Structural parameter design of welded plate heat exchanger based on multi-objective optimization algorithm
A numerical investigation was conducted to explore the heat transfer and flow characteristics of welded plate heat exchanger with chevron sinusoidal corrugated plates and to find the optimal parameter design in this paper. For better thermo-hydraulic performance, the effects of chevron angle (β = 30...
Ausführliche Beschreibung
Autor*in: |
Yicong, Li [verfasserIn] Chunyu, Shi [verfasserIn] Wei, Liu [verfasserIn] Zhichun, Liu [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: International communications in heat and mass transfer - Amsterdam [u.a.] : Elsevier Science, 1983, 146 |
---|---|
Übergeordnetes Werk: |
volume:146 |
DOI / URN: |
10.1016/j.icheatmasstransfer.2023.106900 |
---|
Katalog-ID: |
ELV061031984 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV061031984 | ||
003 | DE-627 | ||
005 | 20230926163827.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230730s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.icheatmasstransfer.2023.106900 |2 doi | |
035 | |a (DE-627)ELV061031984 | ||
035 | |a (ELSEVIER)S0735-1933(23)00289-0 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |q VZ |
084 | |a 50.38 |2 bkl | ||
100 | 1 | |a Yicong, Li |e verfasserin |4 aut | |
245 | 1 | 0 | |a Structural parameter design of welded plate heat exchanger based on multi-objective optimization algorithm |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a A numerical investigation was conducted to explore the heat transfer and flow characteristics of welded plate heat exchanger with chevron sinusoidal corrugated plates and to find the optimal parameter design in this paper. For better thermo-hydraulic performance, the effects of chevron angle (β = 30°,45°,60°), the height of the corrugations (H = 3,5,7,9) and the pitch of corrugations (P = 15,20,30,45,60) were studied with inlet velocity ranged from 0.1 m/s to 0.5 m/s. Moreover, artificial neural networks (ANNs) and multi-objective genetic algorithm (MOGA) were employed to obtain optimization solutions of the structural parameters. With the analysis of flow form inside the flow channel, it was proposed that the chevron sinusoidal corrugated plates were helpful to transform the axial velocity of fluid to radial velocity, forming turbulence and secondary flow in the narrow region. The numerical results showed that the comprehensive performance of the plate with β = 45° was better than the other two, while P = 30 mm and H = 9 mm also performed well in this paper. Besides, an optimal parameters set was obtained with P = 15.132 mm, H = 3.005 mm, β = 45.495° when the velocity of inlet was set as 0.1 m/s, the maximum JF could reach 0.034 as the results of multi-objective optimization. | ||
650 | 4 | |a Structural optimization | |
650 | 4 | |a Welded plate heat exchanger | |
650 | 4 | |a Artificial neural network | |
650 | 4 | |a Multi-objective optimization | |
700 | 1 | |a Chunyu, Shi |e verfasserin |4 aut | |
700 | 1 | |a Wei, Liu |e verfasserin |4 aut | |
700 | 1 | |a Zhichun, Liu |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t International communications in heat and mass transfer |d Amsterdam [u.a.] : Elsevier Science, 1983 |g 146 |h Online-Ressource |w (DE-627)320604373 |w (DE-600)2020560-0 |w (DE-576)096806710 |7 nnns |
773 | 1 | 8 | |g volume:146 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 50.38 |j Technische Thermodynamik |q VZ |
951 | |a AR | ||
952 | |d 146 |
author_variant |
l y ly s c sc l w lw l z lz |
---|---|
matchkey_str |
yiconglichunyushiweiliuzhichunliu:2023----:tutrlaaeedsgowlepaeetxhnebsdnutojc |
hierarchy_sort_str |
2023 |
bklnumber |
50.38 |
publishDate |
2023 |
allfields |
10.1016/j.icheatmasstransfer.2023.106900 doi (DE-627)ELV061031984 (ELSEVIER)S0735-1933(23)00289-0 DE-627 ger DE-627 rda eng 620 VZ 50.38 bkl Yicong, Li verfasserin aut Structural parameter design of welded plate heat exchanger based on multi-objective optimization algorithm 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A numerical investigation was conducted to explore the heat transfer and flow characteristics of welded plate heat exchanger with chevron sinusoidal corrugated plates and to find the optimal parameter design in this paper. For better thermo-hydraulic performance, the effects of chevron angle (β = 30°,45°,60°), the height of the corrugations (H = 3,5,7,9) and the pitch of corrugations (P = 15,20,30,45,60) were studied with inlet velocity ranged from 0.1 m/s to 0.5 m/s. Moreover, artificial neural networks (ANNs) and multi-objective genetic algorithm (MOGA) were employed to obtain optimization solutions of the structural parameters. With the analysis of flow form inside the flow channel, it was proposed that the chevron sinusoidal corrugated plates were helpful to transform the axial velocity of fluid to radial velocity, forming turbulence and secondary flow in the narrow region. The numerical results showed that the comprehensive performance of the plate with β = 45° was better than the other two, while P = 30 mm and H = 9 mm also performed well in this paper. Besides, an optimal parameters set was obtained with P = 15.132 mm, H = 3.005 mm, β = 45.495° when the velocity of inlet was set as 0.1 m/s, the maximum JF could reach 0.034 as the results of multi-objective optimization. Structural optimization Welded plate heat exchanger Artificial neural network Multi-objective optimization Chunyu, Shi verfasserin aut Wei, Liu verfasserin aut Zhichun, Liu verfasserin aut Enthalten in International communications in heat and mass transfer Amsterdam [u.a.] : Elsevier Science, 1983 146 Online-Ressource (DE-627)320604373 (DE-600)2020560-0 (DE-576)096806710 nnns volume:146 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.38 Technische Thermodynamik VZ AR 146 |
spelling |
10.1016/j.icheatmasstransfer.2023.106900 doi (DE-627)ELV061031984 (ELSEVIER)S0735-1933(23)00289-0 DE-627 ger DE-627 rda eng 620 VZ 50.38 bkl Yicong, Li verfasserin aut Structural parameter design of welded plate heat exchanger based on multi-objective optimization algorithm 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A numerical investigation was conducted to explore the heat transfer and flow characteristics of welded plate heat exchanger with chevron sinusoidal corrugated plates and to find the optimal parameter design in this paper. For better thermo-hydraulic performance, the effects of chevron angle (β = 30°,45°,60°), the height of the corrugations (H = 3,5,7,9) and the pitch of corrugations (P = 15,20,30,45,60) were studied with inlet velocity ranged from 0.1 m/s to 0.5 m/s. Moreover, artificial neural networks (ANNs) and multi-objective genetic algorithm (MOGA) were employed to obtain optimization solutions of the structural parameters. With the analysis of flow form inside the flow channel, it was proposed that the chevron sinusoidal corrugated plates were helpful to transform the axial velocity of fluid to radial velocity, forming turbulence and secondary flow in the narrow region. The numerical results showed that the comprehensive performance of the plate with β = 45° was better than the other two, while P = 30 mm and H = 9 mm also performed well in this paper. Besides, an optimal parameters set was obtained with P = 15.132 mm, H = 3.005 mm, β = 45.495° when the velocity of inlet was set as 0.1 m/s, the maximum JF could reach 0.034 as the results of multi-objective optimization. Structural optimization Welded plate heat exchanger Artificial neural network Multi-objective optimization Chunyu, Shi verfasserin aut Wei, Liu verfasserin aut Zhichun, Liu verfasserin aut Enthalten in International communications in heat and mass transfer Amsterdam [u.a.] : Elsevier Science, 1983 146 Online-Ressource (DE-627)320604373 (DE-600)2020560-0 (DE-576)096806710 nnns volume:146 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.38 Technische Thermodynamik VZ AR 146 |
allfields_unstemmed |
10.1016/j.icheatmasstransfer.2023.106900 doi (DE-627)ELV061031984 (ELSEVIER)S0735-1933(23)00289-0 DE-627 ger DE-627 rda eng 620 VZ 50.38 bkl Yicong, Li verfasserin aut Structural parameter design of welded plate heat exchanger based on multi-objective optimization algorithm 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A numerical investigation was conducted to explore the heat transfer and flow characteristics of welded plate heat exchanger with chevron sinusoidal corrugated plates and to find the optimal parameter design in this paper. For better thermo-hydraulic performance, the effects of chevron angle (β = 30°,45°,60°), the height of the corrugations (H = 3,5,7,9) and the pitch of corrugations (P = 15,20,30,45,60) were studied with inlet velocity ranged from 0.1 m/s to 0.5 m/s. Moreover, artificial neural networks (ANNs) and multi-objective genetic algorithm (MOGA) were employed to obtain optimization solutions of the structural parameters. With the analysis of flow form inside the flow channel, it was proposed that the chevron sinusoidal corrugated plates were helpful to transform the axial velocity of fluid to radial velocity, forming turbulence and secondary flow in the narrow region. The numerical results showed that the comprehensive performance of the plate with β = 45° was better than the other two, while P = 30 mm and H = 9 mm also performed well in this paper. Besides, an optimal parameters set was obtained with P = 15.132 mm, H = 3.005 mm, β = 45.495° when the velocity of inlet was set as 0.1 m/s, the maximum JF could reach 0.034 as the results of multi-objective optimization. Structural optimization Welded plate heat exchanger Artificial neural network Multi-objective optimization Chunyu, Shi verfasserin aut Wei, Liu verfasserin aut Zhichun, Liu verfasserin aut Enthalten in International communications in heat and mass transfer Amsterdam [u.a.] : Elsevier Science, 1983 146 Online-Ressource (DE-627)320604373 (DE-600)2020560-0 (DE-576)096806710 nnns volume:146 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.38 Technische Thermodynamik VZ AR 146 |
allfieldsGer |
10.1016/j.icheatmasstransfer.2023.106900 doi (DE-627)ELV061031984 (ELSEVIER)S0735-1933(23)00289-0 DE-627 ger DE-627 rda eng 620 VZ 50.38 bkl Yicong, Li verfasserin aut Structural parameter design of welded plate heat exchanger based on multi-objective optimization algorithm 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A numerical investigation was conducted to explore the heat transfer and flow characteristics of welded plate heat exchanger with chevron sinusoidal corrugated plates and to find the optimal parameter design in this paper. For better thermo-hydraulic performance, the effects of chevron angle (β = 30°,45°,60°), the height of the corrugations (H = 3,5,7,9) and the pitch of corrugations (P = 15,20,30,45,60) were studied with inlet velocity ranged from 0.1 m/s to 0.5 m/s. Moreover, artificial neural networks (ANNs) and multi-objective genetic algorithm (MOGA) were employed to obtain optimization solutions of the structural parameters. With the analysis of flow form inside the flow channel, it was proposed that the chevron sinusoidal corrugated plates were helpful to transform the axial velocity of fluid to radial velocity, forming turbulence and secondary flow in the narrow region. The numerical results showed that the comprehensive performance of the plate with β = 45° was better than the other two, while P = 30 mm and H = 9 mm also performed well in this paper. Besides, an optimal parameters set was obtained with P = 15.132 mm, H = 3.005 mm, β = 45.495° when the velocity of inlet was set as 0.1 m/s, the maximum JF could reach 0.034 as the results of multi-objective optimization. Structural optimization Welded plate heat exchanger Artificial neural network Multi-objective optimization Chunyu, Shi verfasserin aut Wei, Liu verfasserin aut Zhichun, Liu verfasserin aut Enthalten in International communications in heat and mass transfer Amsterdam [u.a.] : Elsevier Science, 1983 146 Online-Ressource (DE-627)320604373 (DE-600)2020560-0 (DE-576)096806710 nnns volume:146 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.38 Technische Thermodynamik VZ AR 146 |
allfieldsSound |
10.1016/j.icheatmasstransfer.2023.106900 doi (DE-627)ELV061031984 (ELSEVIER)S0735-1933(23)00289-0 DE-627 ger DE-627 rda eng 620 VZ 50.38 bkl Yicong, Li verfasserin aut Structural parameter design of welded plate heat exchanger based on multi-objective optimization algorithm 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A numerical investigation was conducted to explore the heat transfer and flow characteristics of welded plate heat exchanger with chevron sinusoidal corrugated plates and to find the optimal parameter design in this paper. For better thermo-hydraulic performance, the effects of chevron angle (β = 30°,45°,60°), the height of the corrugations (H = 3,5,7,9) and the pitch of corrugations (P = 15,20,30,45,60) were studied with inlet velocity ranged from 0.1 m/s to 0.5 m/s. Moreover, artificial neural networks (ANNs) and multi-objective genetic algorithm (MOGA) were employed to obtain optimization solutions of the structural parameters. With the analysis of flow form inside the flow channel, it was proposed that the chevron sinusoidal corrugated plates were helpful to transform the axial velocity of fluid to radial velocity, forming turbulence and secondary flow in the narrow region. The numerical results showed that the comprehensive performance of the plate with β = 45° was better than the other two, while P = 30 mm and H = 9 mm also performed well in this paper. Besides, an optimal parameters set was obtained with P = 15.132 mm, H = 3.005 mm, β = 45.495° when the velocity of inlet was set as 0.1 m/s, the maximum JF could reach 0.034 as the results of multi-objective optimization. Structural optimization Welded plate heat exchanger Artificial neural network Multi-objective optimization Chunyu, Shi verfasserin aut Wei, Liu verfasserin aut Zhichun, Liu verfasserin aut Enthalten in International communications in heat and mass transfer Amsterdam [u.a.] : Elsevier Science, 1983 146 Online-Ressource (DE-627)320604373 (DE-600)2020560-0 (DE-576)096806710 nnns volume:146 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.38 Technische Thermodynamik VZ AR 146 |
language |
English |
source |
Enthalten in International communications in heat and mass transfer 146 volume:146 |
sourceStr |
Enthalten in International communications in heat and mass transfer 146 volume:146 |
format_phy_str_mv |
Article |
bklname |
Technische Thermodynamik |
institution |
findex.gbv.de |
topic_facet |
Structural optimization Welded plate heat exchanger Artificial neural network Multi-objective optimization |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
International communications in heat and mass transfer |
authorswithroles_txt_mv |
Yicong, Li @@aut@@ Chunyu, Shi @@aut@@ Wei, Liu @@aut@@ Zhichun, Liu @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
320604373 |
dewey-sort |
3620 |
id |
ELV061031984 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV061031984</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230926163827.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230730s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.icheatmasstransfer.2023.106900</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV061031984</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0735-1933(23)00289-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yicong, Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Structural parameter design of welded plate heat exchanger based on multi-objective optimization algorithm</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A numerical investigation was conducted to explore the heat transfer and flow characteristics of welded plate heat exchanger with chevron sinusoidal corrugated plates and to find the optimal parameter design in this paper. For better thermo-hydraulic performance, the effects of chevron angle (β = 30°,45°,60°), the height of the corrugations (H = 3,5,7,9) and the pitch of corrugations (P = 15,20,30,45,60) were studied with inlet velocity ranged from 0.1 m/s to 0.5 m/s. Moreover, artificial neural networks (ANNs) and multi-objective genetic algorithm (MOGA) were employed to obtain optimization solutions of the structural parameters. With the analysis of flow form inside the flow channel, it was proposed that the chevron sinusoidal corrugated plates were helpful to transform the axial velocity of fluid to radial velocity, forming turbulence and secondary flow in the narrow region. The numerical results showed that the comprehensive performance of the plate with β = 45° was better than the other two, while P = 30 mm and H = 9 mm also performed well in this paper. Besides, an optimal parameters set was obtained with P = 15.132 mm, H = 3.005 mm, β = 45.495° when the velocity of inlet was set as 0.1 m/s, the maximum JF could reach 0.034 as the results of multi-objective optimization.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Structural optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Welded plate heat exchanger</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial neural network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multi-objective optimization</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chunyu, Shi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wei, Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhichun, Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International communications in heat and mass transfer</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1983</subfield><subfield code="g">146</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320604373</subfield><subfield code="w">(DE-600)2020560-0</subfield><subfield code="w">(DE-576)096806710</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:146</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.38</subfield><subfield code="j">Technische Thermodynamik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">146</subfield></datafield></record></collection>
|
author |
Yicong, Li |
spellingShingle |
Yicong, Li ddc 620 bkl 50.38 misc Structural optimization misc Welded plate heat exchanger misc Artificial neural network misc Multi-objective optimization Structural parameter design of welded plate heat exchanger based on multi-objective optimization algorithm |
authorStr |
Yicong, Li |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320604373 |
format |
electronic Article |
dewey-ones |
620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
620 VZ 50.38 bkl Structural parameter design of welded plate heat exchanger based on multi-objective optimization algorithm Structural optimization Welded plate heat exchanger Artificial neural network Multi-objective optimization |
topic |
ddc 620 bkl 50.38 misc Structural optimization misc Welded plate heat exchanger misc Artificial neural network misc Multi-objective optimization |
topic_unstemmed |
ddc 620 bkl 50.38 misc Structural optimization misc Welded plate heat exchanger misc Artificial neural network misc Multi-objective optimization |
topic_browse |
ddc 620 bkl 50.38 misc Structural optimization misc Welded plate heat exchanger misc Artificial neural network misc Multi-objective optimization |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
International communications in heat and mass transfer |
hierarchy_parent_id |
320604373 |
dewey-tens |
620 - Engineering |
hierarchy_top_title |
International communications in heat and mass transfer |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320604373 (DE-600)2020560-0 (DE-576)096806710 |
title |
Structural parameter design of welded plate heat exchanger based on multi-objective optimization algorithm |
ctrlnum |
(DE-627)ELV061031984 (ELSEVIER)S0735-1933(23)00289-0 |
title_full |
Structural parameter design of welded plate heat exchanger based on multi-objective optimization algorithm |
author_sort |
Yicong, Li |
journal |
International communications in heat and mass transfer |
journalStr |
International communications in heat and mass transfer |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Yicong, Li Chunyu, Shi Wei, Liu Zhichun, Liu |
container_volume |
146 |
class |
620 VZ 50.38 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Yicong, Li |
doi_str_mv |
10.1016/j.icheatmasstransfer.2023.106900 |
dewey-full |
620 |
author2-role |
verfasserin |
title_sort |
structural parameter design of welded plate heat exchanger based on multi-objective optimization algorithm |
title_auth |
Structural parameter design of welded plate heat exchanger based on multi-objective optimization algorithm |
abstract |
A numerical investigation was conducted to explore the heat transfer and flow characteristics of welded plate heat exchanger with chevron sinusoidal corrugated plates and to find the optimal parameter design in this paper. For better thermo-hydraulic performance, the effects of chevron angle (β = 30°,45°,60°), the height of the corrugations (H = 3,5,7,9) and the pitch of corrugations (P = 15,20,30,45,60) were studied with inlet velocity ranged from 0.1 m/s to 0.5 m/s. Moreover, artificial neural networks (ANNs) and multi-objective genetic algorithm (MOGA) were employed to obtain optimization solutions of the structural parameters. With the analysis of flow form inside the flow channel, it was proposed that the chevron sinusoidal corrugated plates were helpful to transform the axial velocity of fluid to radial velocity, forming turbulence and secondary flow in the narrow region. The numerical results showed that the comprehensive performance of the plate with β = 45° was better than the other two, while P = 30 mm and H = 9 mm also performed well in this paper. Besides, an optimal parameters set was obtained with P = 15.132 mm, H = 3.005 mm, β = 45.495° when the velocity of inlet was set as 0.1 m/s, the maximum JF could reach 0.034 as the results of multi-objective optimization. |
abstractGer |
A numerical investigation was conducted to explore the heat transfer and flow characteristics of welded plate heat exchanger with chevron sinusoidal corrugated plates and to find the optimal parameter design in this paper. For better thermo-hydraulic performance, the effects of chevron angle (β = 30°,45°,60°), the height of the corrugations (H = 3,5,7,9) and the pitch of corrugations (P = 15,20,30,45,60) were studied with inlet velocity ranged from 0.1 m/s to 0.5 m/s. Moreover, artificial neural networks (ANNs) and multi-objective genetic algorithm (MOGA) were employed to obtain optimization solutions of the structural parameters. With the analysis of flow form inside the flow channel, it was proposed that the chevron sinusoidal corrugated plates were helpful to transform the axial velocity of fluid to radial velocity, forming turbulence and secondary flow in the narrow region. The numerical results showed that the comprehensive performance of the plate with β = 45° was better than the other two, while P = 30 mm and H = 9 mm also performed well in this paper. Besides, an optimal parameters set was obtained with P = 15.132 mm, H = 3.005 mm, β = 45.495° when the velocity of inlet was set as 0.1 m/s, the maximum JF could reach 0.034 as the results of multi-objective optimization. |
abstract_unstemmed |
A numerical investigation was conducted to explore the heat transfer and flow characteristics of welded plate heat exchanger with chevron sinusoidal corrugated plates and to find the optimal parameter design in this paper. For better thermo-hydraulic performance, the effects of chevron angle (β = 30°,45°,60°), the height of the corrugations (H = 3,5,7,9) and the pitch of corrugations (P = 15,20,30,45,60) were studied with inlet velocity ranged from 0.1 m/s to 0.5 m/s. Moreover, artificial neural networks (ANNs) and multi-objective genetic algorithm (MOGA) were employed to obtain optimization solutions of the structural parameters. With the analysis of flow form inside the flow channel, it was proposed that the chevron sinusoidal corrugated plates were helpful to transform the axial velocity of fluid to radial velocity, forming turbulence and secondary flow in the narrow region. The numerical results showed that the comprehensive performance of the plate with β = 45° was better than the other two, while P = 30 mm and H = 9 mm also performed well in this paper. Besides, an optimal parameters set was obtained with P = 15.132 mm, H = 3.005 mm, β = 45.495° when the velocity of inlet was set as 0.1 m/s, the maximum JF could reach 0.034 as the results of multi-objective optimization. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Structural parameter design of welded plate heat exchanger based on multi-objective optimization algorithm |
remote_bool |
true |
author2 |
Chunyu, Shi Wei, Liu Zhichun, Liu |
author2Str |
Chunyu, Shi Wei, Liu Zhichun, Liu |
ppnlink |
320604373 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.icheatmasstransfer.2023.106900 |
up_date |
2024-07-06T17:08:17.721Z |
_version_ |
1803850295776641024 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV061031984</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230926163827.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230730s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.icheatmasstransfer.2023.106900</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV061031984</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0735-1933(23)00289-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yicong, Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Structural parameter design of welded plate heat exchanger based on multi-objective optimization algorithm</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A numerical investigation was conducted to explore the heat transfer and flow characteristics of welded plate heat exchanger with chevron sinusoidal corrugated plates and to find the optimal parameter design in this paper. For better thermo-hydraulic performance, the effects of chevron angle (β = 30°,45°,60°), the height of the corrugations (H = 3,5,7,9) and the pitch of corrugations (P = 15,20,30,45,60) were studied with inlet velocity ranged from 0.1 m/s to 0.5 m/s. Moreover, artificial neural networks (ANNs) and multi-objective genetic algorithm (MOGA) were employed to obtain optimization solutions of the structural parameters. With the analysis of flow form inside the flow channel, it was proposed that the chevron sinusoidal corrugated plates were helpful to transform the axial velocity of fluid to radial velocity, forming turbulence and secondary flow in the narrow region. The numerical results showed that the comprehensive performance of the plate with β = 45° was better than the other two, while P = 30 mm and H = 9 mm also performed well in this paper. Besides, an optimal parameters set was obtained with P = 15.132 mm, H = 3.005 mm, β = 45.495° when the velocity of inlet was set as 0.1 m/s, the maximum JF could reach 0.034 as the results of multi-objective optimization.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Structural optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Welded plate heat exchanger</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial neural network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multi-objective optimization</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chunyu, Shi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wei, Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhichun, Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International communications in heat and mass transfer</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1983</subfield><subfield code="g">146</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320604373</subfield><subfield code="w">(DE-600)2020560-0</subfield><subfield code="w">(DE-576)096806710</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:146</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.38</subfield><subfield code="j">Technische Thermodynamik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">146</subfield></datafield></record></collection>
|
score |
7.4023485 |