Phosphorus limitation reduces microbial nitrogen use efficiency by increasing extracellular enzyme investments
Microbial nitrogen use efficiency (NUE), which reflects the proportion of nitrogen (N) taken up to be allocated to microbial biomass and growth, is central to our understanding of soil N cycling. However, the factors influencing microbial NUE remain unclear. Here, we explored the effects of climate...
Ausführliche Beschreibung
Autor*in: |
Sun, Lifei [verfasserIn] Li, Jing [verfasserIn] Qu, Lingrui [verfasserIn] Wang, Xu [verfasserIn] Sang, Changpeng [verfasserIn] Wang, Jian [verfasserIn] Sun, Mingze [verfasserIn] Wanek, Wolfgang [verfasserIn] Moorhead, Daryl L. [verfasserIn] Bai, Edith [verfasserIn] Wang, Chao [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Geoderma - Amsterdam [u.a.] : Elsevier Science, 1967, 432 |
---|---|
Übergeordnetes Werk: |
volume:432 |
DOI / URN: |
10.1016/j.geoderma.2023.116416 |
---|
Katalog-ID: |
ELV060963247 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV060963247 | ||
003 | DE-627 | ||
005 | 20230927072223.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230728s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.geoderma.2023.116416 |2 doi | |
035 | |a (DE-627)ELV060963247 | ||
035 | |a (ELSEVIER)S0016-7061(23)00093-9 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 550 |a 910 |q VZ |
084 | |a 38.60 |2 bkl | ||
100 | 1 | |a Sun, Lifei |e verfasserin |4 aut | |
245 | 1 | 0 | |a Phosphorus limitation reduces microbial nitrogen use efficiency by increasing extracellular enzyme investments |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Microbial nitrogen use efficiency (NUE), which reflects the proportion of nitrogen (N) taken up to be allocated to microbial biomass and growth, is central to our understanding of soil N cycling. However, the factors influencing microbial NUE remain unclear. Here, we explored the effects of climate factors, soil properties, and microbial variables on microbial NUE based on a survey of soils from 11 locations along a forest transect in eastern China. We found microbial NUE decreased with the ratio of acid phosphatase (AP) activity versus microbial growth rate. This suggested that increased microbial phosphorus acquisition decreased microbial NUE due to increasing investment in AP. However, microbial NUE increased with soil organic carbon content, because soil organic carbon is the source of material and energy for microbial growth and metabolism. Soil pH and mean annual temperature indirectly affected microbial NUE through their effects on the ratio of AP activity relative to microbial growth rate and soil organic carbon content, respectively. Our results improve our understanding and prediction of microbial NUE on a large spatial scale and emphasize the importance of phosphorus in affecting microbial metabolic efficiency. | ||
650 | 4 | |a Microbial N use efficiency | |
650 | 4 | |a Soil N cycling | |
650 | 4 | |a Substrate limitation | |
650 | 4 | |a Microbial resource acquisition | |
700 | 1 | |a Li, Jing |e verfasserin |4 aut | |
700 | 1 | |a Qu, Lingrui |e verfasserin |4 aut | |
700 | 1 | |a Wang, Xu |e verfasserin |4 aut | |
700 | 1 | |a Sang, Changpeng |e verfasserin |0 (orcid)0000-0002-7347-1423 |4 aut | |
700 | 1 | |a Wang, Jian |e verfasserin |4 aut | |
700 | 1 | |a Sun, Mingze |e verfasserin |4 aut | |
700 | 1 | |a Wanek, Wolfgang |e verfasserin |0 (orcid)0000-0003-2178-8258 |4 aut | |
700 | 1 | |a Moorhead, Daryl L. |e verfasserin |4 aut | |
700 | 1 | |a Bai, Edith |e verfasserin |0 (orcid)0000-0003-0495-6504 |4 aut | |
700 | 1 | |a Wang, Chao |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Geoderma |d Amsterdam [u.a.] : Elsevier Science, 1967 |g 432 |h Online-Ressource |w (DE-627)320414493 |w (DE-600)2001729-7 |w (DE-576)099603853 |x 1872-6259 |7 nnns |
773 | 1 | 8 | |g volume:432 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OPC-GGO | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 38.60 |j Bodenkunde: Allgemeines |x Geowissenschaften |q VZ |
951 | |a AR | ||
952 | |d 432 |
author_variant |
l s ls j l jl l q lq x w xw c s cs j w jw m s ms w w ww d l m dl dlm e b eb c w cw |
---|---|
matchkey_str |
article:18726259:2023----::hshrsiiaineuemcoilirgnsefcecbicesnet |
hierarchy_sort_str |
2023 |
bklnumber |
38.60 |
publishDate |
2023 |
allfields |
10.1016/j.geoderma.2023.116416 doi (DE-627)ELV060963247 (ELSEVIER)S0016-7061(23)00093-9 DE-627 ger DE-627 rda eng 550 910 VZ 38.60 bkl Sun, Lifei verfasserin aut Phosphorus limitation reduces microbial nitrogen use efficiency by increasing extracellular enzyme investments 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Microbial nitrogen use efficiency (NUE), which reflects the proportion of nitrogen (N) taken up to be allocated to microbial biomass and growth, is central to our understanding of soil N cycling. However, the factors influencing microbial NUE remain unclear. Here, we explored the effects of climate factors, soil properties, and microbial variables on microbial NUE based on a survey of soils from 11 locations along a forest transect in eastern China. We found microbial NUE decreased with the ratio of acid phosphatase (AP) activity versus microbial growth rate. This suggested that increased microbial phosphorus acquisition decreased microbial NUE due to increasing investment in AP. However, microbial NUE increased with soil organic carbon content, because soil organic carbon is the source of material and energy for microbial growth and metabolism. Soil pH and mean annual temperature indirectly affected microbial NUE through their effects on the ratio of AP activity relative to microbial growth rate and soil organic carbon content, respectively. Our results improve our understanding and prediction of microbial NUE on a large spatial scale and emphasize the importance of phosphorus in affecting microbial metabolic efficiency. Microbial N use efficiency Soil N cycling Substrate limitation Microbial resource acquisition Li, Jing verfasserin aut Qu, Lingrui verfasserin aut Wang, Xu verfasserin aut Sang, Changpeng verfasserin (orcid)0000-0002-7347-1423 aut Wang, Jian verfasserin aut Sun, Mingze verfasserin aut Wanek, Wolfgang verfasserin (orcid)0000-0003-2178-8258 aut Moorhead, Daryl L. verfasserin aut Bai, Edith verfasserin (orcid)0000-0003-0495-6504 aut Wang, Chao verfasserin aut Enthalten in Geoderma Amsterdam [u.a.] : Elsevier Science, 1967 432 Online-Ressource (DE-627)320414493 (DE-600)2001729-7 (DE-576)099603853 1872-6259 nnns volume:432 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2014 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 38.60 Bodenkunde: Allgemeines Geowissenschaften VZ AR 432 |
spelling |
10.1016/j.geoderma.2023.116416 doi (DE-627)ELV060963247 (ELSEVIER)S0016-7061(23)00093-9 DE-627 ger DE-627 rda eng 550 910 VZ 38.60 bkl Sun, Lifei verfasserin aut Phosphorus limitation reduces microbial nitrogen use efficiency by increasing extracellular enzyme investments 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Microbial nitrogen use efficiency (NUE), which reflects the proportion of nitrogen (N) taken up to be allocated to microbial biomass and growth, is central to our understanding of soil N cycling. However, the factors influencing microbial NUE remain unclear. Here, we explored the effects of climate factors, soil properties, and microbial variables on microbial NUE based on a survey of soils from 11 locations along a forest transect in eastern China. We found microbial NUE decreased with the ratio of acid phosphatase (AP) activity versus microbial growth rate. This suggested that increased microbial phosphorus acquisition decreased microbial NUE due to increasing investment in AP. However, microbial NUE increased with soil organic carbon content, because soil organic carbon is the source of material and energy for microbial growth and metabolism. Soil pH and mean annual temperature indirectly affected microbial NUE through their effects on the ratio of AP activity relative to microbial growth rate and soil organic carbon content, respectively. Our results improve our understanding and prediction of microbial NUE on a large spatial scale and emphasize the importance of phosphorus in affecting microbial metabolic efficiency. Microbial N use efficiency Soil N cycling Substrate limitation Microbial resource acquisition Li, Jing verfasserin aut Qu, Lingrui verfasserin aut Wang, Xu verfasserin aut Sang, Changpeng verfasserin (orcid)0000-0002-7347-1423 aut Wang, Jian verfasserin aut Sun, Mingze verfasserin aut Wanek, Wolfgang verfasserin (orcid)0000-0003-2178-8258 aut Moorhead, Daryl L. verfasserin aut Bai, Edith verfasserin (orcid)0000-0003-0495-6504 aut Wang, Chao verfasserin aut Enthalten in Geoderma Amsterdam [u.a.] : Elsevier Science, 1967 432 Online-Ressource (DE-627)320414493 (DE-600)2001729-7 (DE-576)099603853 1872-6259 nnns volume:432 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2014 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 38.60 Bodenkunde: Allgemeines Geowissenschaften VZ AR 432 |
allfields_unstemmed |
10.1016/j.geoderma.2023.116416 doi (DE-627)ELV060963247 (ELSEVIER)S0016-7061(23)00093-9 DE-627 ger DE-627 rda eng 550 910 VZ 38.60 bkl Sun, Lifei verfasserin aut Phosphorus limitation reduces microbial nitrogen use efficiency by increasing extracellular enzyme investments 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Microbial nitrogen use efficiency (NUE), which reflects the proportion of nitrogen (N) taken up to be allocated to microbial biomass and growth, is central to our understanding of soil N cycling. However, the factors influencing microbial NUE remain unclear. Here, we explored the effects of climate factors, soil properties, and microbial variables on microbial NUE based on a survey of soils from 11 locations along a forest transect in eastern China. We found microbial NUE decreased with the ratio of acid phosphatase (AP) activity versus microbial growth rate. This suggested that increased microbial phosphorus acquisition decreased microbial NUE due to increasing investment in AP. However, microbial NUE increased with soil organic carbon content, because soil organic carbon is the source of material and energy for microbial growth and metabolism. Soil pH and mean annual temperature indirectly affected microbial NUE through their effects on the ratio of AP activity relative to microbial growth rate and soil organic carbon content, respectively. Our results improve our understanding and prediction of microbial NUE on a large spatial scale and emphasize the importance of phosphorus in affecting microbial metabolic efficiency. Microbial N use efficiency Soil N cycling Substrate limitation Microbial resource acquisition Li, Jing verfasserin aut Qu, Lingrui verfasserin aut Wang, Xu verfasserin aut Sang, Changpeng verfasserin (orcid)0000-0002-7347-1423 aut Wang, Jian verfasserin aut Sun, Mingze verfasserin aut Wanek, Wolfgang verfasserin (orcid)0000-0003-2178-8258 aut Moorhead, Daryl L. verfasserin aut Bai, Edith verfasserin (orcid)0000-0003-0495-6504 aut Wang, Chao verfasserin aut Enthalten in Geoderma Amsterdam [u.a.] : Elsevier Science, 1967 432 Online-Ressource (DE-627)320414493 (DE-600)2001729-7 (DE-576)099603853 1872-6259 nnns volume:432 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2014 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 38.60 Bodenkunde: Allgemeines Geowissenschaften VZ AR 432 |
allfieldsGer |
10.1016/j.geoderma.2023.116416 doi (DE-627)ELV060963247 (ELSEVIER)S0016-7061(23)00093-9 DE-627 ger DE-627 rda eng 550 910 VZ 38.60 bkl Sun, Lifei verfasserin aut Phosphorus limitation reduces microbial nitrogen use efficiency by increasing extracellular enzyme investments 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Microbial nitrogen use efficiency (NUE), which reflects the proportion of nitrogen (N) taken up to be allocated to microbial biomass and growth, is central to our understanding of soil N cycling. However, the factors influencing microbial NUE remain unclear. Here, we explored the effects of climate factors, soil properties, and microbial variables on microbial NUE based on a survey of soils from 11 locations along a forest transect in eastern China. We found microbial NUE decreased with the ratio of acid phosphatase (AP) activity versus microbial growth rate. This suggested that increased microbial phosphorus acquisition decreased microbial NUE due to increasing investment in AP. However, microbial NUE increased with soil organic carbon content, because soil organic carbon is the source of material and energy for microbial growth and metabolism. Soil pH and mean annual temperature indirectly affected microbial NUE through their effects on the ratio of AP activity relative to microbial growth rate and soil organic carbon content, respectively. Our results improve our understanding and prediction of microbial NUE on a large spatial scale and emphasize the importance of phosphorus in affecting microbial metabolic efficiency. Microbial N use efficiency Soil N cycling Substrate limitation Microbial resource acquisition Li, Jing verfasserin aut Qu, Lingrui verfasserin aut Wang, Xu verfasserin aut Sang, Changpeng verfasserin (orcid)0000-0002-7347-1423 aut Wang, Jian verfasserin aut Sun, Mingze verfasserin aut Wanek, Wolfgang verfasserin (orcid)0000-0003-2178-8258 aut Moorhead, Daryl L. verfasserin aut Bai, Edith verfasserin (orcid)0000-0003-0495-6504 aut Wang, Chao verfasserin aut Enthalten in Geoderma Amsterdam [u.a.] : Elsevier Science, 1967 432 Online-Ressource (DE-627)320414493 (DE-600)2001729-7 (DE-576)099603853 1872-6259 nnns volume:432 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2014 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 38.60 Bodenkunde: Allgemeines Geowissenschaften VZ AR 432 |
allfieldsSound |
10.1016/j.geoderma.2023.116416 doi (DE-627)ELV060963247 (ELSEVIER)S0016-7061(23)00093-9 DE-627 ger DE-627 rda eng 550 910 VZ 38.60 bkl Sun, Lifei verfasserin aut Phosphorus limitation reduces microbial nitrogen use efficiency by increasing extracellular enzyme investments 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Microbial nitrogen use efficiency (NUE), which reflects the proportion of nitrogen (N) taken up to be allocated to microbial biomass and growth, is central to our understanding of soil N cycling. However, the factors influencing microbial NUE remain unclear. Here, we explored the effects of climate factors, soil properties, and microbial variables on microbial NUE based on a survey of soils from 11 locations along a forest transect in eastern China. We found microbial NUE decreased with the ratio of acid phosphatase (AP) activity versus microbial growth rate. This suggested that increased microbial phosphorus acquisition decreased microbial NUE due to increasing investment in AP. However, microbial NUE increased with soil organic carbon content, because soil organic carbon is the source of material and energy for microbial growth and metabolism. Soil pH and mean annual temperature indirectly affected microbial NUE through their effects on the ratio of AP activity relative to microbial growth rate and soil organic carbon content, respectively. Our results improve our understanding and prediction of microbial NUE on a large spatial scale and emphasize the importance of phosphorus in affecting microbial metabolic efficiency. Microbial N use efficiency Soil N cycling Substrate limitation Microbial resource acquisition Li, Jing verfasserin aut Qu, Lingrui verfasserin aut Wang, Xu verfasserin aut Sang, Changpeng verfasserin (orcid)0000-0002-7347-1423 aut Wang, Jian verfasserin aut Sun, Mingze verfasserin aut Wanek, Wolfgang verfasserin (orcid)0000-0003-2178-8258 aut Moorhead, Daryl L. verfasserin aut Bai, Edith verfasserin (orcid)0000-0003-0495-6504 aut Wang, Chao verfasserin aut Enthalten in Geoderma Amsterdam [u.a.] : Elsevier Science, 1967 432 Online-Ressource (DE-627)320414493 (DE-600)2001729-7 (DE-576)099603853 1872-6259 nnns volume:432 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2014 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 38.60 Bodenkunde: Allgemeines Geowissenschaften VZ AR 432 |
language |
English |
source |
Enthalten in Geoderma 432 volume:432 |
sourceStr |
Enthalten in Geoderma 432 volume:432 |
format_phy_str_mv |
Article |
bklname |
Bodenkunde: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Microbial N use efficiency Soil N cycling Substrate limitation Microbial resource acquisition |
dewey-raw |
550 |
isfreeaccess_bool |
false |
container_title |
Geoderma |
authorswithroles_txt_mv |
Sun, Lifei @@aut@@ Li, Jing @@aut@@ Qu, Lingrui @@aut@@ Wang, Xu @@aut@@ Sang, Changpeng @@aut@@ Wang, Jian @@aut@@ Sun, Mingze @@aut@@ Wanek, Wolfgang @@aut@@ Moorhead, Daryl L. @@aut@@ Bai, Edith @@aut@@ Wang, Chao @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
320414493 |
dewey-sort |
3550 |
id |
ELV060963247 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV060963247</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230927072223.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230728s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.geoderma.2023.116416</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV060963247</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0016-7061(23)00093-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="a">910</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.60</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sun, Lifei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Phosphorus limitation reduces microbial nitrogen use efficiency by increasing extracellular enzyme investments</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Microbial nitrogen use efficiency (NUE), which reflects the proportion of nitrogen (N) taken up to be allocated to microbial biomass and growth, is central to our understanding of soil N cycling. However, the factors influencing microbial NUE remain unclear. Here, we explored the effects of climate factors, soil properties, and microbial variables on microbial NUE based on a survey of soils from 11 locations along a forest transect in eastern China. We found microbial NUE decreased with the ratio of acid phosphatase (AP) activity versus microbial growth rate. This suggested that increased microbial phosphorus acquisition decreased microbial NUE due to increasing investment in AP. However, microbial NUE increased with soil organic carbon content, because soil organic carbon is the source of material and energy for microbial growth and metabolism. Soil pH and mean annual temperature indirectly affected microbial NUE through their effects on the ratio of AP activity relative to microbial growth rate and soil organic carbon content, respectively. Our results improve our understanding and prediction of microbial NUE on a large spatial scale and emphasize the importance of phosphorus in affecting microbial metabolic efficiency.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microbial N use efficiency</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Soil N cycling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Substrate limitation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microbial resource acquisition</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Jing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qu, Lingrui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Xu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sang, Changpeng</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-7347-1423</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Jian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Mingze</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wanek, Wolfgang</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-2178-8258</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Moorhead, Daryl L.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bai, Edith</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-0495-6504</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Chao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Geoderma</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1967</subfield><subfield code="g">432</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320414493</subfield><subfield code="w">(DE-600)2001729-7</subfield><subfield code="w">(DE-576)099603853</subfield><subfield code="x">1872-6259</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:432</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.60</subfield><subfield code="j">Bodenkunde: Allgemeines</subfield><subfield code="x">Geowissenschaften</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">432</subfield></datafield></record></collection>
|
author |
Sun, Lifei |
spellingShingle |
Sun, Lifei ddc 550 bkl 38.60 misc Microbial N use efficiency misc Soil N cycling misc Substrate limitation misc Microbial resource acquisition Phosphorus limitation reduces microbial nitrogen use efficiency by increasing extracellular enzyme investments |
authorStr |
Sun, Lifei |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320414493 |
format |
electronic Article |
dewey-ones |
550 - Earth sciences 910 - Geography & travel |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1872-6259 |
topic_title |
550 910 VZ 38.60 bkl Phosphorus limitation reduces microbial nitrogen use efficiency by increasing extracellular enzyme investments Microbial N use efficiency Soil N cycling Substrate limitation Microbial resource acquisition |
topic |
ddc 550 bkl 38.60 misc Microbial N use efficiency misc Soil N cycling misc Substrate limitation misc Microbial resource acquisition |
topic_unstemmed |
ddc 550 bkl 38.60 misc Microbial N use efficiency misc Soil N cycling misc Substrate limitation misc Microbial resource acquisition |
topic_browse |
ddc 550 bkl 38.60 misc Microbial N use efficiency misc Soil N cycling misc Substrate limitation misc Microbial resource acquisition |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Geoderma |
hierarchy_parent_id |
320414493 |
dewey-tens |
550 - Earth sciences & geology 910 - Geography & travel |
hierarchy_top_title |
Geoderma |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320414493 (DE-600)2001729-7 (DE-576)099603853 |
title |
Phosphorus limitation reduces microbial nitrogen use efficiency by increasing extracellular enzyme investments |
ctrlnum |
(DE-627)ELV060963247 (ELSEVIER)S0016-7061(23)00093-9 |
title_full |
Phosphorus limitation reduces microbial nitrogen use efficiency by increasing extracellular enzyme investments |
author_sort |
Sun, Lifei |
journal |
Geoderma |
journalStr |
Geoderma |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 900 - History & geography |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Sun, Lifei Li, Jing Qu, Lingrui Wang, Xu Sang, Changpeng Wang, Jian Sun, Mingze Wanek, Wolfgang Moorhead, Daryl L. Bai, Edith Wang, Chao |
container_volume |
432 |
class |
550 910 VZ 38.60 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Sun, Lifei |
doi_str_mv |
10.1016/j.geoderma.2023.116416 |
normlink |
(ORCID)0000-0002-7347-1423 (ORCID)0000-0003-2178-8258 (ORCID)0000-0003-0495-6504 |
normlink_prefix_str_mv |
(orcid)0000-0002-7347-1423 (orcid)0000-0003-2178-8258 (orcid)0000-0003-0495-6504 |
dewey-full |
550 910 |
author2-role |
verfasserin |
title_sort |
phosphorus limitation reduces microbial nitrogen use efficiency by increasing extracellular enzyme investments |
title_auth |
Phosphorus limitation reduces microbial nitrogen use efficiency by increasing extracellular enzyme investments |
abstract |
Microbial nitrogen use efficiency (NUE), which reflects the proportion of nitrogen (N) taken up to be allocated to microbial biomass and growth, is central to our understanding of soil N cycling. However, the factors influencing microbial NUE remain unclear. Here, we explored the effects of climate factors, soil properties, and microbial variables on microbial NUE based on a survey of soils from 11 locations along a forest transect in eastern China. We found microbial NUE decreased with the ratio of acid phosphatase (AP) activity versus microbial growth rate. This suggested that increased microbial phosphorus acquisition decreased microbial NUE due to increasing investment in AP. However, microbial NUE increased with soil organic carbon content, because soil organic carbon is the source of material and energy for microbial growth and metabolism. Soil pH and mean annual temperature indirectly affected microbial NUE through their effects on the ratio of AP activity relative to microbial growth rate and soil organic carbon content, respectively. Our results improve our understanding and prediction of microbial NUE on a large spatial scale and emphasize the importance of phosphorus in affecting microbial metabolic efficiency. |
abstractGer |
Microbial nitrogen use efficiency (NUE), which reflects the proportion of nitrogen (N) taken up to be allocated to microbial biomass and growth, is central to our understanding of soil N cycling. However, the factors influencing microbial NUE remain unclear. Here, we explored the effects of climate factors, soil properties, and microbial variables on microbial NUE based on a survey of soils from 11 locations along a forest transect in eastern China. We found microbial NUE decreased with the ratio of acid phosphatase (AP) activity versus microbial growth rate. This suggested that increased microbial phosphorus acquisition decreased microbial NUE due to increasing investment in AP. However, microbial NUE increased with soil organic carbon content, because soil organic carbon is the source of material and energy for microbial growth and metabolism. Soil pH and mean annual temperature indirectly affected microbial NUE through their effects on the ratio of AP activity relative to microbial growth rate and soil organic carbon content, respectively. Our results improve our understanding and prediction of microbial NUE on a large spatial scale and emphasize the importance of phosphorus in affecting microbial metabolic efficiency. |
abstract_unstemmed |
Microbial nitrogen use efficiency (NUE), which reflects the proportion of nitrogen (N) taken up to be allocated to microbial biomass and growth, is central to our understanding of soil N cycling. However, the factors influencing microbial NUE remain unclear. Here, we explored the effects of climate factors, soil properties, and microbial variables on microbial NUE based on a survey of soils from 11 locations along a forest transect in eastern China. We found microbial NUE decreased with the ratio of acid phosphatase (AP) activity versus microbial growth rate. This suggested that increased microbial phosphorus acquisition decreased microbial NUE due to increasing investment in AP. However, microbial NUE increased with soil organic carbon content, because soil organic carbon is the source of material and energy for microbial growth and metabolism. Soil pH and mean annual temperature indirectly affected microbial NUE through their effects on the ratio of AP activity relative to microbial growth rate and soil organic carbon content, respectively. Our results improve our understanding and prediction of microbial NUE on a large spatial scale and emphasize the importance of phosphorus in affecting microbial metabolic efficiency. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2014 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Phosphorus limitation reduces microbial nitrogen use efficiency by increasing extracellular enzyme investments |
remote_bool |
true |
author2 |
Li, Jing Qu, Lingrui Wang, Xu Sang, Changpeng Wang, Jian Sun, Mingze Wanek, Wolfgang Moorhead, Daryl L. Bai, Edith Wang, Chao |
author2Str |
Li, Jing Qu, Lingrui Wang, Xu Sang, Changpeng Wang, Jian Sun, Mingze Wanek, Wolfgang Moorhead, Daryl L. Bai, Edith Wang, Chao |
ppnlink |
320414493 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.geoderma.2023.116416 |
up_date |
2024-07-06T17:02:49.953Z |
_version_ |
1803849952086982656 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV060963247</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230927072223.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230728s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.geoderma.2023.116416</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV060963247</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0016-7061(23)00093-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="a">910</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.60</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sun, Lifei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Phosphorus limitation reduces microbial nitrogen use efficiency by increasing extracellular enzyme investments</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Microbial nitrogen use efficiency (NUE), which reflects the proportion of nitrogen (N) taken up to be allocated to microbial biomass and growth, is central to our understanding of soil N cycling. However, the factors influencing microbial NUE remain unclear. Here, we explored the effects of climate factors, soil properties, and microbial variables on microbial NUE based on a survey of soils from 11 locations along a forest transect in eastern China. We found microbial NUE decreased with the ratio of acid phosphatase (AP) activity versus microbial growth rate. This suggested that increased microbial phosphorus acquisition decreased microbial NUE due to increasing investment in AP. However, microbial NUE increased with soil organic carbon content, because soil organic carbon is the source of material and energy for microbial growth and metabolism. Soil pH and mean annual temperature indirectly affected microbial NUE through their effects on the ratio of AP activity relative to microbial growth rate and soil organic carbon content, respectively. Our results improve our understanding and prediction of microbial NUE on a large spatial scale and emphasize the importance of phosphorus in affecting microbial metabolic efficiency.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microbial N use efficiency</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Soil N cycling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Substrate limitation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microbial resource acquisition</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Jing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qu, Lingrui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Xu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sang, Changpeng</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-7347-1423</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Jian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Mingze</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wanek, Wolfgang</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-2178-8258</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Moorhead, Daryl L.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bai, Edith</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-0495-6504</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Chao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Geoderma</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1967</subfield><subfield code="g">432</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320414493</subfield><subfield code="w">(DE-600)2001729-7</subfield><subfield code="w">(DE-576)099603853</subfield><subfield code="x">1872-6259</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:432</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.60</subfield><subfield code="j">Bodenkunde: Allgemeines</subfield><subfield code="x">Geowissenschaften</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">432</subfield></datafield></record></collection>
|
score |
7.4021063 |