EWMA monitoring schemes for MCV in short production runs with an application to the steel sleeve manufacturing process
In industries, multi-variety and small batch processes are extremely common due to the fact that the production process is moving towards flexible manufacturing to meet the increasing demand of consumers for individualized products. In recent years, monitoring techniques based on the multivariate co...
Ausführliche Beschreibung
Autor*in: |
Hu, XueLong [verfasserIn] Zhang, JieNing [verfasserIn] Zhang, Suying [verfasserIn] Tang, AnAn [verfasserIn] Zhou, XiaoJian [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Computers & industrial engineering - Amsterdam [u.a.] : Elsevier Science, 1976, 182 |
---|---|
Übergeordnetes Werk: |
volume:182 |
DOI / URN: |
10.1016/j.cie.2023.109427 |
---|
Katalog-ID: |
ELV060977175 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV060977175 | ||
003 | DE-627 | ||
005 | 20240130093054.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230729s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.cie.2023.109427 |2 doi | |
035 | |a (DE-627)ELV060977175 | ||
035 | |a (ELSEVIER)S0360-8352(23)00451-5 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q VZ |
084 | |a 85.35 |2 bkl | ||
084 | |a 54.80 |2 bkl | ||
100 | 1 | |a Hu, XueLong |e verfasserin |4 aut | |
245 | 1 | 0 | |a EWMA monitoring schemes for MCV in short production runs with an application to the steel sleeve manufacturing process |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In industries, multi-variety and small batch processes are extremely common due to the fact that the production process is moving towards flexible manufacturing to meet the increasing demand of consumers for individualized products. In recent years, monitoring techniques based on the multivariate coefficients of variation (MCV) have been widely developed owing to their applicability in assessing the relative variability of multivariate processes. It is worth noting that few of these studies have targeted monitoring the MCV in a short production run context. In this paper, two new one-sided MCV monitoring schemes are proposed by adopting the exponentially weighted moving average (EWMA) scheme in a finite horizon production. Based on the Markov chain approach, the performance measures, including the truncated average run length (TARL) and truncated standard deviation of the run length (TSDRL), of the EWMA MCV schemes are derived. Moreover, the superiority of the proposed monitoring schemes is illustrated by comparing their performance with that of the conventional Shewhart MCV monitoring schemes in a short production run context. The results show that increasing the batches enhances the advantages of the EWMA monitoring schemes over the Shewhart schemes. Finally, the superiority of the proposed EWMA monitoring scheme is illustrated by a real steel sleeve manufacturing case study. | ||
650 | 4 | |a Multivariate coefficient of variation | |
650 | 4 | |a EWMA | |
650 | 4 | |a Short production runs | |
650 | 4 | |a Markov chain | |
650 | 4 | |a Truncated average run length | |
700 | 1 | |a Zhang, JieNing |e verfasserin |4 aut | |
700 | 1 | |a Zhang, Suying |e verfasserin |4 aut | |
700 | 1 | |a Tang, AnAn |e verfasserin |0 (orcid)0000-0002-3933-1523 |4 aut | |
700 | 1 | |a Zhou, XiaoJian |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Computers & industrial engineering |d Amsterdam [u.a.] : Elsevier Science, 1976 |g 182 |h Online-Ressource |w (DE-627)320606899 |w (DE-600)2020859-5 |w (DE-576)259271780 |x 0360-8352 |7 nnns |
773 | 1 | 8 | |g volume:182 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 85.35 |j Fertigung |q VZ |
936 | b | k | |a 54.80 |j Angewandte Informatik |q VZ |
951 | |a AR | ||
952 | |d 182 |
author_variant |
x h xh j z jz s z sz a t at x z xz |
---|---|
matchkey_str |
article:03608352:2023----::waoioigceefrcisotrdcinusihnplctottete |
hierarchy_sort_str |
2023 |
bklnumber |
85.35 54.80 |
publishDate |
2023 |
allfields |
10.1016/j.cie.2023.109427 doi (DE-627)ELV060977175 (ELSEVIER)S0360-8352(23)00451-5 DE-627 ger DE-627 rda eng 004 VZ 85.35 bkl 54.80 bkl Hu, XueLong verfasserin aut EWMA monitoring schemes for MCV in short production runs with an application to the steel sleeve manufacturing process 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In industries, multi-variety and small batch processes are extremely common due to the fact that the production process is moving towards flexible manufacturing to meet the increasing demand of consumers for individualized products. In recent years, monitoring techniques based on the multivariate coefficients of variation (MCV) have been widely developed owing to their applicability in assessing the relative variability of multivariate processes. It is worth noting that few of these studies have targeted monitoring the MCV in a short production run context. In this paper, two new one-sided MCV monitoring schemes are proposed by adopting the exponentially weighted moving average (EWMA) scheme in a finite horizon production. Based on the Markov chain approach, the performance measures, including the truncated average run length (TARL) and truncated standard deviation of the run length (TSDRL), of the EWMA MCV schemes are derived. Moreover, the superiority of the proposed monitoring schemes is illustrated by comparing their performance with that of the conventional Shewhart MCV monitoring schemes in a short production run context. The results show that increasing the batches enhances the advantages of the EWMA monitoring schemes over the Shewhart schemes. Finally, the superiority of the proposed EWMA monitoring scheme is illustrated by a real steel sleeve manufacturing case study. Multivariate coefficient of variation EWMA Short production runs Markov chain Truncated average run length Zhang, JieNing verfasserin aut Zhang, Suying verfasserin aut Tang, AnAn verfasserin (orcid)0000-0002-3933-1523 aut Zhou, XiaoJian verfasserin aut Enthalten in Computers & industrial engineering Amsterdam [u.a.] : Elsevier Science, 1976 182 Online-Ressource (DE-627)320606899 (DE-600)2020859-5 (DE-576)259271780 0360-8352 nnns volume:182 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 85.35 Fertigung VZ 54.80 Angewandte Informatik VZ AR 182 |
spelling |
10.1016/j.cie.2023.109427 doi (DE-627)ELV060977175 (ELSEVIER)S0360-8352(23)00451-5 DE-627 ger DE-627 rda eng 004 VZ 85.35 bkl 54.80 bkl Hu, XueLong verfasserin aut EWMA monitoring schemes for MCV in short production runs with an application to the steel sleeve manufacturing process 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In industries, multi-variety and small batch processes are extremely common due to the fact that the production process is moving towards flexible manufacturing to meet the increasing demand of consumers for individualized products. In recent years, monitoring techniques based on the multivariate coefficients of variation (MCV) have been widely developed owing to their applicability in assessing the relative variability of multivariate processes. It is worth noting that few of these studies have targeted monitoring the MCV in a short production run context. In this paper, two new one-sided MCV monitoring schemes are proposed by adopting the exponentially weighted moving average (EWMA) scheme in a finite horizon production. Based on the Markov chain approach, the performance measures, including the truncated average run length (TARL) and truncated standard deviation of the run length (TSDRL), of the EWMA MCV schemes are derived. Moreover, the superiority of the proposed monitoring schemes is illustrated by comparing their performance with that of the conventional Shewhart MCV monitoring schemes in a short production run context. The results show that increasing the batches enhances the advantages of the EWMA monitoring schemes over the Shewhart schemes. Finally, the superiority of the proposed EWMA monitoring scheme is illustrated by a real steel sleeve manufacturing case study. Multivariate coefficient of variation EWMA Short production runs Markov chain Truncated average run length Zhang, JieNing verfasserin aut Zhang, Suying verfasserin aut Tang, AnAn verfasserin (orcid)0000-0002-3933-1523 aut Zhou, XiaoJian verfasserin aut Enthalten in Computers & industrial engineering Amsterdam [u.a.] : Elsevier Science, 1976 182 Online-Ressource (DE-627)320606899 (DE-600)2020859-5 (DE-576)259271780 0360-8352 nnns volume:182 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 85.35 Fertigung VZ 54.80 Angewandte Informatik VZ AR 182 |
allfields_unstemmed |
10.1016/j.cie.2023.109427 doi (DE-627)ELV060977175 (ELSEVIER)S0360-8352(23)00451-5 DE-627 ger DE-627 rda eng 004 VZ 85.35 bkl 54.80 bkl Hu, XueLong verfasserin aut EWMA monitoring schemes for MCV in short production runs with an application to the steel sleeve manufacturing process 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In industries, multi-variety and small batch processes are extremely common due to the fact that the production process is moving towards flexible manufacturing to meet the increasing demand of consumers for individualized products. In recent years, monitoring techniques based on the multivariate coefficients of variation (MCV) have been widely developed owing to their applicability in assessing the relative variability of multivariate processes. It is worth noting that few of these studies have targeted monitoring the MCV in a short production run context. In this paper, two new one-sided MCV monitoring schemes are proposed by adopting the exponentially weighted moving average (EWMA) scheme in a finite horizon production. Based on the Markov chain approach, the performance measures, including the truncated average run length (TARL) and truncated standard deviation of the run length (TSDRL), of the EWMA MCV schemes are derived. Moreover, the superiority of the proposed monitoring schemes is illustrated by comparing their performance with that of the conventional Shewhart MCV monitoring schemes in a short production run context. The results show that increasing the batches enhances the advantages of the EWMA monitoring schemes over the Shewhart schemes. Finally, the superiority of the proposed EWMA monitoring scheme is illustrated by a real steel sleeve manufacturing case study. Multivariate coefficient of variation EWMA Short production runs Markov chain Truncated average run length Zhang, JieNing verfasserin aut Zhang, Suying verfasserin aut Tang, AnAn verfasserin (orcid)0000-0002-3933-1523 aut Zhou, XiaoJian verfasserin aut Enthalten in Computers & industrial engineering Amsterdam [u.a.] : Elsevier Science, 1976 182 Online-Ressource (DE-627)320606899 (DE-600)2020859-5 (DE-576)259271780 0360-8352 nnns volume:182 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 85.35 Fertigung VZ 54.80 Angewandte Informatik VZ AR 182 |
allfieldsGer |
10.1016/j.cie.2023.109427 doi (DE-627)ELV060977175 (ELSEVIER)S0360-8352(23)00451-5 DE-627 ger DE-627 rda eng 004 VZ 85.35 bkl 54.80 bkl Hu, XueLong verfasserin aut EWMA monitoring schemes for MCV in short production runs with an application to the steel sleeve manufacturing process 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In industries, multi-variety and small batch processes are extremely common due to the fact that the production process is moving towards flexible manufacturing to meet the increasing demand of consumers for individualized products. In recent years, monitoring techniques based on the multivariate coefficients of variation (MCV) have been widely developed owing to their applicability in assessing the relative variability of multivariate processes. It is worth noting that few of these studies have targeted monitoring the MCV in a short production run context. In this paper, two new one-sided MCV monitoring schemes are proposed by adopting the exponentially weighted moving average (EWMA) scheme in a finite horizon production. Based on the Markov chain approach, the performance measures, including the truncated average run length (TARL) and truncated standard deviation of the run length (TSDRL), of the EWMA MCV schemes are derived. Moreover, the superiority of the proposed monitoring schemes is illustrated by comparing their performance with that of the conventional Shewhart MCV monitoring schemes in a short production run context. The results show that increasing the batches enhances the advantages of the EWMA monitoring schemes over the Shewhart schemes. Finally, the superiority of the proposed EWMA monitoring scheme is illustrated by a real steel sleeve manufacturing case study. Multivariate coefficient of variation EWMA Short production runs Markov chain Truncated average run length Zhang, JieNing verfasserin aut Zhang, Suying verfasserin aut Tang, AnAn verfasserin (orcid)0000-0002-3933-1523 aut Zhou, XiaoJian verfasserin aut Enthalten in Computers & industrial engineering Amsterdam [u.a.] : Elsevier Science, 1976 182 Online-Ressource (DE-627)320606899 (DE-600)2020859-5 (DE-576)259271780 0360-8352 nnns volume:182 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 85.35 Fertigung VZ 54.80 Angewandte Informatik VZ AR 182 |
allfieldsSound |
10.1016/j.cie.2023.109427 doi (DE-627)ELV060977175 (ELSEVIER)S0360-8352(23)00451-5 DE-627 ger DE-627 rda eng 004 VZ 85.35 bkl 54.80 bkl Hu, XueLong verfasserin aut EWMA monitoring schemes for MCV in short production runs with an application to the steel sleeve manufacturing process 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In industries, multi-variety and small batch processes are extremely common due to the fact that the production process is moving towards flexible manufacturing to meet the increasing demand of consumers for individualized products. In recent years, monitoring techniques based on the multivariate coefficients of variation (MCV) have been widely developed owing to their applicability in assessing the relative variability of multivariate processes. It is worth noting that few of these studies have targeted monitoring the MCV in a short production run context. In this paper, two new one-sided MCV monitoring schemes are proposed by adopting the exponentially weighted moving average (EWMA) scheme in a finite horizon production. Based on the Markov chain approach, the performance measures, including the truncated average run length (TARL) and truncated standard deviation of the run length (TSDRL), of the EWMA MCV schemes are derived. Moreover, the superiority of the proposed monitoring schemes is illustrated by comparing their performance with that of the conventional Shewhart MCV monitoring schemes in a short production run context. The results show that increasing the batches enhances the advantages of the EWMA monitoring schemes over the Shewhart schemes. Finally, the superiority of the proposed EWMA monitoring scheme is illustrated by a real steel sleeve manufacturing case study. Multivariate coefficient of variation EWMA Short production runs Markov chain Truncated average run length Zhang, JieNing verfasserin aut Zhang, Suying verfasserin aut Tang, AnAn verfasserin (orcid)0000-0002-3933-1523 aut Zhou, XiaoJian verfasserin aut Enthalten in Computers & industrial engineering Amsterdam [u.a.] : Elsevier Science, 1976 182 Online-Ressource (DE-627)320606899 (DE-600)2020859-5 (DE-576)259271780 0360-8352 nnns volume:182 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 85.35 Fertigung VZ 54.80 Angewandte Informatik VZ AR 182 |
language |
English |
source |
Enthalten in Computers & industrial engineering 182 volume:182 |
sourceStr |
Enthalten in Computers & industrial engineering 182 volume:182 |
format_phy_str_mv |
Article |
bklname |
Fertigung Angewandte Informatik |
institution |
findex.gbv.de |
topic_facet |
Multivariate coefficient of variation EWMA Short production runs Markov chain Truncated average run length |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Computers & industrial engineering |
authorswithroles_txt_mv |
Hu, XueLong @@aut@@ Zhang, JieNing @@aut@@ Zhang, Suying @@aut@@ Tang, AnAn @@aut@@ Zhou, XiaoJian @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
320606899 |
dewey-sort |
14 |
id |
ELV060977175 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV060977175</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240130093054.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230729s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.cie.2023.109427</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV060977175</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0360-8352(23)00451-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">85.35</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.80</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hu, XueLong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">EWMA monitoring schemes for MCV in short production runs with an application to the steel sleeve manufacturing process</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In industries, multi-variety and small batch processes are extremely common due to the fact that the production process is moving towards flexible manufacturing to meet the increasing demand of consumers for individualized products. In recent years, monitoring techniques based on the multivariate coefficients of variation (MCV) have been widely developed owing to their applicability in assessing the relative variability of multivariate processes. It is worth noting that few of these studies have targeted monitoring the MCV in a short production run context. In this paper, two new one-sided MCV monitoring schemes are proposed by adopting the exponentially weighted moving average (EWMA) scheme in a finite horizon production. Based on the Markov chain approach, the performance measures, including the truncated average run length (TARL) and truncated standard deviation of the run length (TSDRL), of the EWMA MCV schemes are derived. Moreover, the superiority of the proposed monitoring schemes is illustrated by comparing their performance with that of the conventional Shewhart MCV monitoring schemes in a short production run context. The results show that increasing the batches enhances the advantages of the EWMA monitoring schemes over the Shewhart schemes. Finally, the superiority of the proposed EWMA monitoring scheme is illustrated by a real steel sleeve manufacturing case study.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multivariate coefficient of variation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">EWMA</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Short production runs</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Markov chain</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Truncated average run length</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, JieNing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Suying</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tang, AnAn</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-3933-1523</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhou, XiaoJian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Computers & industrial engineering</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1976</subfield><subfield code="g">182</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320606899</subfield><subfield code="w">(DE-600)2020859-5</subfield><subfield code="w">(DE-576)259271780</subfield><subfield code="x">0360-8352</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:182</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">85.35</subfield><subfield code="j">Fertigung</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.80</subfield><subfield code="j">Angewandte Informatik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">182</subfield></datafield></record></collection>
|
author |
Hu, XueLong |
spellingShingle |
Hu, XueLong ddc 004 bkl 85.35 bkl 54.80 misc Multivariate coefficient of variation misc EWMA misc Short production runs misc Markov chain misc Truncated average run length EWMA monitoring schemes for MCV in short production runs with an application to the steel sleeve manufacturing process |
authorStr |
Hu, XueLong |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320606899 |
format |
electronic Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0360-8352 |
topic_title |
004 VZ 85.35 bkl 54.80 bkl EWMA monitoring schemes for MCV in short production runs with an application to the steel sleeve manufacturing process Multivariate coefficient of variation EWMA Short production runs Markov chain Truncated average run length |
topic |
ddc 004 bkl 85.35 bkl 54.80 misc Multivariate coefficient of variation misc EWMA misc Short production runs misc Markov chain misc Truncated average run length |
topic_unstemmed |
ddc 004 bkl 85.35 bkl 54.80 misc Multivariate coefficient of variation misc EWMA misc Short production runs misc Markov chain misc Truncated average run length |
topic_browse |
ddc 004 bkl 85.35 bkl 54.80 misc Multivariate coefficient of variation misc EWMA misc Short production runs misc Markov chain misc Truncated average run length |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Computers & industrial engineering |
hierarchy_parent_id |
320606899 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
Computers & industrial engineering |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320606899 (DE-600)2020859-5 (DE-576)259271780 |
title |
EWMA monitoring schemes for MCV in short production runs with an application to the steel sleeve manufacturing process |
ctrlnum |
(DE-627)ELV060977175 (ELSEVIER)S0360-8352(23)00451-5 |
title_full |
EWMA monitoring schemes for MCV in short production runs with an application to the steel sleeve manufacturing process |
author_sort |
Hu, XueLong |
journal |
Computers & industrial engineering |
journalStr |
Computers & industrial engineering |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Hu, XueLong Zhang, JieNing Zhang, Suying Tang, AnAn Zhou, XiaoJian |
container_volume |
182 |
class |
004 VZ 85.35 bkl 54.80 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Hu, XueLong |
doi_str_mv |
10.1016/j.cie.2023.109427 |
normlink |
(ORCID)0000-0002-3933-1523 |
normlink_prefix_str_mv |
(orcid)0000-0002-3933-1523 |
dewey-full |
004 |
author2-role |
verfasserin |
title_sort |
ewma monitoring schemes for mcv in short production runs with an application to the steel sleeve manufacturing process |
title_auth |
EWMA monitoring schemes for MCV in short production runs with an application to the steel sleeve manufacturing process |
abstract |
In industries, multi-variety and small batch processes are extremely common due to the fact that the production process is moving towards flexible manufacturing to meet the increasing demand of consumers for individualized products. In recent years, monitoring techniques based on the multivariate coefficients of variation (MCV) have been widely developed owing to their applicability in assessing the relative variability of multivariate processes. It is worth noting that few of these studies have targeted monitoring the MCV in a short production run context. In this paper, two new one-sided MCV monitoring schemes are proposed by adopting the exponentially weighted moving average (EWMA) scheme in a finite horizon production. Based on the Markov chain approach, the performance measures, including the truncated average run length (TARL) and truncated standard deviation of the run length (TSDRL), of the EWMA MCV schemes are derived. Moreover, the superiority of the proposed monitoring schemes is illustrated by comparing their performance with that of the conventional Shewhart MCV monitoring schemes in a short production run context. The results show that increasing the batches enhances the advantages of the EWMA monitoring schemes over the Shewhart schemes. Finally, the superiority of the proposed EWMA monitoring scheme is illustrated by a real steel sleeve manufacturing case study. |
abstractGer |
In industries, multi-variety and small batch processes are extremely common due to the fact that the production process is moving towards flexible manufacturing to meet the increasing demand of consumers for individualized products. In recent years, monitoring techniques based on the multivariate coefficients of variation (MCV) have been widely developed owing to their applicability in assessing the relative variability of multivariate processes. It is worth noting that few of these studies have targeted monitoring the MCV in a short production run context. In this paper, two new one-sided MCV monitoring schemes are proposed by adopting the exponentially weighted moving average (EWMA) scheme in a finite horizon production. Based on the Markov chain approach, the performance measures, including the truncated average run length (TARL) and truncated standard deviation of the run length (TSDRL), of the EWMA MCV schemes are derived. Moreover, the superiority of the proposed monitoring schemes is illustrated by comparing their performance with that of the conventional Shewhart MCV monitoring schemes in a short production run context. The results show that increasing the batches enhances the advantages of the EWMA monitoring schemes over the Shewhart schemes. Finally, the superiority of the proposed EWMA monitoring scheme is illustrated by a real steel sleeve manufacturing case study. |
abstract_unstemmed |
In industries, multi-variety and small batch processes are extremely common due to the fact that the production process is moving towards flexible manufacturing to meet the increasing demand of consumers for individualized products. In recent years, monitoring techniques based on the multivariate coefficients of variation (MCV) have been widely developed owing to their applicability in assessing the relative variability of multivariate processes. It is worth noting that few of these studies have targeted monitoring the MCV in a short production run context. In this paper, two new one-sided MCV monitoring schemes are proposed by adopting the exponentially weighted moving average (EWMA) scheme in a finite horizon production. Based on the Markov chain approach, the performance measures, including the truncated average run length (TARL) and truncated standard deviation of the run length (TSDRL), of the EWMA MCV schemes are derived. Moreover, the superiority of the proposed monitoring schemes is illustrated by comparing their performance with that of the conventional Shewhart MCV monitoring schemes in a short production run context. The results show that increasing the batches enhances the advantages of the EWMA monitoring schemes over the Shewhart schemes. Finally, the superiority of the proposed EWMA monitoring scheme is illustrated by a real steel sleeve manufacturing case study. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
EWMA monitoring schemes for MCV in short production runs with an application to the steel sleeve manufacturing process |
remote_bool |
true |
author2 |
Zhang, JieNing Zhang, Suying Tang, AnAn Zhou, XiaoJian |
author2Str |
Zhang, JieNing Zhang, Suying Tang, AnAn Zhou, XiaoJian |
ppnlink |
320606899 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.cie.2023.109427 |
up_date |
2024-07-06T17:03:55.066Z |
_version_ |
1803850020363960320 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV060977175</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240130093054.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230729s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.cie.2023.109427</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV060977175</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0360-8352(23)00451-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">85.35</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.80</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hu, XueLong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">EWMA monitoring schemes for MCV in short production runs with an application to the steel sleeve manufacturing process</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In industries, multi-variety and small batch processes are extremely common due to the fact that the production process is moving towards flexible manufacturing to meet the increasing demand of consumers for individualized products. In recent years, monitoring techniques based on the multivariate coefficients of variation (MCV) have been widely developed owing to their applicability in assessing the relative variability of multivariate processes. It is worth noting that few of these studies have targeted monitoring the MCV in a short production run context. In this paper, two new one-sided MCV monitoring schemes are proposed by adopting the exponentially weighted moving average (EWMA) scheme in a finite horizon production. Based on the Markov chain approach, the performance measures, including the truncated average run length (TARL) and truncated standard deviation of the run length (TSDRL), of the EWMA MCV schemes are derived. Moreover, the superiority of the proposed monitoring schemes is illustrated by comparing their performance with that of the conventional Shewhart MCV monitoring schemes in a short production run context. The results show that increasing the batches enhances the advantages of the EWMA monitoring schemes over the Shewhart schemes. Finally, the superiority of the proposed EWMA monitoring scheme is illustrated by a real steel sleeve manufacturing case study.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multivariate coefficient of variation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">EWMA</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Short production runs</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Markov chain</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Truncated average run length</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, JieNing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Suying</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tang, AnAn</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-3933-1523</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhou, XiaoJian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Computers & industrial engineering</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1976</subfield><subfield code="g">182</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320606899</subfield><subfield code="w">(DE-600)2020859-5</subfield><subfield code="w">(DE-576)259271780</subfield><subfield code="x">0360-8352</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:182</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">85.35</subfield><subfield code="j">Fertigung</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.80</subfield><subfield code="j">Angewandte Informatik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">182</subfield></datafield></record></collection>
|
score |
7.401326 |