Reconstructing 3D ocean subsurface salinity (OSS) from T–S mapping via a data-driven deep learning model
Despite the increasing volume of oceanographic data, the available ocean salinity data remains patently insufficient which limits studying ocean dynamics, climate change and the calculation of salinity-related ocean elements. Considering that traditional salinity reconstruction methods often suffer...
Ausführliche Beschreibung
Autor*in: |
Zhang, Jiali [verfasserIn] Zhang, Xuefeng [verfasserIn] Wang, Xidong [verfasserIn] Ning, Pengfei [verfasserIn] Zhang, Anmin [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Ocean modelling online - Amsterdam [u.a.] : Elsevier Science, 1999, 184 |
---|---|
Übergeordnetes Werk: |
volume:184 |
DOI / URN: |
10.1016/j.ocemod.2023.102232 |
---|
Katalog-ID: |
ELV061280577 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV061280577 | ||
003 | DE-627 | ||
005 | 20230926162351.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230805s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ocemod.2023.102232 |2 doi | |
035 | |a (DE-627)ELV061280577 | ||
035 | |a (ELSEVIER)S1463-5003(23)00073-2 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 550 |q VZ |
100 | 1 | |a Zhang, Jiali |e verfasserin |4 aut | |
245 | 1 | 0 | |a Reconstructing 3D ocean subsurface salinity (OSS) from T–S mapping via a data-driven deep learning model |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Despite the increasing volume of oceanographic data, the available ocean salinity data remains patently insufficient which limits studying ocean dynamics, climate change and the calculation of salinity-related ocean elements. Considering that traditional salinity reconstruction methods often suffer from various factors such as additional constraints, priori physical assumptions and large of specific regression coefficients, a generative adversarial networks (GANs) based deep learning (DL) framework is proposed to directly construct a near real-time, high-resolution daily three-dimensional ocean subsurface salinity (3D OSS) dataset from a data-driven perspective in this study. Four models with different structural combinations are designed in the China’s marginal seas. Experimental results demonstrate that the models can successfully reconstruct the high-precision and high-resolution 3D OSS on a daily scale in 12 depth levels (from 2 m to 200 m). The asymmetric inception-3DGAN model with all enhanced structures has the highest accuracy, the average root-mean-squared error (RMSE) is 0.135psu, the average coefficient of determination (R2) is 0.5641 and the percent bias is 0.436%. Comparing with model without enhanced structures, the average RMSE is decreased by 22.41% when adding all the enhancement structures. Besides, temporal and spatial error analysis are also conducted to evaluate the models’ performance from different aspects. Finally, the model results are used to analyze common ocean elements, such as water mass properties, dynamic fields and geostrophic velocity fields, demonstrating that the 3D OSS dataset construction approach proposed in this study not only provides some new insights into ocean observations, but also has high application values. | ||
650 | 4 | |a Deep learning | |
650 | 4 | |a Ocean subsurface salinity | |
650 | 4 | |a Data-driven | |
650 | 4 | |a Generative adversarial networks | |
650 | 4 | |a T–S mapping | |
700 | 1 | |a Zhang, Xuefeng |e verfasserin |4 aut | |
700 | 1 | |a Wang, Xidong |e verfasserin |4 aut | |
700 | 1 | |a Ning, Pengfei |e verfasserin |4 aut | |
700 | 1 | |a Zhang, Anmin |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Ocean modelling online |d Amsterdam [u.a.] : Elsevier Science, 1999 |g 184 |h Online-Ressource |w (DE-627)306589788 |w (DE-600)1498544-5 |w (DE-576)259484172 |x 1463-5011 |7 nnns |
773 | 1 | 8 | |g volume:184 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 184 |
author_variant |
j z jz x z xz x w xw p n pn a z az |
---|---|
matchkey_str |
article:14635011:2023----::eosrcigdcasbufcslntosrmsapnvadt |
hierarchy_sort_str |
2023 |
publishDate |
2023 |
allfields |
10.1016/j.ocemod.2023.102232 doi (DE-627)ELV061280577 (ELSEVIER)S1463-5003(23)00073-2 DE-627 ger DE-627 rda eng 550 VZ Zhang, Jiali verfasserin aut Reconstructing 3D ocean subsurface salinity (OSS) from T–S mapping via a data-driven deep learning model 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Despite the increasing volume of oceanographic data, the available ocean salinity data remains patently insufficient which limits studying ocean dynamics, climate change and the calculation of salinity-related ocean elements. Considering that traditional salinity reconstruction methods often suffer from various factors such as additional constraints, priori physical assumptions and large of specific regression coefficients, a generative adversarial networks (GANs) based deep learning (DL) framework is proposed to directly construct a near real-time, high-resolution daily three-dimensional ocean subsurface salinity (3D OSS) dataset from a data-driven perspective in this study. Four models with different structural combinations are designed in the China’s marginal seas. Experimental results demonstrate that the models can successfully reconstruct the high-precision and high-resolution 3D OSS on a daily scale in 12 depth levels (from 2 m to 200 m). The asymmetric inception-3DGAN model with all enhanced structures has the highest accuracy, the average root-mean-squared error (RMSE) is 0.135psu, the average coefficient of determination (R2) is 0.5641 and the percent bias is 0.436%. Comparing with model without enhanced structures, the average RMSE is decreased by 22.41% when adding all the enhancement structures. Besides, temporal and spatial error analysis are also conducted to evaluate the models’ performance from different aspects. Finally, the model results are used to analyze common ocean elements, such as water mass properties, dynamic fields and geostrophic velocity fields, demonstrating that the 3D OSS dataset construction approach proposed in this study not only provides some new insights into ocean observations, but also has high application values. Deep learning Ocean subsurface salinity Data-driven Generative adversarial networks T–S mapping Zhang, Xuefeng verfasserin aut Wang, Xidong verfasserin aut Ning, Pengfei verfasserin aut Zhang, Anmin verfasserin aut Enthalten in Ocean modelling online Amsterdam [u.a.] : Elsevier Science, 1999 184 Online-Ressource (DE-627)306589788 (DE-600)1498544-5 (DE-576)259484172 1463-5011 nnns volume:184 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 184 |
spelling |
10.1016/j.ocemod.2023.102232 doi (DE-627)ELV061280577 (ELSEVIER)S1463-5003(23)00073-2 DE-627 ger DE-627 rda eng 550 VZ Zhang, Jiali verfasserin aut Reconstructing 3D ocean subsurface salinity (OSS) from T–S mapping via a data-driven deep learning model 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Despite the increasing volume of oceanographic data, the available ocean salinity data remains patently insufficient which limits studying ocean dynamics, climate change and the calculation of salinity-related ocean elements. Considering that traditional salinity reconstruction methods often suffer from various factors such as additional constraints, priori physical assumptions and large of specific regression coefficients, a generative adversarial networks (GANs) based deep learning (DL) framework is proposed to directly construct a near real-time, high-resolution daily three-dimensional ocean subsurface salinity (3D OSS) dataset from a data-driven perspective in this study. Four models with different structural combinations are designed in the China’s marginal seas. Experimental results demonstrate that the models can successfully reconstruct the high-precision and high-resolution 3D OSS on a daily scale in 12 depth levels (from 2 m to 200 m). The asymmetric inception-3DGAN model with all enhanced structures has the highest accuracy, the average root-mean-squared error (RMSE) is 0.135psu, the average coefficient of determination (R2) is 0.5641 and the percent bias is 0.436%. Comparing with model without enhanced structures, the average RMSE is decreased by 22.41% when adding all the enhancement structures. Besides, temporal and spatial error analysis are also conducted to evaluate the models’ performance from different aspects. Finally, the model results are used to analyze common ocean elements, such as water mass properties, dynamic fields and geostrophic velocity fields, demonstrating that the 3D OSS dataset construction approach proposed in this study not only provides some new insights into ocean observations, but also has high application values. Deep learning Ocean subsurface salinity Data-driven Generative adversarial networks T–S mapping Zhang, Xuefeng verfasserin aut Wang, Xidong verfasserin aut Ning, Pengfei verfasserin aut Zhang, Anmin verfasserin aut Enthalten in Ocean modelling online Amsterdam [u.a.] : Elsevier Science, 1999 184 Online-Ressource (DE-627)306589788 (DE-600)1498544-5 (DE-576)259484172 1463-5011 nnns volume:184 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 184 |
allfields_unstemmed |
10.1016/j.ocemod.2023.102232 doi (DE-627)ELV061280577 (ELSEVIER)S1463-5003(23)00073-2 DE-627 ger DE-627 rda eng 550 VZ Zhang, Jiali verfasserin aut Reconstructing 3D ocean subsurface salinity (OSS) from T–S mapping via a data-driven deep learning model 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Despite the increasing volume of oceanographic data, the available ocean salinity data remains patently insufficient which limits studying ocean dynamics, climate change and the calculation of salinity-related ocean elements. Considering that traditional salinity reconstruction methods often suffer from various factors such as additional constraints, priori physical assumptions and large of specific regression coefficients, a generative adversarial networks (GANs) based deep learning (DL) framework is proposed to directly construct a near real-time, high-resolution daily three-dimensional ocean subsurface salinity (3D OSS) dataset from a data-driven perspective in this study. Four models with different structural combinations are designed in the China’s marginal seas. Experimental results demonstrate that the models can successfully reconstruct the high-precision and high-resolution 3D OSS on a daily scale in 12 depth levels (from 2 m to 200 m). The asymmetric inception-3DGAN model with all enhanced structures has the highest accuracy, the average root-mean-squared error (RMSE) is 0.135psu, the average coefficient of determination (R2) is 0.5641 and the percent bias is 0.436%. Comparing with model without enhanced structures, the average RMSE is decreased by 22.41% when adding all the enhancement structures. Besides, temporal and spatial error analysis are also conducted to evaluate the models’ performance from different aspects. Finally, the model results are used to analyze common ocean elements, such as water mass properties, dynamic fields and geostrophic velocity fields, demonstrating that the 3D OSS dataset construction approach proposed in this study not only provides some new insights into ocean observations, but also has high application values. Deep learning Ocean subsurface salinity Data-driven Generative adversarial networks T–S mapping Zhang, Xuefeng verfasserin aut Wang, Xidong verfasserin aut Ning, Pengfei verfasserin aut Zhang, Anmin verfasserin aut Enthalten in Ocean modelling online Amsterdam [u.a.] : Elsevier Science, 1999 184 Online-Ressource (DE-627)306589788 (DE-600)1498544-5 (DE-576)259484172 1463-5011 nnns volume:184 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 184 |
allfieldsGer |
10.1016/j.ocemod.2023.102232 doi (DE-627)ELV061280577 (ELSEVIER)S1463-5003(23)00073-2 DE-627 ger DE-627 rda eng 550 VZ Zhang, Jiali verfasserin aut Reconstructing 3D ocean subsurface salinity (OSS) from T–S mapping via a data-driven deep learning model 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Despite the increasing volume of oceanographic data, the available ocean salinity data remains patently insufficient which limits studying ocean dynamics, climate change and the calculation of salinity-related ocean elements. Considering that traditional salinity reconstruction methods often suffer from various factors such as additional constraints, priori physical assumptions and large of specific regression coefficients, a generative adversarial networks (GANs) based deep learning (DL) framework is proposed to directly construct a near real-time, high-resolution daily three-dimensional ocean subsurface salinity (3D OSS) dataset from a data-driven perspective in this study. Four models with different structural combinations are designed in the China’s marginal seas. Experimental results demonstrate that the models can successfully reconstruct the high-precision and high-resolution 3D OSS on a daily scale in 12 depth levels (from 2 m to 200 m). The asymmetric inception-3DGAN model with all enhanced structures has the highest accuracy, the average root-mean-squared error (RMSE) is 0.135psu, the average coefficient of determination (R2) is 0.5641 and the percent bias is 0.436%. Comparing with model without enhanced structures, the average RMSE is decreased by 22.41% when adding all the enhancement structures. Besides, temporal and spatial error analysis are also conducted to evaluate the models’ performance from different aspects. Finally, the model results are used to analyze common ocean elements, such as water mass properties, dynamic fields and geostrophic velocity fields, demonstrating that the 3D OSS dataset construction approach proposed in this study not only provides some new insights into ocean observations, but also has high application values. Deep learning Ocean subsurface salinity Data-driven Generative adversarial networks T–S mapping Zhang, Xuefeng verfasserin aut Wang, Xidong verfasserin aut Ning, Pengfei verfasserin aut Zhang, Anmin verfasserin aut Enthalten in Ocean modelling online Amsterdam [u.a.] : Elsevier Science, 1999 184 Online-Ressource (DE-627)306589788 (DE-600)1498544-5 (DE-576)259484172 1463-5011 nnns volume:184 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 184 |
allfieldsSound |
10.1016/j.ocemod.2023.102232 doi (DE-627)ELV061280577 (ELSEVIER)S1463-5003(23)00073-2 DE-627 ger DE-627 rda eng 550 VZ Zhang, Jiali verfasserin aut Reconstructing 3D ocean subsurface salinity (OSS) from T–S mapping via a data-driven deep learning model 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Despite the increasing volume of oceanographic data, the available ocean salinity data remains patently insufficient which limits studying ocean dynamics, climate change and the calculation of salinity-related ocean elements. Considering that traditional salinity reconstruction methods often suffer from various factors such as additional constraints, priori physical assumptions and large of specific regression coefficients, a generative adversarial networks (GANs) based deep learning (DL) framework is proposed to directly construct a near real-time, high-resolution daily three-dimensional ocean subsurface salinity (3D OSS) dataset from a data-driven perspective in this study. Four models with different structural combinations are designed in the China’s marginal seas. Experimental results demonstrate that the models can successfully reconstruct the high-precision and high-resolution 3D OSS on a daily scale in 12 depth levels (from 2 m to 200 m). The asymmetric inception-3DGAN model with all enhanced structures has the highest accuracy, the average root-mean-squared error (RMSE) is 0.135psu, the average coefficient of determination (R2) is 0.5641 and the percent bias is 0.436%. Comparing with model without enhanced structures, the average RMSE is decreased by 22.41% when adding all the enhancement structures. Besides, temporal and spatial error analysis are also conducted to evaluate the models’ performance from different aspects. Finally, the model results are used to analyze common ocean elements, such as water mass properties, dynamic fields and geostrophic velocity fields, demonstrating that the 3D OSS dataset construction approach proposed in this study not only provides some new insights into ocean observations, but also has high application values. Deep learning Ocean subsurface salinity Data-driven Generative adversarial networks T–S mapping Zhang, Xuefeng verfasserin aut Wang, Xidong verfasserin aut Ning, Pengfei verfasserin aut Zhang, Anmin verfasserin aut Enthalten in Ocean modelling online Amsterdam [u.a.] : Elsevier Science, 1999 184 Online-Ressource (DE-627)306589788 (DE-600)1498544-5 (DE-576)259484172 1463-5011 nnns volume:184 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 184 |
language |
English |
source |
Enthalten in Ocean modelling online 184 volume:184 |
sourceStr |
Enthalten in Ocean modelling online 184 volume:184 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Deep learning Ocean subsurface salinity Data-driven Generative adversarial networks T–S mapping |
dewey-raw |
550 |
isfreeaccess_bool |
false |
container_title |
Ocean modelling online |
authorswithroles_txt_mv |
Zhang, Jiali @@aut@@ Zhang, Xuefeng @@aut@@ Wang, Xidong @@aut@@ Ning, Pengfei @@aut@@ Zhang, Anmin @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
306589788 |
dewey-sort |
3550 |
id |
ELV061280577 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV061280577</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230926162351.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230805s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ocemod.2023.102232</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV061280577</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1463-5003(23)00073-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Jiali</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Reconstructing 3D ocean subsurface salinity (OSS) from T–S mapping via a data-driven deep learning model</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Despite the increasing volume of oceanographic data, the available ocean salinity data remains patently insufficient which limits studying ocean dynamics, climate change and the calculation of salinity-related ocean elements. Considering that traditional salinity reconstruction methods often suffer from various factors such as additional constraints, priori physical assumptions and large of specific regression coefficients, a generative adversarial networks (GANs) based deep learning (DL) framework is proposed to directly construct a near real-time, high-resolution daily three-dimensional ocean subsurface salinity (3D OSS) dataset from a data-driven perspective in this study. Four models with different structural combinations are designed in the China’s marginal seas. Experimental results demonstrate that the models can successfully reconstruct the high-precision and high-resolution 3D OSS on a daily scale in 12 depth levels (from 2 m to 200 m). The asymmetric inception-3DGAN model with all enhanced structures has the highest accuracy, the average root-mean-squared error (RMSE) is 0.135psu, the average coefficient of determination (R2) is 0.5641 and the percent bias is 0.436%. Comparing with model without enhanced structures, the average RMSE is decreased by 22.41% when adding all the enhancement structures. Besides, temporal and spatial error analysis are also conducted to evaluate the models’ performance from different aspects. Finally, the model results are used to analyze common ocean elements, such as water mass properties, dynamic fields and geostrophic velocity fields, demonstrating that the 3D OSS dataset construction approach proposed in this study not only provides some new insights into ocean observations, but also has high application values.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Deep learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ocean subsurface salinity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data-driven</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Generative adversarial networks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">T–S mapping</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Xuefeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Xidong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ning, Pengfei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Anmin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Ocean modelling online</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1999</subfield><subfield code="g">184</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)306589788</subfield><subfield code="w">(DE-600)1498544-5</subfield><subfield code="w">(DE-576)259484172</subfield><subfield code="x">1463-5011</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:184</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">184</subfield></datafield></record></collection>
|
author |
Zhang, Jiali |
spellingShingle |
Zhang, Jiali ddc 550 misc Deep learning misc Ocean subsurface salinity misc Data-driven misc Generative adversarial networks misc T–S mapping Reconstructing 3D ocean subsurface salinity (OSS) from T–S mapping via a data-driven deep learning model |
authorStr |
Zhang, Jiali |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)306589788 |
format |
electronic Article |
dewey-ones |
550 - Earth sciences |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1463-5011 |
topic_title |
550 VZ Reconstructing 3D ocean subsurface salinity (OSS) from T–S mapping via a data-driven deep learning model Deep learning Ocean subsurface salinity Data-driven Generative adversarial networks T–S mapping |
topic |
ddc 550 misc Deep learning misc Ocean subsurface salinity misc Data-driven misc Generative adversarial networks misc T–S mapping |
topic_unstemmed |
ddc 550 misc Deep learning misc Ocean subsurface salinity misc Data-driven misc Generative adversarial networks misc T–S mapping |
topic_browse |
ddc 550 misc Deep learning misc Ocean subsurface salinity misc Data-driven misc Generative adversarial networks misc T–S mapping |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Ocean modelling online |
hierarchy_parent_id |
306589788 |
dewey-tens |
550 - Earth sciences & geology |
hierarchy_top_title |
Ocean modelling online |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)306589788 (DE-600)1498544-5 (DE-576)259484172 |
title |
Reconstructing 3D ocean subsurface salinity (OSS) from T–S mapping via a data-driven deep learning model |
ctrlnum |
(DE-627)ELV061280577 (ELSEVIER)S1463-5003(23)00073-2 |
title_full |
Reconstructing 3D ocean subsurface salinity (OSS) from T–S mapping via a data-driven deep learning model |
author_sort |
Zhang, Jiali |
journal |
Ocean modelling online |
journalStr |
Ocean modelling online |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Zhang, Jiali Zhang, Xuefeng Wang, Xidong Ning, Pengfei Zhang, Anmin |
container_volume |
184 |
class |
550 VZ |
format_se |
Elektronische Aufsätze |
author-letter |
Zhang, Jiali |
doi_str_mv |
10.1016/j.ocemod.2023.102232 |
dewey-full |
550 |
author2-role |
verfasserin |
title_sort |
reconstructing 3d ocean subsurface salinity (oss) from t–s mapping via a data-driven deep learning model |
title_auth |
Reconstructing 3D ocean subsurface salinity (OSS) from T–S mapping via a data-driven deep learning model |
abstract |
Despite the increasing volume of oceanographic data, the available ocean salinity data remains patently insufficient which limits studying ocean dynamics, climate change and the calculation of salinity-related ocean elements. Considering that traditional salinity reconstruction methods often suffer from various factors such as additional constraints, priori physical assumptions and large of specific regression coefficients, a generative adversarial networks (GANs) based deep learning (DL) framework is proposed to directly construct a near real-time, high-resolution daily three-dimensional ocean subsurface salinity (3D OSS) dataset from a data-driven perspective in this study. Four models with different structural combinations are designed in the China’s marginal seas. Experimental results demonstrate that the models can successfully reconstruct the high-precision and high-resolution 3D OSS on a daily scale in 12 depth levels (from 2 m to 200 m). The asymmetric inception-3DGAN model with all enhanced structures has the highest accuracy, the average root-mean-squared error (RMSE) is 0.135psu, the average coefficient of determination (R2) is 0.5641 and the percent bias is 0.436%. Comparing with model without enhanced structures, the average RMSE is decreased by 22.41% when adding all the enhancement structures. Besides, temporal and spatial error analysis are also conducted to evaluate the models’ performance from different aspects. Finally, the model results are used to analyze common ocean elements, such as water mass properties, dynamic fields and geostrophic velocity fields, demonstrating that the 3D OSS dataset construction approach proposed in this study not only provides some new insights into ocean observations, but also has high application values. |
abstractGer |
Despite the increasing volume of oceanographic data, the available ocean salinity data remains patently insufficient which limits studying ocean dynamics, climate change and the calculation of salinity-related ocean elements. Considering that traditional salinity reconstruction methods often suffer from various factors such as additional constraints, priori physical assumptions and large of specific regression coefficients, a generative adversarial networks (GANs) based deep learning (DL) framework is proposed to directly construct a near real-time, high-resolution daily three-dimensional ocean subsurface salinity (3D OSS) dataset from a data-driven perspective in this study. Four models with different structural combinations are designed in the China’s marginal seas. Experimental results demonstrate that the models can successfully reconstruct the high-precision and high-resolution 3D OSS on a daily scale in 12 depth levels (from 2 m to 200 m). The asymmetric inception-3DGAN model with all enhanced structures has the highest accuracy, the average root-mean-squared error (RMSE) is 0.135psu, the average coefficient of determination (R2) is 0.5641 and the percent bias is 0.436%. Comparing with model without enhanced structures, the average RMSE is decreased by 22.41% when adding all the enhancement structures. Besides, temporal and spatial error analysis are also conducted to evaluate the models’ performance from different aspects. Finally, the model results are used to analyze common ocean elements, such as water mass properties, dynamic fields and geostrophic velocity fields, demonstrating that the 3D OSS dataset construction approach proposed in this study not only provides some new insights into ocean observations, but also has high application values. |
abstract_unstemmed |
Despite the increasing volume of oceanographic data, the available ocean salinity data remains patently insufficient which limits studying ocean dynamics, climate change and the calculation of salinity-related ocean elements. Considering that traditional salinity reconstruction methods often suffer from various factors such as additional constraints, priori physical assumptions and large of specific regression coefficients, a generative adversarial networks (GANs) based deep learning (DL) framework is proposed to directly construct a near real-time, high-resolution daily three-dimensional ocean subsurface salinity (3D OSS) dataset from a data-driven perspective in this study. Four models with different structural combinations are designed in the China’s marginal seas. Experimental results demonstrate that the models can successfully reconstruct the high-precision and high-resolution 3D OSS on a daily scale in 12 depth levels (from 2 m to 200 m). The asymmetric inception-3DGAN model with all enhanced structures has the highest accuracy, the average root-mean-squared error (RMSE) is 0.135psu, the average coefficient of determination (R2) is 0.5641 and the percent bias is 0.436%. Comparing with model without enhanced structures, the average RMSE is decreased by 22.41% when adding all the enhancement structures. Besides, temporal and spatial error analysis are also conducted to evaluate the models’ performance from different aspects. Finally, the model results are used to analyze common ocean elements, such as water mass properties, dynamic fields and geostrophic velocity fields, demonstrating that the 3D OSS dataset construction approach proposed in this study not only provides some new insights into ocean observations, but also has high application values. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Reconstructing 3D ocean subsurface salinity (OSS) from T–S mapping via a data-driven deep learning model |
remote_bool |
true |
author2 |
Zhang, Xuefeng Wang, Xidong Ning, Pengfei Zhang, Anmin |
author2Str |
Zhang, Xuefeng Wang, Xidong Ning, Pengfei Zhang, Anmin |
ppnlink |
306589788 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.ocemod.2023.102232 |
up_date |
2024-07-06T17:26:19.876Z |
_version_ |
1803851430498402304 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV061280577</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230926162351.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230805s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ocemod.2023.102232</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV061280577</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1463-5003(23)00073-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Jiali</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Reconstructing 3D ocean subsurface salinity (OSS) from T–S mapping via a data-driven deep learning model</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Despite the increasing volume of oceanographic data, the available ocean salinity data remains patently insufficient which limits studying ocean dynamics, climate change and the calculation of salinity-related ocean elements. Considering that traditional salinity reconstruction methods often suffer from various factors such as additional constraints, priori physical assumptions and large of specific regression coefficients, a generative adversarial networks (GANs) based deep learning (DL) framework is proposed to directly construct a near real-time, high-resolution daily three-dimensional ocean subsurface salinity (3D OSS) dataset from a data-driven perspective in this study. Four models with different structural combinations are designed in the China’s marginal seas. Experimental results demonstrate that the models can successfully reconstruct the high-precision and high-resolution 3D OSS on a daily scale in 12 depth levels (from 2 m to 200 m). The asymmetric inception-3DGAN model with all enhanced structures has the highest accuracy, the average root-mean-squared error (RMSE) is 0.135psu, the average coefficient of determination (R2) is 0.5641 and the percent bias is 0.436%. Comparing with model without enhanced structures, the average RMSE is decreased by 22.41% when adding all the enhancement structures. Besides, temporal and spatial error analysis are also conducted to evaluate the models’ performance from different aspects. Finally, the model results are used to analyze common ocean elements, such as water mass properties, dynamic fields and geostrophic velocity fields, demonstrating that the 3D OSS dataset construction approach proposed in this study not only provides some new insights into ocean observations, but also has high application values.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Deep learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ocean subsurface salinity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data-driven</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Generative adversarial networks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">T–S mapping</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Xuefeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Xidong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ning, Pengfei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Anmin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Ocean modelling online</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1999</subfield><subfield code="g">184</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)306589788</subfield><subfield code="w">(DE-600)1498544-5</subfield><subfield code="w">(DE-576)259484172</subfield><subfield code="x">1463-5011</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:184</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">184</subfield></datafield></record></collection>
|
score |
7.400794 |