A fast belief rule base generation and reduction method for classification problems
The belief rule-based (BRB) system has been one of the most significant rule-based systems for its ability to deal with various kinds of information under uncertainty, and it has shown great potential for classification problems. However, the combinatorial explosion problem hugely limits the applica...
Ausführliche Beschreibung
Autor*in: |
Gao, Fei [verfasserIn] Bi, Wenhao [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: International journal of approximate reasoning - Amsterdam [u.a.] : Elsevier Science, 1987, 160 |
---|---|
Übergeordnetes Werk: |
volume:160 |
DOI / URN: |
10.1016/j.ijar.2023.108964 |
---|
Katalog-ID: |
ELV060914971 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV060914971 | ||
003 | DE-627 | ||
005 | 20230927074826.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230727s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ijar.2023.108964 |2 doi | |
035 | |a (DE-627)ELV060914971 | ||
035 | |a (ELSEVIER)S0888-613X(23)00095-6 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 54.72 |2 bkl | ||
100 | 1 | |a Gao, Fei |e verfasserin |0 (orcid)0000-0002-9273-4559 |4 aut | |
245 | 1 | 0 | |a A fast belief rule base generation and reduction method for classification problems |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The belief rule-based (BRB) system has been one of the most significant rule-based systems for its ability to deal with various kinds of information under uncertainty, and it has shown great potential for classification problems. However, the combinatorial explosion problem hugely limits the application of the BRB system as excessive rules could not only increase the computation cost, but also impact the performance of the BRB system. Therefore, motivated by this problem, this paper proposed a fast and accurate belief rule base generation and reduction method. Firstly, a fast belief rule base generation method is introduced, where similar rules are grouped and combined to ensure all the possible situations are covered without generating excessive rules. Then, a redundancy-based belief rule base reduction method is proposed, where the redundancy degree of the belief rule that represents the degree to which a belief rule is affected by other rules is introduced, and it is calculated to identify redundant rules. Furthermore, the conventional evidential reasoning (ER)-based inference process is retained from conventional BRB systems. Thirty classification benchmarks from the well-known UCI machine learning repository are tested to validate the effectiveness of the proposed method, and the results are compared with other rule-based systems, improved BRB systems, and other machine learning methods. Comparison results show that the proposed method could effectively reduce the size of the BRB without costing its accuracy. Furthermore, sensitivity analysis and robustness analysis are conducted, which further show the effectiveness and robustness of the proposed method. | ||
650 | 4 | |a Belief rule base | |
650 | 4 | |a Belief rule-based system | |
650 | 4 | |a Rule reduction | |
650 | 4 | |a Classification problem | |
700 | 1 | |a Bi, Wenhao |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t International journal of approximate reasoning |d Amsterdam [u.a.] : Elsevier Science, 1987 |g 160 |h Online-Ressource |w (DE-627)320416763 |w (DE-600)2002042-9 |w (DE-576)114818037 |x 0888-613x |7 nnns |
773 | 1 | 8 | |g volume:160 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 54.72 |j Künstliche Intelligenz |q VZ |
951 | |a AR | ||
952 | |d 160 |
author_variant |
f g fg w b wb |
---|---|
matchkey_str |
article:0888613x:2023----::fsblerlbsgnrtoadeutomtofrls |
hierarchy_sort_str |
2023 |
bklnumber |
54.72 |
publishDate |
2023 |
allfields |
10.1016/j.ijar.2023.108964 doi (DE-627)ELV060914971 (ELSEVIER)S0888-613X(23)00095-6 DE-627 ger DE-627 rda eng 510 VZ 54.72 bkl Gao, Fei verfasserin (orcid)0000-0002-9273-4559 aut A fast belief rule base generation and reduction method for classification problems 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The belief rule-based (BRB) system has been one of the most significant rule-based systems for its ability to deal with various kinds of information under uncertainty, and it has shown great potential for classification problems. However, the combinatorial explosion problem hugely limits the application of the BRB system as excessive rules could not only increase the computation cost, but also impact the performance of the BRB system. Therefore, motivated by this problem, this paper proposed a fast and accurate belief rule base generation and reduction method. Firstly, a fast belief rule base generation method is introduced, where similar rules are grouped and combined to ensure all the possible situations are covered without generating excessive rules. Then, a redundancy-based belief rule base reduction method is proposed, where the redundancy degree of the belief rule that represents the degree to which a belief rule is affected by other rules is introduced, and it is calculated to identify redundant rules. Furthermore, the conventional evidential reasoning (ER)-based inference process is retained from conventional BRB systems. Thirty classification benchmarks from the well-known UCI machine learning repository are tested to validate the effectiveness of the proposed method, and the results are compared with other rule-based systems, improved BRB systems, and other machine learning methods. Comparison results show that the proposed method could effectively reduce the size of the BRB without costing its accuracy. Furthermore, sensitivity analysis and robustness analysis are conducted, which further show the effectiveness and robustness of the proposed method. Belief rule base Belief rule-based system Rule reduction Classification problem Bi, Wenhao verfasserin aut Enthalten in International journal of approximate reasoning Amsterdam [u.a.] : Elsevier Science, 1987 160 Online-Ressource (DE-627)320416763 (DE-600)2002042-9 (DE-576)114818037 0888-613x nnns volume:160 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 54.72 Künstliche Intelligenz VZ AR 160 |
spelling |
10.1016/j.ijar.2023.108964 doi (DE-627)ELV060914971 (ELSEVIER)S0888-613X(23)00095-6 DE-627 ger DE-627 rda eng 510 VZ 54.72 bkl Gao, Fei verfasserin (orcid)0000-0002-9273-4559 aut A fast belief rule base generation and reduction method for classification problems 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The belief rule-based (BRB) system has been one of the most significant rule-based systems for its ability to deal with various kinds of information under uncertainty, and it has shown great potential for classification problems. However, the combinatorial explosion problem hugely limits the application of the BRB system as excessive rules could not only increase the computation cost, but also impact the performance of the BRB system. Therefore, motivated by this problem, this paper proposed a fast and accurate belief rule base generation and reduction method. Firstly, a fast belief rule base generation method is introduced, where similar rules are grouped and combined to ensure all the possible situations are covered without generating excessive rules. Then, a redundancy-based belief rule base reduction method is proposed, where the redundancy degree of the belief rule that represents the degree to which a belief rule is affected by other rules is introduced, and it is calculated to identify redundant rules. Furthermore, the conventional evidential reasoning (ER)-based inference process is retained from conventional BRB systems. Thirty classification benchmarks from the well-known UCI machine learning repository are tested to validate the effectiveness of the proposed method, and the results are compared with other rule-based systems, improved BRB systems, and other machine learning methods. Comparison results show that the proposed method could effectively reduce the size of the BRB without costing its accuracy. Furthermore, sensitivity analysis and robustness analysis are conducted, which further show the effectiveness and robustness of the proposed method. Belief rule base Belief rule-based system Rule reduction Classification problem Bi, Wenhao verfasserin aut Enthalten in International journal of approximate reasoning Amsterdam [u.a.] : Elsevier Science, 1987 160 Online-Ressource (DE-627)320416763 (DE-600)2002042-9 (DE-576)114818037 0888-613x nnns volume:160 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 54.72 Künstliche Intelligenz VZ AR 160 |
allfields_unstemmed |
10.1016/j.ijar.2023.108964 doi (DE-627)ELV060914971 (ELSEVIER)S0888-613X(23)00095-6 DE-627 ger DE-627 rda eng 510 VZ 54.72 bkl Gao, Fei verfasserin (orcid)0000-0002-9273-4559 aut A fast belief rule base generation and reduction method for classification problems 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The belief rule-based (BRB) system has been one of the most significant rule-based systems for its ability to deal with various kinds of information under uncertainty, and it has shown great potential for classification problems. However, the combinatorial explosion problem hugely limits the application of the BRB system as excessive rules could not only increase the computation cost, but also impact the performance of the BRB system. Therefore, motivated by this problem, this paper proposed a fast and accurate belief rule base generation and reduction method. Firstly, a fast belief rule base generation method is introduced, where similar rules are grouped and combined to ensure all the possible situations are covered without generating excessive rules. Then, a redundancy-based belief rule base reduction method is proposed, where the redundancy degree of the belief rule that represents the degree to which a belief rule is affected by other rules is introduced, and it is calculated to identify redundant rules. Furthermore, the conventional evidential reasoning (ER)-based inference process is retained from conventional BRB systems. Thirty classification benchmarks from the well-known UCI machine learning repository are tested to validate the effectiveness of the proposed method, and the results are compared with other rule-based systems, improved BRB systems, and other machine learning methods. Comparison results show that the proposed method could effectively reduce the size of the BRB without costing its accuracy. Furthermore, sensitivity analysis and robustness analysis are conducted, which further show the effectiveness and robustness of the proposed method. Belief rule base Belief rule-based system Rule reduction Classification problem Bi, Wenhao verfasserin aut Enthalten in International journal of approximate reasoning Amsterdam [u.a.] : Elsevier Science, 1987 160 Online-Ressource (DE-627)320416763 (DE-600)2002042-9 (DE-576)114818037 0888-613x nnns volume:160 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 54.72 Künstliche Intelligenz VZ AR 160 |
allfieldsGer |
10.1016/j.ijar.2023.108964 doi (DE-627)ELV060914971 (ELSEVIER)S0888-613X(23)00095-6 DE-627 ger DE-627 rda eng 510 VZ 54.72 bkl Gao, Fei verfasserin (orcid)0000-0002-9273-4559 aut A fast belief rule base generation and reduction method for classification problems 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The belief rule-based (BRB) system has been one of the most significant rule-based systems for its ability to deal with various kinds of information under uncertainty, and it has shown great potential for classification problems. However, the combinatorial explosion problem hugely limits the application of the BRB system as excessive rules could not only increase the computation cost, but also impact the performance of the BRB system. Therefore, motivated by this problem, this paper proposed a fast and accurate belief rule base generation and reduction method. Firstly, a fast belief rule base generation method is introduced, where similar rules are grouped and combined to ensure all the possible situations are covered without generating excessive rules. Then, a redundancy-based belief rule base reduction method is proposed, where the redundancy degree of the belief rule that represents the degree to which a belief rule is affected by other rules is introduced, and it is calculated to identify redundant rules. Furthermore, the conventional evidential reasoning (ER)-based inference process is retained from conventional BRB systems. Thirty classification benchmarks from the well-known UCI machine learning repository are tested to validate the effectiveness of the proposed method, and the results are compared with other rule-based systems, improved BRB systems, and other machine learning methods. Comparison results show that the proposed method could effectively reduce the size of the BRB without costing its accuracy. Furthermore, sensitivity analysis and robustness analysis are conducted, which further show the effectiveness and robustness of the proposed method. Belief rule base Belief rule-based system Rule reduction Classification problem Bi, Wenhao verfasserin aut Enthalten in International journal of approximate reasoning Amsterdam [u.a.] : Elsevier Science, 1987 160 Online-Ressource (DE-627)320416763 (DE-600)2002042-9 (DE-576)114818037 0888-613x nnns volume:160 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 54.72 Künstliche Intelligenz VZ AR 160 |
allfieldsSound |
10.1016/j.ijar.2023.108964 doi (DE-627)ELV060914971 (ELSEVIER)S0888-613X(23)00095-6 DE-627 ger DE-627 rda eng 510 VZ 54.72 bkl Gao, Fei verfasserin (orcid)0000-0002-9273-4559 aut A fast belief rule base generation and reduction method for classification problems 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The belief rule-based (BRB) system has been one of the most significant rule-based systems for its ability to deal with various kinds of information under uncertainty, and it has shown great potential for classification problems. However, the combinatorial explosion problem hugely limits the application of the BRB system as excessive rules could not only increase the computation cost, but also impact the performance of the BRB system. Therefore, motivated by this problem, this paper proposed a fast and accurate belief rule base generation and reduction method. Firstly, a fast belief rule base generation method is introduced, where similar rules are grouped and combined to ensure all the possible situations are covered without generating excessive rules. Then, a redundancy-based belief rule base reduction method is proposed, where the redundancy degree of the belief rule that represents the degree to which a belief rule is affected by other rules is introduced, and it is calculated to identify redundant rules. Furthermore, the conventional evidential reasoning (ER)-based inference process is retained from conventional BRB systems. Thirty classification benchmarks from the well-known UCI machine learning repository are tested to validate the effectiveness of the proposed method, and the results are compared with other rule-based systems, improved BRB systems, and other machine learning methods. Comparison results show that the proposed method could effectively reduce the size of the BRB without costing its accuracy. Furthermore, sensitivity analysis and robustness analysis are conducted, which further show the effectiveness and robustness of the proposed method. Belief rule base Belief rule-based system Rule reduction Classification problem Bi, Wenhao verfasserin aut Enthalten in International journal of approximate reasoning Amsterdam [u.a.] : Elsevier Science, 1987 160 Online-Ressource (DE-627)320416763 (DE-600)2002042-9 (DE-576)114818037 0888-613x nnns volume:160 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 54.72 Künstliche Intelligenz VZ AR 160 |
language |
English |
source |
Enthalten in International journal of approximate reasoning 160 volume:160 |
sourceStr |
Enthalten in International journal of approximate reasoning 160 volume:160 |
format_phy_str_mv |
Article |
bklname |
Künstliche Intelligenz |
institution |
findex.gbv.de |
topic_facet |
Belief rule base Belief rule-based system Rule reduction Classification problem |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
International journal of approximate reasoning |
authorswithroles_txt_mv |
Gao, Fei @@aut@@ Bi, Wenhao @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
320416763 |
dewey-sort |
3510 |
id |
ELV060914971 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV060914971</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230927074826.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230727s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijar.2023.108964</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV060914971</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0888-613X(23)00095-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.72</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gao, Fei</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-9273-4559</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A fast belief rule base generation and reduction method for classification problems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The belief rule-based (BRB) system has been one of the most significant rule-based systems for its ability to deal with various kinds of information under uncertainty, and it has shown great potential for classification problems. However, the combinatorial explosion problem hugely limits the application of the BRB system as excessive rules could not only increase the computation cost, but also impact the performance of the BRB system. Therefore, motivated by this problem, this paper proposed a fast and accurate belief rule base generation and reduction method. Firstly, a fast belief rule base generation method is introduced, where similar rules are grouped and combined to ensure all the possible situations are covered without generating excessive rules. Then, a redundancy-based belief rule base reduction method is proposed, where the redundancy degree of the belief rule that represents the degree to which a belief rule is affected by other rules is introduced, and it is calculated to identify redundant rules. Furthermore, the conventional evidential reasoning (ER)-based inference process is retained from conventional BRB systems. Thirty classification benchmarks from the well-known UCI machine learning repository are tested to validate the effectiveness of the proposed method, and the results are compared with other rule-based systems, improved BRB systems, and other machine learning methods. Comparison results show that the proposed method could effectively reduce the size of the BRB without costing its accuracy. Furthermore, sensitivity analysis and robustness analysis are conducted, which further show the effectiveness and robustness of the proposed method.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Belief rule base</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Belief rule-based system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rule reduction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Classification problem</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bi, Wenhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of approximate reasoning</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1987</subfield><subfield code="g">160</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320416763</subfield><subfield code="w">(DE-600)2002042-9</subfield><subfield code="w">(DE-576)114818037</subfield><subfield code="x">0888-613x</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:160</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.72</subfield><subfield code="j">Künstliche Intelligenz</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">160</subfield></datafield></record></collection>
|
author |
Gao, Fei |
spellingShingle |
Gao, Fei ddc 510 bkl 54.72 misc Belief rule base misc Belief rule-based system misc Rule reduction misc Classification problem A fast belief rule base generation and reduction method for classification problems |
authorStr |
Gao, Fei |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320416763 |
format |
electronic Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0888-613x |
topic_title |
510 VZ 54.72 bkl A fast belief rule base generation and reduction method for classification problems Belief rule base Belief rule-based system Rule reduction Classification problem |
topic |
ddc 510 bkl 54.72 misc Belief rule base misc Belief rule-based system misc Rule reduction misc Classification problem |
topic_unstemmed |
ddc 510 bkl 54.72 misc Belief rule base misc Belief rule-based system misc Rule reduction misc Classification problem |
topic_browse |
ddc 510 bkl 54.72 misc Belief rule base misc Belief rule-based system misc Rule reduction misc Classification problem |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
International journal of approximate reasoning |
hierarchy_parent_id |
320416763 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
International journal of approximate reasoning |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320416763 (DE-600)2002042-9 (DE-576)114818037 |
title |
A fast belief rule base generation and reduction method for classification problems |
ctrlnum |
(DE-627)ELV060914971 (ELSEVIER)S0888-613X(23)00095-6 |
title_full |
A fast belief rule base generation and reduction method for classification problems |
author_sort |
Gao, Fei |
journal |
International journal of approximate reasoning |
journalStr |
International journal of approximate reasoning |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Gao, Fei Bi, Wenhao |
container_volume |
160 |
class |
510 VZ 54.72 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Gao, Fei |
doi_str_mv |
10.1016/j.ijar.2023.108964 |
normlink |
(ORCID)0000-0002-9273-4559 |
normlink_prefix_str_mv |
(orcid)0000-0002-9273-4559 |
dewey-full |
510 |
author2-role |
verfasserin |
title_sort |
a fast belief rule base generation and reduction method for classification problems |
title_auth |
A fast belief rule base generation and reduction method for classification problems |
abstract |
The belief rule-based (BRB) system has been one of the most significant rule-based systems for its ability to deal with various kinds of information under uncertainty, and it has shown great potential for classification problems. However, the combinatorial explosion problem hugely limits the application of the BRB system as excessive rules could not only increase the computation cost, but also impact the performance of the BRB system. Therefore, motivated by this problem, this paper proposed a fast and accurate belief rule base generation and reduction method. Firstly, a fast belief rule base generation method is introduced, where similar rules are grouped and combined to ensure all the possible situations are covered without generating excessive rules. Then, a redundancy-based belief rule base reduction method is proposed, where the redundancy degree of the belief rule that represents the degree to which a belief rule is affected by other rules is introduced, and it is calculated to identify redundant rules. Furthermore, the conventional evidential reasoning (ER)-based inference process is retained from conventional BRB systems. Thirty classification benchmarks from the well-known UCI machine learning repository are tested to validate the effectiveness of the proposed method, and the results are compared with other rule-based systems, improved BRB systems, and other machine learning methods. Comparison results show that the proposed method could effectively reduce the size of the BRB without costing its accuracy. Furthermore, sensitivity analysis and robustness analysis are conducted, which further show the effectiveness and robustness of the proposed method. |
abstractGer |
The belief rule-based (BRB) system has been one of the most significant rule-based systems for its ability to deal with various kinds of information under uncertainty, and it has shown great potential for classification problems. However, the combinatorial explosion problem hugely limits the application of the BRB system as excessive rules could not only increase the computation cost, but also impact the performance of the BRB system. Therefore, motivated by this problem, this paper proposed a fast and accurate belief rule base generation and reduction method. Firstly, a fast belief rule base generation method is introduced, where similar rules are grouped and combined to ensure all the possible situations are covered without generating excessive rules. Then, a redundancy-based belief rule base reduction method is proposed, where the redundancy degree of the belief rule that represents the degree to which a belief rule is affected by other rules is introduced, and it is calculated to identify redundant rules. Furthermore, the conventional evidential reasoning (ER)-based inference process is retained from conventional BRB systems. Thirty classification benchmarks from the well-known UCI machine learning repository are tested to validate the effectiveness of the proposed method, and the results are compared with other rule-based systems, improved BRB systems, and other machine learning methods. Comparison results show that the proposed method could effectively reduce the size of the BRB without costing its accuracy. Furthermore, sensitivity analysis and robustness analysis are conducted, which further show the effectiveness and robustness of the proposed method. |
abstract_unstemmed |
The belief rule-based (BRB) system has been one of the most significant rule-based systems for its ability to deal with various kinds of information under uncertainty, and it has shown great potential for classification problems. However, the combinatorial explosion problem hugely limits the application of the BRB system as excessive rules could not only increase the computation cost, but also impact the performance of the BRB system. Therefore, motivated by this problem, this paper proposed a fast and accurate belief rule base generation and reduction method. Firstly, a fast belief rule base generation method is introduced, where similar rules are grouped and combined to ensure all the possible situations are covered without generating excessive rules. Then, a redundancy-based belief rule base reduction method is proposed, where the redundancy degree of the belief rule that represents the degree to which a belief rule is affected by other rules is introduced, and it is calculated to identify redundant rules. Furthermore, the conventional evidential reasoning (ER)-based inference process is retained from conventional BRB systems. Thirty classification benchmarks from the well-known UCI machine learning repository are tested to validate the effectiveness of the proposed method, and the results are compared with other rule-based systems, improved BRB systems, and other machine learning methods. Comparison results show that the proposed method could effectively reduce the size of the BRB without costing its accuracy. Furthermore, sensitivity analysis and robustness analysis are conducted, which further show the effectiveness and robustness of the proposed method. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
A fast belief rule base generation and reduction method for classification problems |
remote_bool |
true |
author2 |
Bi, Wenhao |
author2Str |
Bi, Wenhao |
ppnlink |
320416763 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.ijar.2023.108964 |
up_date |
2024-07-06T16:59:33.726Z |
_version_ |
1803849746327011328 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV060914971</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230927074826.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230727s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijar.2023.108964</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV060914971</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0888-613X(23)00095-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.72</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gao, Fei</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-9273-4559</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A fast belief rule base generation and reduction method for classification problems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The belief rule-based (BRB) system has been one of the most significant rule-based systems for its ability to deal with various kinds of information under uncertainty, and it has shown great potential for classification problems. However, the combinatorial explosion problem hugely limits the application of the BRB system as excessive rules could not only increase the computation cost, but also impact the performance of the BRB system. Therefore, motivated by this problem, this paper proposed a fast and accurate belief rule base generation and reduction method. Firstly, a fast belief rule base generation method is introduced, where similar rules are grouped and combined to ensure all the possible situations are covered without generating excessive rules. Then, a redundancy-based belief rule base reduction method is proposed, where the redundancy degree of the belief rule that represents the degree to which a belief rule is affected by other rules is introduced, and it is calculated to identify redundant rules. Furthermore, the conventional evidential reasoning (ER)-based inference process is retained from conventional BRB systems. Thirty classification benchmarks from the well-known UCI machine learning repository are tested to validate the effectiveness of the proposed method, and the results are compared with other rule-based systems, improved BRB systems, and other machine learning methods. Comparison results show that the proposed method could effectively reduce the size of the BRB without costing its accuracy. Furthermore, sensitivity analysis and robustness analysis are conducted, which further show the effectiveness and robustness of the proposed method.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Belief rule base</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Belief rule-based system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rule reduction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Classification problem</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bi, Wenhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of approximate reasoning</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1987</subfield><subfield code="g">160</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320416763</subfield><subfield code="w">(DE-600)2002042-9</subfield><subfield code="w">(DE-576)114818037</subfield><subfield code="x">0888-613x</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:160</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.72</subfield><subfield code="j">Künstliche Intelligenz</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">160</subfield></datafield></record></collection>
|
score |
7.401787 |