but its underlying mechanisms remain poorly understood. Despite extensive research, there are still gaps in our knowledge about the relationship between brain dynamics and seizures. In this study, our aim is to address these gaps by proposing a novel approach to assess the role of brain network dynamics in the onset of seizures. Specifically, we investigate the relationship between brain dynamics and seizures by tracking the distance to criticality. Our hypothesis is that this distance plays a crucial role in brain state changes and that seizures may be related to critical transitions of this distance. To test this hypothesis, we develop a method to measure the evolution of the brain network’s distance to the critical dynamic systems (i.e., the distance to the tipping point, DTP) using dynamic network biomarker theory and random matrix theory. The results show that the DTP of the brain decreases significantly immediately after onset of an epileptic seizure, suggesting that the brain loses its well-defined quasi-critical state during seizures. We refer to this phenomenon as the “criticality of the criticality” (COC). Furthermore, we observe that DTP exhibits a shape transition before and after the onset of the seizures. This phenomenon suggests the possibility of early warning signal (EWS) identification in the dynamic sequence of DTP, which could be utilized for seizure prediction. Our results show that the Hurst exponent, skewness, kurtosis, autocorrelation, and variance of the DTP sequence are potential EWS features. This study advances our understanding of the relationship between brain dynamics and seizures and highlights the potential for using criticality-based measures to predict and prevent seizures.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Epileptic seizures</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electroencephalogram (EEG)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Brain network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Criticality</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Fali</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wan, Feng</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-9359-0737</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Brain research bulletin</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1976</subfield><subfield code="g">200</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320433676</subfield><subfield code="w">(DE-600)2004068-4</subfield><subfield code="w">(DE-576)090954653</subfield><subfield code="x">1873-2747</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:200</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.90</subfield><subfield code="j">Neurologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">200</subfield></datafield></record></collection>
|
author |
Liu, Shun |
spellingShingle |
Liu, Shun ddc 610 bkl 44.90 misc Epileptic seizures misc Electroencephalogram (EEG) misc Brain network misc Criticality Distance to criticality undergoes critical transition before epileptic seizure attacks |
authorStr |
Liu, Shun |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320433676 |
format |
electronic Article |
dewey-ones |
610 - Medicine & health 150 - Psychology |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1873-2747 |
topic_title |
610 150 VZ 44.90 bkl Distance to criticality undergoes critical transition before epileptic seizure attacks Epileptic seizures Electroencephalogram (EEG) Brain network Criticality |
topic |
ddc 610 bkl 44.90 misc Epileptic seizures misc Electroencephalogram (EEG) misc Brain network misc Criticality |
topic_unstemmed |
ddc 610 bkl 44.90 misc Epileptic seizures misc Electroencephalogram (EEG) misc Brain network misc Criticality |
topic_browse |
ddc 610 bkl 44.90 misc Epileptic seizures misc Electroencephalogram (EEG) misc Brain network misc Criticality |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Brain research bulletin |
hierarchy_parent_id |
320433676 |
dewey-tens |
610 - Medicine & health 150 - Psychology |
hierarchy_top_title |
Brain research bulletin |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320433676 (DE-600)2004068-4 (DE-576)090954653 |
title |
Distance to criticality undergoes critical transition before epileptic seizure attacks |
ctrlnum |
(DE-627)ELV060586680 (ELSEVIER)S0361-9230(23)00109-0 |
title_full |
Distance to criticality undergoes critical transition before epileptic seizure attacks |
author_sort |
Liu, Shun |
journal |
Brain research bulletin |
journalStr |
Brain research bulletin |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 100 - Philosophy & psychology |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Liu, Shun Li, Fali Wan, Feng |
container_volume |
200 |
class |
610 150 VZ 44.90 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Liu, Shun |
doi_str_mv |
10.1016/j.brainresbull.2023.110684 |
normlink |
(ORCID)0000-0002-9359-0737 |
normlink_prefix_str_mv |
(orcid)0000-0002-9359-0737 |
dewey-full |
610 150 |
author2-role |
verfasserin |
title_sort |
distance to criticality undergoes critical transition before epileptic seizure attacks |
title_auth |
Distance to criticality undergoes critical transition before epileptic seizure attacks |
abstract |
Epilepsy is a common neurological disorder characterized by recurring seizures, but its underlying mechanisms remain poorly understood. Despite extensive research, there are still gaps in our knowledge about the relationship between brain dynamics and seizures. In this study, our aim is to address these gaps by proposing a novel approach to assess the role of brain network dynamics in the onset of seizures. Specifically, we investigate the relationship between brain dynamics and seizures by tracking the distance to criticality. Our hypothesis is that this distance plays a crucial role in brain state changes and that seizures may be related to critical transitions of this distance. To test this hypothesis, we develop a method to measure the evolution of the brain network’s distance to the critical dynamic systems (i.e., the distance to the tipping point, DTP) using dynamic network biomarker theory and random matrix theory. The results show that the DTP of the brain decreases significantly immediately after onset of an epileptic seizure, suggesting that the brain loses its well-defined quasi-critical state during seizures. We refer to this phenomenon as the “criticality of the criticality” (COC). Furthermore, we observe that DTP exhibits a shape transition before and after the onset of the seizures. This phenomenon suggests the possibility of early warning signal (EWS) identification in the dynamic sequence of DTP, which could be utilized for seizure prediction. Our results show that the Hurst exponent, skewness, kurtosis, autocorrelation, and variance of the DTP sequence are potential EWS features. This study advances our understanding of the relationship between brain dynamics and seizures and highlights the potential for using criticality-based measures to predict and prevent seizures. |
abstractGer |
Epilepsy is a common neurological disorder characterized by recurring seizures, but its underlying mechanisms remain poorly understood. Despite extensive research, there are still gaps in our knowledge about the relationship between brain dynamics and seizures. In this study, our aim is to address these gaps by proposing a novel approach to assess the role of brain network dynamics in the onset of seizures. Specifically, we investigate the relationship between brain dynamics and seizures by tracking the distance to criticality. Our hypothesis is that this distance plays a crucial role in brain state changes and that seizures may be related to critical transitions of this distance. To test this hypothesis, we develop a method to measure the evolution of the brain network’s distance to the critical dynamic systems (i.e., the distance to the tipping point, DTP) using dynamic network biomarker theory and random matrix theory. The results show that the DTP of the brain decreases significantly immediately after onset of an epileptic seizure, suggesting that the brain loses its well-defined quasi-critical state during seizures. We refer to this phenomenon as the “criticality of the criticality” (COC). Furthermore, we observe that DTP exhibits a shape transition before and after the onset of the seizures. This phenomenon suggests the possibility of early warning signal (EWS) identification in the dynamic sequence of DTP, which could be utilized for seizure prediction. Our results show that the Hurst exponent, skewness, kurtosis, autocorrelation, and variance of the DTP sequence are potential EWS features. This study advances our understanding of the relationship between brain dynamics and seizures and highlights the potential for using criticality-based measures to predict and prevent seizures. |
abstract_unstemmed |
Epilepsy is a common neurological disorder characterized by recurring seizures, but its underlying mechanisms remain poorly understood. Despite extensive research, there are still gaps in our knowledge about the relationship between brain dynamics and seizures. In this study, our aim is to address these gaps by proposing a novel approach to assess the role of brain network dynamics in the onset of seizures. Specifically, we investigate the relationship between brain dynamics and seizures by tracking the distance to criticality. Our hypothesis is that this distance plays a crucial role in brain state changes and that seizures may be related to critical transitions of this distance. To test this hypothesis, we develop a method to measure the evolution of the brain network’s distance to the critical dynamic systems (i.e., the distance to the tipping point, DTP) using dynamic network biomarker theory and random matrix theory. The results show that the DTP of the brain decreases significantly immediately after onset of an epileptic seizure, suggesting that the brain loses its well-defined quasi-critical state during seizures. We refer to this phenomenon as the “criticality of the criticality” (COC). Furthermore, we observe that DTP exhibits a shape transition before and after the onset of the seizures. This phenomenon suggests the possibility of early warning signal (EWS) identification in the dynamic sequence of DTP, which could be utilized for seizure prediction. Our results show that the Hurst exponent, skewness, kurtosis, autocorrelation, and variance of the DTP sequence are potential EWS features. This study advances our understanding of the relationship between brain dynamics and seizures and highlights the potential for using criticality-based measures to predict and prevent seizures. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Distance to criticality undergoes critical transition before epileptic seizure attacks |
remote_bool |
true |
author2 |
Li, Fali Wan, Feng |
author2Str |
Li, Fali Wan, Feng |
ppnlink |
320433676 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.brainresbull.2023.110684 |
up_date |
2024-07-06T16:36:01.308Z |
_version_ |
1803848265302540288 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV060586680</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230926163056.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230718s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.brainresbull.2023.110684</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV060586680</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0361-9230(23)00109-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="a">150</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.90</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liu, Shun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Distance to criticality undergoes critical transition before epileptic seizure attacks</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Epilepsy is a common neurological disorder characterized by recurring seizures, but its underlying mechanisms remain poorly understood. Despite extensive research, there are still gaps in our knowledge about the relationship between brain dynamics and seizures. In this study, our aim is to address these gaps by proposing a novel approach to assess the role of brain network dynamics in the onset of seizures. Specifically, we investigate the relationship between brain dynamics and seizures by tracking the distance to criticality. Our hypothesis is that this distance plays a crucial role in brain state changes and that seizures may be related to critical transitions of this distance. To test this hypothesis, we develop a method to measure the evolution of the brain network’s distance to the critical dynamic systems (i.e., the distance to the tipping point, DTP) using dynamic network biomarker theory and random matrix theory. The results show that the DTP of the brain decreases significantly immediately after onset of an epileptic seizure, suggesting that the brain loses its well-defined quasi-critical state during seizures. We refer to this phenomenon as the “criticality of the criticality” (COC). Furthermore, we observe that DTP exhibits a shape transition before and after the onset of the seizures. This phenomenon suggests the possibility of early warning signal (EWS) identification in the dynamic sequence of DTP, which could be utilized for seizure prediction. Our results show that the Hurst exponent, skewness, kurtosis, autocorrelation, and variance of the DTP sequence are potential EWS features. This study advances our understanding of the relationship between brain dynamics and seizures and highlights the potential for using criticality-based measures to predict and prevent seizures.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Epileptic seizures</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electroencephalogram (EEG)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Brain network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Criticality</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Fali</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wan, Feng</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-9359-0737</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Brain research bulletin</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1976</subfield><subfield code="g">200</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320433676</subfield><subfield code="w">(DE-600)2004068-4</subfield><subfield code="w">(DE-576)090954653</subfield><subfield code="x">1873-2747</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:200</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.90</subfield><subfield code="j">Neurologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">200</subfield></datafield></record></collection>
|
score |
7.4007006 |