Promoting effect and mechanism of residual feed organic matter on the formation of cyanobacterial blooms in aquaculture waters
Cyanobacterial blooms and eutrophication often occur in aquaculture waters where feeds are used. We hypothesize that residual feed organic matter (RFOM) can contribute to increased dissolved reactive phosphorus (SRP) concentrations in the water column by altering sediment phosphorus release characte...
Ausführliche Beschreibung
Autor*in: |
Wang, Jinglong [verfasserIn] Zhou, Weicheng [verfasserIn] Huang, Shun [verfasserIn] Wu, Xiaomei [verfasserIn] Zhou, Panpan [verfasserIn] Geng, Yuchen [verfasserIn] Zhu, Yu [verfasserIn] Wang, Yuming [verfasserIn] Wu, Yundong [verfasserIn] Chen, Qinyi [verfasserIn] Ding, Yuang [verfasserIn] Wang, Zhicong [verfasserIn] Li, Dunhai [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of cleaner production - Amsterdam [u.a.] : Elsevier Science, 1993, 417 |
---|---|
Übergeordnetes Werk: |
volume:417 |
DOI / URN: |
10.1016/j.jclepro.2023.138068 |
---|
Katalog-ID: |
ELV060789751 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV060789751 | ||
003 | DE-627 | ||
005 | 20231231093022.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230722s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jclepro.2023.138068 |2 doi | |
035 | |a (DE-627)ELV060789751 | ||
035 | |a (ELSEVIER)S0959-6526(23)02226-6 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 690 |a 330 |q VZ |
084 | |a 43.35 |2 bkl | ||
084 | |a 85.35 |2 bkl | ||
100 | 1 | |a Wang, Jinglong |e verfasserin |4 aut | |
245 | 1 | 0 | |a Promoting effect and mechanism of residual feed organic matter on the formation of cyanobacterial blooms in aquaculture waters |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Cyanobacterial blooms and eutrophication often occur in aquaculture waters where feeds are used. We hypothesize that residual feed organic matter (RFOM) can contribute to increased dissolved reactive phosphorus (SRP) concentrations in the water column by altering sediment phosphorus release characteristics (PRCS), including phosphorus fractions (i.e., Fe–P) and phosphorus adsorption (i.e., Qmax, EPC0), which is ultimately conducive to the formation of cyanobacteria blooms. Three types of aquaculture waters that were never feeding (NF), long-term feeding (LF), and stopped feeding (SF) for several years were studied to verify the above hypothesis. The results showed that the concentrations of SRP and chlorophyll-a in LF were significantly higher than those in SF and NF (P < 0.05). RFOM significantly affects PRCS with a power function relationship with EPC0 and a linear relationship with Qmax. Similarly, SRP in the water column was positively correlated with PRCS (i.e., Fe–P, EPC0), cyanobacterial biomass, and trophic state index (P < 0.01). This suggested that SRP may be an essential link between sediment and algal community structure. Simulation experiments further confirmed the above hypothesis, With the increase in RFOM (94.36 g/kg), PRCS (i.e., Fe–P, EPC0, and Qmax) increased significantly, which were 6.60, 282.36, and 2.47 times that of the control group, respectively. The sediment bacterial community and the partial least squares path model indicated that RFOM could regulate the SRP concentration in the water body and promote the formation of cyanobacterial blooms through PRCS, in which Firmicutes played an important role. This study revealed the driving process and mechanism of feeding behavior on the formation of cyanobacterial blooms and eutrophication in aquaculture waters, which provided a basis for the health management and cleaning strategy of aquaculture waters. | ||
650 | 4 | |a Aquaculture waters | |
650 | 4 | |a Cyanobacterial bloom | |
650 | 4 | |a Phosphorus release characteristics | |
650 | 4 | |a Residual feed | |
650 | 4 | |a Sediment | |
700 | 1 | |a Zhou, Weicheng |e verfasserin |4 aut | |
700 | 1 | |a Huang, Shun |e verfasserin |4 aut | |
700 | 1 | |a Wu, Xiaomei |e verfasserin |4 aut | |
700 | 1 | |a Zhou, Panpan |e verfasserin |4 aut | |
700 | 1 | |a Geng, Yuchen |e verfasserin |4 aut | |
700 | 1 | |a Zhu, Yu |e verfasserin |4 aut | |
700 | 1 | |a Wang, Yuming |e verfasserin |4 aut | |
700 | 1 | |a Wu, Yundong |e verfasserin |4 aut | |
700 | 1 | |a Chen, Qinyi |e verfasserin |4 aut | |
700 | 1 | |a Ding, Yuang |e verfasserin |4 aut | |
700 | 1 | |a Wang, Zhicong |e verfasserin |4 aut | |
700 | 1 | |a Li, Dunhai |e verfasserin |0 (orcid)0000-0002-1915-4216 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of cleaner production |d Amsterdam [u.a.] : Elsevier Science, 1993 |g 417 |h Online-Ressource |w (DE-627)324655878 |w (DE-600)2029338-0 |w (DE-576)252613988 |x 0959-6526 |7 nnns |
773 | 1 | 8 | |g volume:417 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OPC-GGO | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 43.35 |j Umweltrichtlinien |j Umweltnormen |q VZ |
936 | b | k | |a 85.35 |j Fertigung |q VZ |
951 | |a AR | ||
952 | |d 417 |
author_variant |
j w jw w z wz s h sh x w xw p z pz y g yg y z yz y w yw y w yw q c qc y d yd z w zw d l dl |
---|---|
matchkey_str |
article:09596526:2023----::rmtnefcadehnsorsdafeogncatrnhfrainfynbce |
hierarchy_sort_str |
2023 |
bklnumber |
43.35 85.35 |
publishDate |
2023 |
allfields |
10.1016/j.jclepro.2023.138068 doi (DE-627)ELV060789751 (ELSEVIER)S0959-6526(23)02226-6 DE-627 ger DE-627 rda eng 690 330 VZ 43.35 bkl 85.35 bkl Wang, Jinglong verfasserin aut Promoting effect and mechanism of residual feed organic matter on the formation of cyanobacterial blooms in aquaculture waters 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Cyanobacterial blooms and eutrophication often occur in aquaculture waters where feeds are used. We hypothesize that residual feed organic matter (RFOM) can contribute to increased dissolved reactive phosphorus (SRP) concentrations in the water column by altering sediment phosphorus release characteristics (PRCS), including phosphorus fractions (i.e., Fe–P) and phosphorus adsorption (i.e., Qmax, EPC0), which is ultimately conducive to the formation of cyanobacteria blooms. Three types of aquaculture waters that were never feeding (NF), long-term feeding (LF), and stopped feeding (SF) for several years were studied to verify the above hypothesis. The results showed that the concentrations of SRP and chlorophyll-a in LF were significantly higher than those in SF and NF (P < 0.05). RFOM significantly affects PRCS with a power function relationship with EPC0 and a linear relationship with Qmax. Similarly, SRP in the water column was positively correlated with PRCS (i.e., Fe–P, EPC0), cyanobacterial biomass, and trophic state index (P < 0.01). This suggested that SRP may be an essential link between sediment and algal community structure. Simulation experiments further confirmed the above hypothesis, With the increase in RFOM (94.36 g/kg), PRCS (i.e., Fe–P, EPC0, and Qmax) increased significantly, which were 6.60, 282.36, and 2.47 times that of the control group, respectively. The sediment bacterial community and the partial least squares path model indicated that RFOM could regulate the SRP concentration in the water body and promote the formation of cyanobacterial blooms through PRCS, in which Firmicutes played an important role. This study revealed the driving process and mechanism of feeding behavior on the formation of cyanobacterial blooms and eutrophication in aquaculture waters, which provided a basis for the health management and cleaning strategy of aquaculture waters. Aquaculture waters Cyanobacterial bloom Phosphorus release characteristics Residual feed Sediment Zhou, Weicheng verfasserin aut Huang, Shun verfasserin aut Wu, Xiaomei verfasserin aut Zhou, Panpan verfasserin aut Geng, Yuchen verfasserin aut Zhu, Yu verfasserin aut Wang, Yuming verfasserin aut Wu, Yundong verfasserin aut Chen, Qinyi verfasserin aut Ding, Yuang verfasserin aut Wang, Zhicong verfasserin aut Li, Dunhai verfasserin (orcid)0000-0002-1915-4216 aut Enthalten in Journal of cleaner production Amsterdam [u.a.] : Elsevier Science, 1993 417 Online-Ressource (DE-627)324655878 (DE-600)2029338-0 (DE-576)252613988 0959-6526 nnns volume:417 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 43.35 Umweltrichtlinien Umweltnormen VZ 85.35 Fertigung VZ AR 417 |
spelling |
10.1016/j.jclepro.2023.138068 doi (DE-627)ELV060789751 (ELSEVIER)S0959-6526(23)02226-6 DE-627 ger DE-627 rda eng 690 330 VZ 43.35 bkl 85.35 bkl Wang, Jinglong verfasserin aut Promoting effect and mechanism of residual feed organic matter on the formation of cyanobacterial blooms in aquaculture waters 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Cyanobacterial blooms and eutrophication often occur in aquaculture waters where feeds are used. We hypothesize that residual feed organic matter (RFOM) can contribute to increased dissolved reactive phosphorus (SRP) concentrations in the water column by altering sediment phosphorus release characteristics (PRCS), including phosphorus fractions (i.e., Fe–P) and phosphorus adsorption (i.e., Qmax, EPC0), which is ultimately conducive to the formation of cyanobacteria blooms. Three types of aquaculture waters that were never feeding (NF), long-term feeding (LF), and stopped feeding (SF) for several years were studied to verify the above hypothesis. The results showed that the concentrations of SRP and chlorophyll-a in LF were significantly higher than those in SF and NF (P < 0.05). RFOM significantly affects PRCS with a power function relationship with EPC0 and a linear relationship with Qmax. Similarly, SRP in the water column was positively correlated with PRCS (i.e., Fe–P, EPC0), cyanobacterial biomass, and trophic state index (P < 0.01). This suggested that SRP may be an essential link between sediment and algal community structure. Simulation experiments further confirmed the above hypothesis, With the increase in RFOM (94.36 g/kg), PRCS (i.e., Fe–P, EPC0, and Qmax) increased significantly, which were 6.60, 282.36, and 2.47 times that of the control group, respectively. The sediment bacterial community and the partial least squares path model indicated that RFOM could regulate the SRP concentration in the water body and promote the formation of cyanobacterial blooms through PRCS, in which Firmicutes played an important role. This study revealed the driving process and mechanism of feeding behavior on the formation of cyanobacterial blooms and eutrophication in aquaculture waters, which provided a basis for the health management and cleaning strategy of aquaculture waters. Aquaculture waters Cyanobacterial bloom Phosphorus release characteristics Residual feed Sediment Zhou, Weicheng verfasserin aut Huang, Shun verfasserin aut Wu, Xiaomei verfasserin aut Zhou, Panpan verfasserin aut Geng, Yuchen verfasserin aut Zhu, Yu verfasserin aut Wang, Yuming verfasserin aut Wu, Yundong verfasserin aut Chen, Qinyi verfasserin aut Ding, Yuang verfasserin aut Wang, Zhicong verfasserin aut Li, Dunhai verfasserin (orcid)0000-0002-1915-4216 aut Enthalten in Journal of cleaner production Amsterdam [u.a.] : Elsevier Science, 1993 417 Online-Ressource (DE-627)324655878 (DE-600)2029338-0 (DE-576)252613988 0959-6526 nnns volume:417 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 43.35 Umweltrichtlinien Umweltnormen VZ 85.35 Fertigung VZ AR 417 |
allfields_unstemmed |
10.1016/j.jclepro.2023.138068 doi (DE-627)ELV060789751 (ELSEVIER)S0959-6526(23)02226-6 DE-627 ger DE-627 rda eng 690 330 VZ 43.35 bkl 85.35 bkl Wang, Jinglong verfasserin aut Promoting effect and mechanism of residual feed organic matter on the formation of cyanobacterial blooms in aquaculture waters 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Cyanobacterial blooms and eutrophication often occur in aquaculture waters where feeds are used. We hypothesize that residual feed organic matter (RFOM) can contribute to increased dissolved reactive phosphorus (SRP) concentrations in the water column by altering sediment phosphorus release characteristics (PRCS), including phosphorus fractions (i.e., Fe–P) and phosphorus adsorption (i.e., Qmax, EPC0), which is ultimately conducive to the formation of cyanobacteria blooms. Three types of aquaculture waters that were never feeding (NF), long-term feeding (LF), and stopped feeding (SF) for several years were studied to verify the above hypothesis. The results showed that the concentrations of SRP and chlorophyll-a in LF were significantly higher than those in SF and NF (P < 0.05). RFOM significantly affects PRCS with a power function relationship with EPC0 and a linear relationship with Qmax. Similarly, SRP in the water column was positively correlated with PRCS (i.e., Fe–P, EPC0), cyanobacterial biomass, and trophic state index (P < 0.01). This suggested that SRP may be an essential link between sediment and algal community structure. Simulation experiments further confirmed the above hypothesis, With the increase in RFOM (94.36 g/kg), PRCS (i.e., Fe–P, EPC0, and Qmax) increased significantly, which were 6.60, 282.36, and 2.47 times that of the control group, respectively. The sediment bacterial community and the partial least squares path model indicated that RFOM could regulate the SRP concentration in the water body and promote the formation of cyanobacterial blooms through PRCS, in which Firmicutes played an important role. This study revealed the driving process and mechanism of feeding behavior on the formation of cyanobacterial blooms and eutrophication in aquaculture waters, which provided a basis for the health management and cleaning strategy of aquaculture waters. Aquaculture waters Cyanobacterial bloom Phosphorus release characteristics Residual feed Sediment Zhou, Weicheng verfasserin aut Huang, Shun verfasserin aut Wu, Xiaomei verfasserin aut Zhou, Panpan verfasserin aut Geng, Yuchen verfasserin aut Zhu, Yu verfasserin aut Wang, Yuming verfasserin aut Wu, Yundong verfasserin aut Chen, Qinyi verfasserin aut Ding, Yuang verfasserin aut Wang, Zhicong verfasserin aut Li, Dunhai verfasserin (orcid)0000-0002-1915-4216 aut Enthalten in Journal of cleaner production Amsterdam [u.a.] : Elsevier Science, 1993 417 Online-Ressource (DE-627)324655878 (DE-600)2029338-0 (DE-576)252613988 0959-6526 nnns volume:417 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 43.35 Umweltrichtlinien Umweltnormen VZ 85.35 Fertigung VZ AR 417 |
allfieldsGer |
10.1016/j.jclepro.2023.138068 doi (DE-627)ELV060789751 (ELSEVIER)S0959-6526(23)02226-6 DE-627 ger DE-627 rda eng 690 330 VZ 43.35 bkl 85.35 bkl Wang, Jinglong verfasserin aut Promoting effect and mechanism of residual feed organic matter on the formation of cyanobacterial blooms in aquaculture waters 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Cyanobacterial blooms and eutrophication often occur in aquaculture waters where feeds are used. We hypothesize that residual feed organic matter (RFOM) can contribute to increased dissolved reactive phosphorus (SRP) concentrations in the water column by altering sediment phosphorus release characteristics (PRCS), including phosphorus fractions (i.e., Fe–P) and phosphorus adsorption (i.e., Qmax, EPC0), which is ultimately conducive to the formation of cyanobacteria blooms. Three types of aquaculture waters that were never feeding (NF), long-term feeding (LF), and stopped feeding (SF) for several years were studied to verify the above hypothesis. The results showed that the concentrations of SRP and chlorophyll-a in LF were significantly higher than those in SF and NF (P < 0.05). RFOM significantly affects PRCS with a power function relationship with EPC0 and a linear relationship with Qmax. Similarly, SRP in the water column was positively correlated with PRCS (i.e., Fe–P, EPC0), cyanobacterial biomass, and trophic state index (P < 0.01). This suggested that SRP may be an essential link between sediment and algal community structure. Simulation experiments further confirmed the above hypothesis, With the increase in RFOM (94.36 g/kg), PRCS (i.e., Fe–P, EPC0, and Qmax) increased significantly, which were 6.60, 282.36, and 2.47 times that of the control group, respectively. The sediment bacterial community and the partial least squares path model indicated that RFOM could regulate the SRP concentration in the water body and promote the formation of cyanobacterial blooms through PRCS, in which Firmicutes played an important role. This study revealed the driving process and mechanism of feeding behavior on the formation of cyanobacterial blooms and eutrophication in aquaculture waters, which provided a basis for the health management and cleaning strategy of aquaculture waters. Aquaculture waters Cyanobacterial bloom Phosphorus release characteristics Residual feed Sediment Zhou, Weicheng verfasserin aut Huang, Shun verfasserin aut Wu, Xiaomei verfasserin aut Zhou, Panpan verfasserin aut Geng, Yuchen verfasserin aut Zhu, Yu verfasserin aut Wang, Yuming verfasserin aut Wu, Yundong verfasserin aut Chen, Qinyi verfasserin aut Ding, Yuang verfasserin aut Wang, Zhicong verfasserin aut Li, Dunhai verfasserin (orcid)0000-0002-1915-4216 aut Enthalten in Journal of cleaner production Amsterdam [u.a.] : Elsevier Science, 1993 417 Online-Ressource (DE-627)324655878 (DE-600)2029338-0 (DE-576)252613988 0959-6526 nnns volume:417 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 43.35 Umweltrichtlinien Umweltnormen VZ 85.35 Fertigung VZ AR 417 |
allfieldsSound |
10.1016/j.jclepro.2023.138068 doi (DE-627)ELV060789751 (ELSEVIER)S0959-6526(23)02226-6 DE-627 ger DE-627 rda eng 690 330 VZ 43.35 bkl 85.35 bkl Wang, Jinglong verfasserin aut Promoting effect and mechanism of residual feed organic matter on the formation of cyanobacterial blooms in aquaculture waters 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Cyanobacterial blooms and eutrophication often occur in aquaculture waters where feeds are used. We hypothesize that residual feed organic matter (RFOM) can contribute to increased dissolved reactive phosphorus (SRP) concentrations in the water column by altering sediment phosphorus release characteristics (PRCS), including phosphorus fractions (i.e., Fe–P) and phosphorus adsorption (i.e., Qmax, EPC0), which is ultimately conducive to the formation of cyanobacteria blooms. Three types of aquaculture waters that were never feeding (NF), long-term feeding (LF), and stopped feeding (SF) for several years were studied to verify the above hypothesis. The results showed that the concentrations of SRP and chlorophyll-a in LF were significantly higher than those in SF and NF (P < 0.05). RFOM significantly affects PRCS with a power function relationship with EPC0 and a linear relationship with Qmax. Similarly, SRP in the water column was positively correlated with PRCS (i.e., Fe–P, EPC0), cyanobacterial biomass, and trophic state index (P < 0.01). This suggested that SRP may be an essential link between sediment and algal community structure. Simulation experiments further confirmed the above hypothesis, With the increase in RFOM (94.36 g/kg), PRCS (i.e., Fe–P, EPC0, and Qmax) increased significantly, which were 6.60, 282.36, and 2.47 times that of the control group, respectively. The sediment bacterial community and the partial least squares path model indicated that RFOM could regulate the SRP concentration in the water body and promote the formation of cyanobacterial blooms through PRCS, in which Firmicutes played an important role. This study revealed the driving process and mechanism of feeding behavior on the formation of cyanobacterial blooms and eutrophication in aquaculture waters, which provided a basis for the health management and cleaning strategy of aquaculture waters. Aquaculture waters Cyanobacterial bloom Phosphorus release characteristics Residual feed Sediment Zhou, Weicheng verfasserin aut Huang, Shun verfasserin aut Wu, Xiaomei verfasserin aut Zhou, Panpan verfasserin aut Geng, Yuchen verfasserin aut Zhu, Yu verfasserin aut Wang, Yuming verfasserin aut Wu, Yundong verfasserin aut Chen, Qinyi verfasserin aut Ding, Yuang verfasserin aut Wang, Zhicong verfasserin aut Li, Dunhai verfasserin (orcid)0000-0002-1915-4216 aut Enthalten in Journal of cleaner production Amsterdam [u.a.] : Elsevier Science, 1993 417 Online-Ressource (DE-627)324655878 (DE-600)2029338-0 (DE-576)252613988 0959-6526 nnns volume:417 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 43.35 Umweltrichtlinien Umweltnormen VZ 85.35 Fertigung VZ AR 417 |
language |
English |
source |
Enthalten in Journal of cleaner production 417 volume:417 |
sourceStr |
Enthalten in Journal of cleaner production 417 volume:417 |
format_phy_str_mv |
Article |
bklname |
Umweltrichtlinien Umweltnormen Fertigung |
institution |
findex.gbv.de |
topic_facet |
Aquaculture waters Cyanobacterial bloom Phosphorus release characteristics Residual feed Sediment |
dewey-raw |
690 |
isfreeaccess_bool |
false |
container_title |
Journal of cleaner production |
authorswithroles_txt_mv |
Wang, Jinglong @@aut@@ Zhou, Weicheng @@aut@@ Huang, Shun @@aut@@ Wu, Xiaomei @@aut@@ Zhou, Panpan @@aut@@ Geng, Yuchen @@aut@@ Zhu, Yu @@aut@@ Wang, Yuming @@aut@@ Wu, Yundong @@aut@@ Chen, Qinyi @@aut@@ Ding, Yuang @@aut@@ Wang, Zhicong @@aut@@ Li, Dunhai @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
324655878 |
dewey-sort |
3690 |
id |
ELV060789751 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV060789751</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231231093022.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230722s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jclepro.2023.138068</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV060789751</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0959-6526(23)02226-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="a">330</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.35</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">85.35</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Jinglong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Promoting effect and mechanism of residual feed organic matter on the formation of cyanobacterial blooms in aquaculture waters</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Cyanobacterial blooms and eutrophication often occur in aquaculture waters where feeds are used. We hypothesize that residual feed organic matter (RFOM) can contribute to increased dissolved reactive phosphorus (SRP) concentrations in the water column by altering sediment phosphorus release characteristics (PRCS), including phosphorus fractions (i.e., Fe–P) and phosphorus adsorption (i.e., Qmax, EPC0), which is ultimately conducive to the formation of cyanobacteria blooms. Three types of aquaculture waters that were never feeding (NF), long-term feeding (LF), and stopped feeding (SF) for several years were studied to verify the above hypothesis. The results showed that the concentrations of SRP and chlorophyll-a in LF were significantly higher than those in SF and NF (P < 0.05). RFOM significantly affects PRCS with a power function relationship with EPC0 and a linear relationship with Qmax. Similarly, SRP in the water column was positively correlated with PRCS (i.e., Fe–P, EPC0), cyanobacterial biomass, and trophic state index (P < 0.01). This suggested that SRP may be an essential link between sediment and algal community structure. Simulation experiments further confirmed the above hypothesis, With the increase in RFOM (94.36 g/kg), PRCS (i.e., Fe–P, EPC0, and Qmax) increased significantly, which were 6.60, 282.36, and 2.47 times that of the control group, respectively. The sediment bacterial community and the partial least squares path model indicated that RFOM could regulate the SRP concentration in the water body and promote the formation of cyanobacterial blooms through PRCS, in which Firmicutes played an important role. This study revealed the driving process and mechanism of feeding behavior on the formation of cyanobacterial blooms and eutrophication in aquaculture waters, which provided a basis for the health management and cleaning strategy of aquaculture waters.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Aquaculture waters</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cyanobacterial bloom</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Phosphorus release characteristics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Residual feed</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sediment</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhou, Weicheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Shun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Xiaomei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhou, Panpan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Geng, Yuchen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhu, Yu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Yuming</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Yundong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Qinyi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ding, Yuang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Zhicong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Dunhai</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-1915-4216</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of cleaner production</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1993</subfield><subfield code="g">417</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)324655878</subfield><subfield code="w">(DE-600)2029338-0</subfield><subfield code="w">(DE-576)252613988</subfield><subfield code="x">0959-6526</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:417</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.35</subfield><subfield code="j">Umweltrichtlinien</subfield><subfield code="j">Umweltnormen</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">85.35</subfield><subfield code="j">Fertigung</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">417</subfield></datafield></record></collection>
|
author |
Wang, Jinglong |
spellingShingle |
Wang, Jinglong ddc 690 bkl 43.35 bkl 85.35 misc Aquaculture waters misc Cyanobacterial bloom misc Phosphorus release characteristics misc Residual feed misc Sediment Promoting effect and mechanism of residual feed organic matter on the formation of cyanobacterial blooms in aquaculture waters |
authorStr |
Wang, Jinglong |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)324655878 |
format |
electronic Article |
dewey-ones |
690 - Buildings 330 - Economics |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0959-6526 |
topic_title |
690 330 VZ 43.35 bkl 85.35 bkl Promoting effect and mechanism of residual feed organic matter on the formation of cyanobacterial blooms in aquaculture waters Aquaculture waters Cyanobacterial bloom Phosphorus release characteristics Residual feed Sediment |
topic |
ddc 690 bkl 43.35 bkl 85.35 misc Aquaculture waters misc Cyanobacterial bloom misc Phosphorus release characteristics misc Residual feed misc Sediment |
topic_unstemmed |
ddc 690 bkl 43.35 bkl 85.35 misc Aquaculture waters misc Cyanobacterial bloom misc Phosphorus release characteristics misc Residual feed misc Sediment |
topic_browse |
ddc 690 bkl 43.35 bkl 85.35 misc Aquaculture waters misc Cyanobacterial bloom misc Phosphorus release characteristics misc Residual feed misc Sediment |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of cleaner production |
hierarchy_parent_id |
324655878 |
dewey-tens |
690 - Building & construction 330 - Economics |
hierarchy_top_title |
Journal of cleaner production |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)324655878 (DE-600)2029338-0 (DE-576)252613988 |
title |
Promoting effect and mechanism of residual feed organic matter on the formation of cyanobacterial blooms in aquaculture waters |
ctrlnum |
(DE-627)ELV060789751 (ELSEVIER)S0959-6526(23)02226-6 |
title_full |
Promoting effect and mechanism of residual feed organic matter on the formation of cyanobacterial blooms in aquaculture waters |
author_sort |
Wang, Jinglong |
journal |
Journal of cleaner production |
journalStr |
Journal of cleaner production |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 300 - Social sciences |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Wang, Jinglong Zhou, Weicheng Huang, Shun Wu, Xiaomei Zhou, Panpan Geng, Yuchen Zhu, Yu Wang, Yuming Wu, Yundong Chen, Qinyi Ding, Yuang Wang, Zhicong Li, Dunhai |
container_volume |
417 |
class |
690 330 VZ 43.35 bkl 85.35 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Wang, Jinglong |
doi_str_mv |
10.1016/j.jclepro.2023.138068 |
normlink |
(ORCID)0000-0002-1915-4216 |
normlink_prefix_str_mv |
(orcid)0000-0002-1915-4216 |
dewey-full |
690 330 |
author2-role |
verfasserin |
title_sort |
promoting effect and mechanism of residual feed organic matter on the formation of cyanobacterial blooms in aquaculture waters |
title_auth |
Promoting effect and mechanism of residual feed organic matter on the formation of cyanobacterial blooms in aquaculture waters |
abstract |
Cyanobacterial blooms and eutrophication often occur in aquaculture waters where feeds are used. We hypothesize that residual feed organic matter (RFOM) can contribute to increased dissolved reactive phosphorus (SRP) concentrations in the water column by altering sediment phosphorus release characteristics (PRCS), including phosphorus fractions (i.e., Fe–P) and phosphorus adsorption (i.e., Qmax, EPC0), which is ultimately conducive to the formation of cyanobacteria blooms. Three types of aquaculture waters that were never feeding (NF), long-term feeding (LF), and stopped feeding (SF) for several years were studied to verify the above hypothesis. The results showed that the concentrations of SRP and chlorophyll-a in LF were significantly higher than those in SF and NF (P < 0.05). RFOM significantly affects PRCS with a power function relationship with EPC0 and a linear relationship with Qmax. Similarly, SRP in the water column was positively correlated with PRCS (i.e., Fe–P, EPC0), cyanobacterial biomass, and trophic state index (P < 0.01). This suggested that SRP may be an essential link between sediment and algal community structure. Simulation experiments further confirmed the above hypothesis, With the increase in RFOM (94.36 g/kg), PRCS (i.e., Fe–P, EPC0, and Qmax) increased significantly, which were 6.60, 282.36, and 2.47 times that of the control group, respectively. The sediment bacterial community and the partial least squares path model indicated that RFOM could regulate the SRP concentration in the water body and promote the formation of cyanobacterial blooms through PRCS, in which Firmicutes played an important role. This study revealed the driving process and mechanism of feeding behavior on the formation of cyanobacterial blooms and eutrophication in aquaculture waters, which provided a basis for the health management and cleaning strategy of aquaculture waters. |
abstractGer |
Cyanobacterial blooms and eutrophication often occur in aquaculture waters where feeds are used. We hypothesize that residual feed organic matter (RFOM) can contribute to increased dissolved reactive phosphorus (SRP) concentrations in the water column by altering sediment phosphorus release characteristics (PRCS), including phosphorus fractions (i.e., Fe–P) and phosphorus adsorption (i.e., Qmax, EPC0), which is ultimately conducive to the formation of cyanobacteria blooms. Three types of aquaculture waters that were never feeding (NF), long-term feeding (LF), and stopped feeding (SF) for several years were studied to verify the above hypothesis. The results showed that the concentrations of SRP and chlorophyll-a in LF were significantly higher than those in SF and NF (P < 0.05). RFOM significantly affects PRCS with a power function relationship with EPC0 and a linear relationship with Qmax. Similarly, SRP in the water column was positively correlated with PRCS (i.e., Fe–P, EPC0), cyanobacterial biomass, and trophic state index (P < 0.01). This suggested that SRP may be an essential link between sediment and algal community structure. Simulation experiments further confirmed the above hypothesis, With the increase in RFOM (94.36 g/kg), PRCS (i.e., Fe–P, EPC0, and Qmax) increased significantly, which were 6.60, 282.36, and 2.47 times that of the control group, respectively. The sediment bacterial community and the partial least squares path model indicated that RFOM could regulate the SRP concentration in the water body and promote the formation of cyanobacterial blooms through PRCS, in which Firmicutes played an important role. This study revealed the driving process and mechanism of feeding behavior on the formation of cyanobacterial blooms and eutrophication in aquaculture waters, which provided a basis for the health management and cleaning strategy of aquaculture waters. |
abstract_unstemmed |
Cyanobacterial blooms and eutrophication often occur in aquaculture waters where feeds are used. We hypothesize that residual feed organic matter (RFOM) can contribute to increased dissolved reactive phosphorus (SRP) concentrations in the water column by altering sediment phosphorus release characteristics (PRCS), including phosphorus fractions (i.e., Fe–P) and phosphorus adsorption (i.e., Qmax, EPC0), which is ultimately conducive to the formation of cyanobacteria blooms. Three types of aquaculture waters that were never feeding (NF), long-term feeding (LF), and stopped feeding (SF) for several years were studied to verify the above hypothesis. The results showed that the concentrations of SRP and chlorophyll-a in LF were significantly higher than those in SF and NF (P < 0.05). RFOM significantly affects PRCS with a power function relationship with EPC0 and a linear relationship with Qmax. Similarly, SRP in the water column was positively correlated with PRCS (i.e., Fe–P, EPC0), cyanobacterial biomass, and trophic state index (P < 0.01). This suggested that SRP may be an essential link between sediment and algal community structure. Simulation experiments further confirmed the above hypothesis, With the increase in RFOM (94.36 g/kg), PRCS (i.e., Fe–P, EPC0, and Qmax) increased significantly, which were 6.60, 282.36, and 2.47 times that of the control group, respectively. The sediment bacterial community and the partial least squares path model indicated that RFOM could regulate the SRP concentration in the water body and promote the formation of cyanobacterial blooms through PRCS, in which Firmicutes played an important role. This study revealed the driving process and mechanism of feeding behavior on the formation of cyanobacterial blooms and eutrophication in aquaculture waters, which provided a basis for the health management and cleaning strategy of aquaculture waters. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Promoting effect and mechanism of residual feed organic matter on the formation of cyanobacterial blooms in aquaculture waters |
remote_bool |
true |
author2 |
Zhou, Weicheng Huang, Shun Wu, Xiaomei Zhou, Panpan Geng, Yuchen Zhu, Yu Wang, Yuming Wu, Yundong Chen, Qinyi Ding, Yuang Wang, Zhicong Li, Dunhai |
author2Str |
Zhou, Weicheng Huang, Shun Wu, Xiaomei Zhou, Panpan Geng, Yuchen Zhu, Yu Wang, Yuming Wu, Yundong Chen, Qinyi Ding, Yuang Wang, Zhicong Li, Dunhai |
ppnlink |
324655878 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.jclepro.2023.138068 |
up_date |
2024-07-06T16:50:24.806Z |
_version_ |
1803849170744770560 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV060789751</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231231093022.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230722s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jclepro.2023.138068</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV060789751</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0959-6526(23)02226-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="a">330</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.35</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">85.35</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Jinglong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Promoting effect and mechanism of residual feed organic matter on the formation of cyanobacterial blooms in aquaculture waters</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Cyanobacterial blooms and eutrophication often occur in aquaculture waters where feeds are used. We hypothesize that residual feed organic matter (RFOM) can contribute to increased dissolved reactive phosphorus (SRP) concentrations in the water column by altering sediment phosphorus release characteristics (PRCS), including phosphorus fractions (i.e., Fe–P) and phosphorus adsorption (i.e., Qmax, EPC0), which is ultimately conducive to the formation of cyanobacteria blooms. Three types of aquaculture waters that were never feeding (NF), long-term feeding (LF), and stopped feeding (SF) for several years were studied to verify the above hypothesis. The results showed that the concentrations of SRP and chlorophyll-a in LF were significantly higher than those in SF and NF (P < 0.05). RFOM significantly affects PRCS with a power function relationship with EPC0 and a linear relationship with Qmax. Similarly, SRP in the water column was positively correlated with PRCS (i.e., Fe–P, EPC0), cyanobacterial biomass, and trophic state index (P < 0.01). This suggested that SRP may be an essential link between sediment and algal community structure. Simulation experiments further confirmed the above hypothesis, With the increase in RFOM (94.36 g/kg), PRCS (i.e., Fe–P, EPC0, and Qmax) increased significantly, which were 6.60, 282.36, and 2.47 times that of the control group, respectively. The sediment bacterial community and the partial least squares path model indicated that RFOM could regulate the SRP concentration in the water body and promote the formation of cyanobacterial blooms through PRCS, in which Firmicutes played an important role. This study revealed the driving process and mechanism of feeding behavior on the formation of cyanobacterial blooms and eutrophication in aquaculture waters, which provided a basis for the health management and cleaning strategy of aquaculture waters.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Aquaculture waters</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cyanobacterial bloom</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Phosphorus release characteristics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Residual feed</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sediment</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhou, Weicheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Shun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Xiaomei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhou, Panpan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Geng, Yuchen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhu, Yu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Yuming</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Yundong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Qinyi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ding, Yuang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Zhicong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Dunhai</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-1915-4216</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of cleaner production</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1993</subfield><subfield code="g">417</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)324655878</subfield><subfield code="w">(DE-600)2029338-0</subfield><subfield code="w">(DE-576)252613988</subfield><subfield code="x">0959-6526</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:417</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.35</subfield><subfield code="j">Umweltrichtlinien</subfield><subfield code="j">Umweltnormen</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">85.35</subfield><subfield code="j">Fertigung</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">417</subfield></datafield></record></collection>
|
score |
7.3993654 |